基于β辐射伏特效应的同位素微电池理论模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS发展,微能源逐渐成为MEMS应用中的一个非常关键的问题。目前常规能源和现有的微能源在体积、使用寿命、稳定性及对环境的适应能力方面远达不到微系统的需要。基于β辐射伏特效应的同位素微电池所具有的特点,逐渐成为微能源系统研究的一个新方向。为了指导电池的设计和制作,其理论模型的建立是有必要的。
     本文用理论分析和数值模拟的方法,探讨了基于β辐射伏特效应的同位素微电池内部作用机制和初始设计参数对电池性能的影响。模型同时考虑了同位素的选取及其衰变能谱的确定、放射粒子能量损失率、半导体特性、载流子的产生与复合、电池的串并联电阻等因素。然后建立一个等效电路,最后分别给出不同初始参数下和不同结构下的模拟结果并与文献作比较、分析与讨论。
     本文以同位素~(63)Ni和半导体单晶硅为例进行模拟,模拟结果显示:选择性发射极结构的电池性能优于常规结构的电池性能:扩散层掺杂浓度不应超过10~(20)cm~(-3),且在此掺杂浓度下电压达到最大;基区掺杂浓度要尽量小;电池整体性能随温度上升而下降;扩散深度的增加可以引起电池的总体性能上升;放射性物质活度的增加也可以引起电池的总体性能上升;粒子在硅中运动的距离约在40μm。
     因为模型的建立涉及到一些公式的简化、数值计算中的舍入误差以及电池实际制作中的一些偶然误差,所以模拟结果与实验数据会有偏差。将模拟结果与引用文章中的结果进行比较,发现在相同初始条件下,模拟数值与实验数值基本吻合。该模型对微电池的开发具有一定的指导意义和实用价值。
As the developing of MEMS investigation, micropower becomes a very key problem in MEMS application gradually. Presently, conventional energy and existing micropower, in volume, life-time, stability and the adaptation for environment, can't far reach the needs of MEMS. In view of the characteristic of radioisotope microbattery based on p-radio-voltaic effect, it gradually becomes a new direction on micro power system. Thus, to guide design and produce of the microbattery, the establishment of theoretical model is necessary.The paper, with the method of theory analysis and value analog, discusses internal operation mechanism of isotope microbattery and the relation between initial design parameters and battery performance. The model accounts simultaneously for isotope selection, transition type of isotope decay, particle energy spectrum, the energy loss rate of emitted particle in the target material, semiconductor characteristic, generation and recombination of carriers, series and shunt resistance, etc. Then a equivalent circuit is established. The model, in different initial parameters and different structures, shows calculation results. Finally, Take calculated result and experiment result to compare, analyze and discuss.This paper takes isotope ~(63)Ni and the single crystal Si as the example to simulate And simulated results show: the selective emitter structure is better than conventional structure in the performance; doped density of diffusion layer had better not surpass 10~(20)cm~(-3), and here the voltage achieves in a big way; doped density of the base area, under the situation of satisfing our request, is as small as possible; the battery overall performance drops along with the temperature rise; the diffusion depth is shallower, the battery overall performance is better; The activity increases, and the battery overall performance rises; movement distance of particle in silicon is approximately 40μm.Because some simplified formulas concerned the establishment of model, the error of numerical value calculation and some accidental errors in actual produce, simulated result and experiment data can have the deviation. Under identical initial conditions, compare simulated result and experiment data and discover them coincide basically. The model is considerably instructional and useful for developing microbattery.
引文
[1] 朴相镐,褚金奎,吴红超,杜小振。微能源的研究现状及发展趋势.中国机械工程.2005年第16卷增刊,1-3.
    [2] 许书和.电池中的“寿星”——能用50年的63Ni原子电池.[2003-9-15].http://www.caea.gov.cn/pointcol/points_show.asp?id=576&bigclassid=10&title=%E8%A7%82%E7%82%B9%E9%9B%86%E7%BA%B3.
    [3] 张建中,王保民,李昌进.微电池的最新研究动态.电源技术.Vol.26增刊Jul.2002,236-238.
    [4] 陈宏铭。同位素微电池之研究。[学位论文]。台湾:国立清华大学,2003。
    [5] 刘路,解晶莹.微能源.电源技术.Vol.26 No.6 Dec.2002,470-473.
    [6] Hang Guo, and Amit Lal, "Nanopower betavoltaic microbatteries", The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003,36.
    [7] James Blanchard, Douglass Henderson, Amit Lal. "A Nuclear Microbattery for MEMS Devices", University of Wisconsin-Madison, Final Scientific/Technical Repor.
    [8] 王铁山,张保国.放射性同位素衰变能发电机制的研究与探索.核技术.1994年9月第9期第17卷,548-551.
    [9] 王铁山张保国.同位素电池发电机制的研究与发展.同位素.Vol.9,No.1 Feb.1996,41-46.
    [10] 晶体硅太阳电池制备工艺进展.[2005-11-25 10:19:43].http://www.chinesevacuum.com/ShowArticle.aspx?id=3913.
    [11] R.M. Bilbao, Y. Leon, H. Guo, H. Li, S. Santanam, R. Yao, J. Blanchard and D. Henderson," A nuclear microbattery for MEMS devices" , University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706.
    [12] ANDREW W. BLAKERS, JIANHUA ZHAO, ADELE M. MILNE, AIHUA WANG, AND XIMING DAI, " Characterization of 23-Percent Efficient Silicon Solar Cells" , IEEE TRANSACTIONS ON ELECTRON DEVICES. VOL, 37, NO. 2, FEBRUARY 1990.
