基于多孔硅的三维PN结结构探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文论述了基于多孔硅的三维PN结结构的形成及在核电池和X射线探测器中的应用,同时研究了此三维PN结结构的制备工艺,特别地讨论了电化学刻蚀技术形成多孔结构的工作原理,并且进行了采用SiO_2掩膜和Si_3N_4掩膜制备三维PN结结构的实验探索。
     第一章首先介绍了基于多孔硅的三维PN结结构的形成、应用、研究现状以及本文工作。
     第二章介绍了三维PN结的制备工艺,并且重点介绍了电化学刻蚀多孔硅的工作原理及其影响因素。
     第三章讨论了采用SiO_2掩膜的p-型半导体硅上制作宏多孔硅结构,再进行扩散制得三维PN结,探索其I-V、C-V电学性能,并且进行了孔距、孔深影响的模拟,特别是着重分析孔距(侧壁厚度)的影响。实验发现,当侧壁厚度薄到两侧的扩散层接近会聚时,孔深的提高对有效结面积影响不大。
     第四章详细讨论了采用低应力Si_3N_4掩膜的p-型硅上制作宏多孔硅,再进行扩散制得三维PN结。此实验重点是扩大侧壁厚度,以提高三维PN结的有效结面积。实验发现,采用抗蚀性强的低应力Si_3N_4掩膜并没有能够扩大侧壁厚度,这说明湿法刻蚀可能无法实现扩大侧壁厚度。为了解决这一问题,我们将采用深反应离子刻蚀的干法刻蚀来制作宏多孔硅,此工作还在进行中。
     第五章全文进行总结,并对基于三维PN结结构的能量转换芯片进行了展望。
Based on the extensive research literature, the formation of 3D PN junction and the application in the fabrication of isotope batteries and X-ray detectors is explained, and the fabrication technology is also studied, specially the formation principle of porous structure fabricated by Electrochemical etching is discussed in the paper. At the same time, the fabrication experiment of 3D PN junction by the use of SiO_2 and Si_3N_4 mask.
     The formation, application and the research status of 3D PN junction based on macroporous silicon and the work in this thesis are firstly introduced in Chapter 1.
     The fabrication technology of 3D PN junction, focus on the Electrochemical etching on porous silicon and its impact factors, are described in Chapter 2.
     The fabrications of macroporous silicon structure on the p-type silicon by the use of SiO_2 mask and 3D PN junction by further diffusion are discussed in Chapter 3. The electrical properties are measured including IV and CV test. The impact of the hole depth is simulated and the impact of the wall thickness is specially analyzed. It was found that the increasing depth has little impact on the effective junction area when the wall thickness is so thin that the diffusion layers is close to converge.
     The fabrications of macroporous silicon structure on the p-type silicon by the use of Si_3N_4 mask with low stress and 3D PN junction by further diffusion are discussed in Chapter 4. It is important to increase the wall thickness to enhance the effective junction area. It was found that the wall thickness can not increase the wall thickness by the use of Si_3N_4 mask with strong corrosion resistance and low stress, indicating that wet etching may not be able to achieve increasing of wall thickness. To solve the problem, DRIE dry etching is employed to fabricate macroporous silicon. And this work is still in progress.
     Summary is present in Chapter 5, and prospect on the development of energy conversion chips based on 3D PN junction structure is portrayed.
引文
[1]王清涛,李清山.多孔硅及其应用研究展望,辽宁大学学报,28卷,4期301-304,317,2001.
    [2]Beale J.,Benjamin J.,Uren M.,Chew N.,Cullis A..An experimental and theoretical study of the formation and microstructure of porous silicon Journal of Crystal Growth,Vol.73(3),622-633,1985.
    [3]Yu Zou,Ningkang Huang.Basic principles and developments of the radioisotope powered voltaic batteries,Nuclear Techniques,Vol.29,No.6,June 2006.
    [4]梁代骅,沈关涛.放射性同位素电池及其应用[J],物理,05期,281-286,1984.
    [5]Fraas L.Ballantyne R,Hui S,Ye SZ,Gregory S,Keyes J,et al.Commercial GaSb cell and circuit development for the midnight sun TPV stove.Proceedings of the Proc 4th NREL Conference on the Thermophotovoltaic Generation Electricity,371-376,1998.
    [6]Ferguson L,Fraas L.Matched infrared emitters for use with GaSh TPV cells[A].The Third NREL Conference on the Thermophotovoltaic Generation of Electricity.New York:American Institute of Physics,401,169-179,1997.
    [7]Stone K W,Fatemi N S,Garverick L M,Douglas Mc D,H.Beach.Proceedings of the 25th Photovoltaic Specialists Conference,Washington,DC,USA,1421-1424,May 1996.
    [8]Coutts T.J.,Fitzgerald M.C.Thermophotovoltaics.Scientific American.Vol.9,90-95,1998.
    [9]Wanlass,M.W.;Ward,J.S.;Emery,K.A.;Courts T.J.,Ga_xIn_(1-x)As thermophotovoltaic converters,1st World Conference on Photovoltaic Energy Conversion,1685-1690,1994
    [10]CouttsT.J.,Wanlass M.W.,Ward J.S.,and Johnson S.,A review of recent advances in thermophotovoltaics.Proceedings of the 25th Photovoltaic Specialists Conference,Washington,DC,USA,25-30,1996.
