HAb18G/CD147晶体结构—免疫球蛋白超家族新二聚化模式的发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     CD147 (EMMPRIN、Basign、HAb18G)是一个I型整合跨膜糖蛋白,属于免疫球蛋白超家族(IgSF)成员。在体内大量涉及分子间相互作用的生理和病理过程,CD147均起着至关重要的作用。HAb18G/CD147是用抗人肝癌单克隆抗体(mAb)HAb18筛选人肝癌细胞cDNA文库而获得的一个新的肝癌相关抗原,具有刺激肝癌细胞和间质成纤维细胞分泌高水平基质金属蛋白酶(Matrix Metalloproteinases, MMPs)的功能,从而在肝癌浸润、转移过程中扮演重要角色。我们以前的研究表明,HAb18G/CD147不仅参与肿瘤侵袭、病毒感染以及内风湿关节炎发病机理,而且可做为一个新的通用型肿瘤生物标志物用于多种类型肿瘤的诊断和预后评估,因而成为相关疾病治疗干预措施的潜在靶标。尽管大量的研究揭示了CD147分子的多种生物学功能,但决定这些功能的结构基础仍是未解之谜,这不仅限制了对其功能机制的深入理解和进一步研究,也阻碍了针对这一抗原的新的抗体和小分子化合物的设计。因此,确定HAb18G/CD147分子的三维空间结构具有重要的科学意义和应用价值。本课题的研究目的是:通过高效的真核和原核表达体系,获得高纯度蛋白用于蛋白质结晶研究,利用X射线晶体衍射分析测定HAb18G/CD147分子的三维空间结构;在此基础上,通过计算机模拟分子对接,找到针对HAb18G/CD147分子的特异性单抗HAb18在该分子上的表位,并通过定点突变研究验证关键表位残基对抗原抗体识别和亲和力的影响。
     方法
     1 HAb18G/CD147胞外区(HAb18GEP)的高效表达和纯化
     1.1 HAb18GEP的定点整合真核分泌表达PcDNA5/FRT/18GEP-Fc重组表达质粒转染Flp-InTM CHO细胞并以潮霉素B筛选稳定高表达细胞株。用生物反应器大规模培养高表达CHO细胞株,收获的培养上清首先利用融合标签进行亲和层析纯化,再用3C蛋白酶特异性切除融合标签并再纯化。
     1.2 HAb18GEP的原核可溶性表达表达质粒pET21a(+)/HAb18GEP转化E.coli OrigamiB(DE3)菌株;表达产物用阴离子交换层析和凝胶过滤层析纯化。
     2 HAb18GEP的结晶和结构解析
     2.1 HAb18GEP的结晶和初步X-ray衍射
     采用悬滴扩散法对真核和原核表达的HAb18G/CD147胞外区蛋白进行晶体生长条件的筛选和优化,然后在X-ray衍射仪上进行天然和硒代蛋白晶体的初步衍射。
     2.2数据收集和结构解析
     在同步辐射光源(Photon Factory, Japan)上分别收集天然蛋白晶体和硒代蛋白晶体衍射数据,用单波长反常散射法(SAD)进行结构解析。首先用硒代蛋白晶体的衍射数据获得相位信息和初始结构模型,再用天然蛋白晶体的衍射数据进行结构确定和精修。
     3 HAb18单抗分子对接和突变验证
     利用计算机模拟HAb18单抗的三维结构并与HAb18G/CD147的晶体结构进行分子对接,分析特异性单抗HAb18的可能表位并通过定点突变实验进行验证。
     结果
     1 HAb18G/CD147胞外区(HAb18GEP)的高效表达和纯化
     1.1 HAb18GEP的定点整合真核分泌表达
     PcDNA5/FRT/18GEP-Fc重组表达质粒转染Flp-InTM CHO细胞并以潮霉素B筛选阳性细胞克隆,获得高表达细胞株H8F8E10。经生物反应器大规模培养后,培养上清中的表达产物可达到17mg/L。表达产物经亲和层析纯化并切除融合标签后,获得高纯度的真核HAb18G/CD147胞外区蛋白用于晶体培养。
     1.2 HAb18GEP的原核可溶性表达
     HAb18GEP在OrigamiB(DE3)菌株中以可溶形式表达;表达产物经阴离子交换层析和凝胶过滤层析纯化后,得到高纯度的原核可溶性蛋白用于晶体培养。
     2 HAb18GEP的结晶和结构解析
     2.1 HAb18GEP的结晶和初步X-ray衍射经过晶体生长条件的大量筛选和优化,原核表达的HAb18GEP在适宜条件下培养出蛋白单晶;在此基础上,制备硒代蛋白并培养出硒代蛋白晶体,通过在X-ray衍射仪上的初步衍射,筛选出分辨率在2.8~3.0?的天然和硒代蛋白晶体用于同步辐射光源上的数据收集。
     2.2数据收集和结构解析
     利用天然蛋白晶体的衍射数据(2.8?)和硒代蛋白晶体衍射数据(3.1?)进行结构解析的结果,确定HAb18G/CD147胞外区晶体的空间群为P41212,在一个不对称单元有四个分子,每个分子由两个Ig样结构域组成,N端结构域为Ig C2型,C端结构域为Ig I型;四个分子相互粘联形成寡聚体。