    [13] 屈盛,陈庭金,刘祖明,廖华.太阳电池选择性发射极结构的研究.云南师范大学学报.2005年5月第3期第25卷,21-25.
    [14] 于孝忠.核辐射物理学.北京:原子能出版社,1981,114-127.
    [15] [美]汉斯.弗朗费尔德,欧内斯特.M.亨利.亚原子物理学.北京:原子能出版社,1981,26.
    [16] 王汝赡,卓韵裳.核辐射测量与防护.北京:原子能出版社,1990,2-26.
    [17] 汲长松.核辐射探测器及其实验技术手册.北京:原子能出版社,1990,29-46.
    [18] 程檀生,钟毓澍.低能及中高能原子核物理学.北京:北京大学出版社,1997,188-192。
    [19] 马崇智等.放射性同位素手册.北京:科学出版社,1-2.
    [20] 卢希庭.原子核物理.北京:原子能出版社,2001,129-157.
    [21] 刘运祚.常用放射性核素衰变纲图,北京:原子能出版社,1982,33.
    [22] 胡济民,杨伯君,郑春开.原子核理论.北京:原子能出版社,修订版,第一卷,1993,289-304.
    [23] 陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,1999,51-130.
    [24] 王长贵,崔容强,周篁.新能源发电技术.北京:中国电力出版社,2003,26-67.
    [25] [美]施敏.半导体器件物理与工艺.苏州:苏州大学出版社,第二版,2002,48-70.
    [26] [日]高桥清,浜川圭弘,后川昭雄.太阳光发电.北京:新时代出版社,1987,85-89.
    [27] D. S. H. CHAN, J. R. PHILLIPS and J. C. H. PFIANG." A COMPARATIVE STUDY OF EXTRACTION METHODS FOR SOLAR CELL MODEL PARAMETERS". Department of Electrical Engineering, National University of Singapore, Kent Ridge. Singapore 051 1 Solid-state electronics Vol. 29. No. 3. pp329-337,1986.
    [28] 刘恩科,朱秉升,罗晋生等.半导体物理学.北京-电子工业出版社,2003,15-60.
    [29] 韦丹.固体物理学.北京:清华大学出版社,2003,8-46.
    [30] 周长发.科学与工程数值算法.北京:清华大学出版社,2002,60-80.
    [31] 伍俊良.Visual C++课程设计与系统开发案例.北京:清华大学出版社,2002,1-67.
    [32] 杨启帆,方道元.数学建模.杭州:浙江大学出版社,1999,7-55.
    [33] 林成森.数值计算方法.北京:科学出版社,2004,12-29.
    [34] 诺索夫等.微电子学集成元件数学模型.南京:江苏科学技术出版社 1991,28-40
    [35] 曹建中等.半导体材料的辐射效应.北京:科学出版社,1993,4-63
    [36] Herman Cember. Introduction to health physics. New York: Pergamon Press, c1983,65-87.
    [37] (美)徐泰然.MEMS和微系统.北京:机械工业出版社,2004,1-81.
    [38] KENNETH F. GALLOWAY, MEMBER, KATHRYN O. LEEDY, AND WILLIAM J. KEERY, MEMBER. Electron-Beam-Inducedbd Currents in Simple Device Structures. IEEE TRANSACTIONS ON PARTS, HYBRIDS, AND PACKAGING, VOL. PHP-12, NO. 3, SEPTEMBER 1976.
    [39] Klaus Winter. NEUTRINO PHYSICS, Second edition. CAMBRIDGE UNIVERSITY PRESS. 230-296.
    [40] 陈晔,李世清,鄢和平,王仁卉.背电场硅太阳能电池离子辐照效.半导体光电.第18卷第1期,1997年2月,51-56.
    [41] 肖志雄,郑茳,魏同立.硅中电离率与有效多数载流子浓度的温度关系.应用科学报,1996年9月,第14卷,第3期,332-337.
    [42] D. K. Schroder, B. D. Choi, S. G. Kang, W. Ohashi, K. Kitahara, G. Opposits, T. Pavelka, and J. Benton. Silicon Epitaxial Layer Recombination and Generation Lifetime Characterization. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, APRIL 2003,906-910.
    [43] T P Chen, T C Lee, S Fung and C D Beling. Department of Physics, University of Hong Kong, Hong Kong. A photovoltaic study of current transport and its influence on the determination of the Schottky barrier height in Schottky diodes. Semicond. Sci. Technol. 8 (1993) 2085-2091. Printed in the UK, 2085-2091.
    [44] J. M. Shannon, K. J. B. M. Nieuwesteeg. Tunneling effective mass in hydrogenated amorphous silicon. Appl. Phys. Lett. 62 (15), 12 April 1993, 1993 Americen Institute of Physics, 1815-817.
    [45] 陈庭金,涂洁磊,汪东翔,董俊.太阳能电池并联电阻的一种测量方法.半导体光电.1998年8月第19卷第4期.
    [46] 杨力君.对“新的p-n结光生福特效应”提法的异议——与刘忠厚等同志商榷.湘潭大学自然科学学报.1996年6月,第18卷,第2期,45-49.
    [47] 张建中,王保民,李昌进.微电池的最新研究动态.电源技术.Vol.26,增刊,Jul.2002,236-238.
    [48] Stepen A.Campbell.微电子制造科学原理与工程(第二版)[M].曾莹,严利人,王纪民译.北京:电子工业出版社,2003.418-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700