    [11]Fraas,L.,Ballantyne R.,Samaras J.,Seal,M.,A thermophotovoltaic electric generator using GaSb cells with a hydrocarbon burner,1st World Conference on Photovoltaic Energy Conversion,1713-1718,1994..
    [12]Bower E K,Barbanel Y A,Shreter Y G,et al.Polymersphosphors and voltaics for radioisotope microbatteries,London:CRC Press,24-25,2002.
    [13]Tieshan Wang,Baoguo Zhang,Zhusheng Wang,et al.Nucl.Tech.,Vol.18,No.12,740-743,1995.
    [14]Brown W.C.,Criswell D.R.,Waldron R.D.,Lunar system to supply solar electric power to earth,in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference,vol.1,72-76,1990.
    [15]梁代骅,杜光天,斯厚智,沈关涛,赖伟全.地面用放射性同位素电池模型的研制与试验,核技术,02期,13-16,1982.
    [16]Wei Sun,Nazir P,Kherani,Karl D,Hirschman,Larry L,Gadeken,Philippe M,Faucher.A three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics,Advanced Materials,Vol.17,1230-1223,2005.
    [17]王铁山,张保国.放射性同位素衰变能发电机制的研究与探索,核技术,17卷,9期,1994.
    [18]孙磊,苑伟政,乔大勇.基于MEMS的放射性同位素电池的设计与实现[J],精细加工技术,03期,37-40,2006.
    [19]Kleimann P.,Linnros J.,Frojdh C.,Petersson C.S.,An X-ray imaging pixel detector based on scintillator filled pores in a silicon matrix,Nuclear Instruments and Methods in Physics Research,Vol.A 460,15-19,2001.
    [20]Badel X.,Linnros J.,Janson M.S.,Sterman J.O.,Formation of pn junctions in deep silicon pores for X-ray imaging detector applications,Nuclear Instruments and Methods in Physics Research,Vol.A 509,96-101,2001.
    [21]Kleimann P.,Linnros J.,Frojdh C.,Petersson C.S.,An X-ray Imaging Pixel Detector Based on A Scintillating Guides Screen,IEEE Transactions on Nuclear Science,N47(4),1483-1486,2000.
    [22]Badel X.,Galeckas A.,Linnros J.,Kleimann P.,Frojdh C.,Petersson C.S.,Improvement of an X-ray imaging detector based on a scintillating guides screen Nuclear Instruments and Methods in Physics Research,Vol.A 487,129-135,2002.
    [23]Kleimann P.,Linnros J.,Petersson C.S.,Formation of wide and deep pores in silicon by electrochemical etching,Mater.Sci.Eng.Vol.B 69-70,29-33,2000.
    [24]杨爱龄,张秀森,邵迪玲.PECVD氮化硅膜的性质与生长条件的关系[J].杭州大学学报,17卷,2期,174-182,1990.
    [25]董立军,陈大鹏,韩敬东,谢常青,李兵,赵铃莉,胥兴才.LPCVD生长低应力氮化硅膜工艺研究.,第十二届全国化合物半导体材料、微波器件和光电器件学术会议,12卷,257-259,2002.
    [26]赵铃莉,叶甜春等.复合结构X射线光刻掩模薄膜衬基的制备.第九届全国三束会议,1997.
    [27]阎守胜.固体物理,北京大学出版社,2001.6
    [28]张兴,黄如,刘晓彦.微电子学概论,北京大学出版社,1999.
    [29]Dwivedi V.K.,Gopal R.,Ahmad S.,Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices,Microelectronics Journal,Vol.31,405-410,2000.
    [30]邹宇,黄宁康.伏特效应放射性同位素电池的原理和进展,核技术,29卷,6期,432-437,2006.
    [31]胡明,田斌,工兴,张景阳,张之圣.化学刻蚀法制备多孔硅的表面形貌研究.功能材料,35卷,2期,223-224,2004.
    [32]Lehmann V.,FOll H.,properties of electrochemically etched trenches in n-type silicon,J.Electrochem.Soc.Vol.137,653-659,1990.
    [33]Lehmann V.,The physics of macropore formation in low doped N-type silicon,J.Electrochem.Soc.Vol.140,2836-2843,1993.
    [34]Foll H.,Christophersen M.,Carstensen J.,Hasse G.,Formation and Application of Porous Silicon,Materials Science and Engineering.Vol.R 39,93-141,2002.
    [35]Bisi O.,Ossicini Stefano,Pavesi L.,Porous silicon:a quantum sponge structure for silicon based optoelectronics,Surface Science Reports,Vol.38,1-126,2000.
    [36]Smith R.L.,Collins S.D.,Porous silicon formation mechanisms,J.Appl.Phys.71,R1,1992.
    [37]李志全,乔淑欣,蔡亚楠,滕峰成.直流电化学腐蚀法制备多孔硅的表面形貌研究,理化检验:物理分册,42卷,8期,392-395,2006.
    [38]刘恩科.半导体物理学,电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700