     3 HAb18单抗分子对接和突变验证
     抗原抗体分子对接的结果显示:HAb18G/CD147胞外区残基Glu49、Thr51、Asp65为HAb18单抗的关键表位残基。突变前后的Western Blot显示,突变后的抗原结合抗体的能力明显下降。
     结论
     1. HAb18G/CD147分子晶体结构的解析,首次从原子水平揭示了一个具有独特的IgC2–I结构域排列方式的IgSF成员,并认为它可能代表了其它CD147家族成员的一般结构。
     2.在晶体结构中发现的由IgC2结构域介导的二聚化模式为IgSF的同型粘附模式增添了新的范例。
     3.首次通过晶体结构观察到CD147分子的寡聚现象,从而为该分子寡聚依赖的重要生物学功能提供了结构的阐释。
     4.基于HAb18G/CD147抗原的晶体结构,首次通过计算机模拟分子对接和定点突变研究证实HAb18G/CD147胞外区残基Glu49、Thr51、Asp65为单抗HAb18的关键表位残基。
Aims:
     CD147 (also known as EMMPRIN, Basign, and HAb18G) is a type I integral transmenbrane glycoprotein that belongs to the immunoglobulin superfamily (IgSF). It plays fundamental roles in intercellular interactions in numerous pathological and physiological processes. HAb18G/CD147, a novel hepatocellular carcinoma (HCC)-associated antigen, was cloned in our lab by screening the HCC cDNA expression library using anti-HCC mAb HAb18. Our studies have found that HAb18G/CD147 stimulates adjacent fibroblasts and HCC cells to produce elevated levels of several MMPs, facilitating invasion and metastasis of the HCC cells. All our findings have indicated that HAb18G/CD147 is an important molecule in tumor progression, viral infection and RA pathogenesis and thereby a potential drug target for therapeutic interventions. Importantly, HAb18G/CD147 has also been shown to be a novel universal cancer biomarker for diagnosis and prognostic assessment of a wide range of cancers. Numerous researches have led to better understanding the biological functions of CD147, but the structural basis underlying its multifunctional character remains to be elucidated. The lack of three- dimensional structure of HAb18G/CD147 hampers the design of new antibodies and small molecule regulators against this antigen; therefore, defining the structure of HAb18G/CD147 is of great interest and pharmaceutical importance. The aim of this research project is to obtain high purity proteins by high efficient prokaryotic and eukaryotic expression, and then crystallize the proteins and solve the crystal structure by X-ray diffraction method. Furthermore, the epitope of specific mAb HAb18 was mapped by molecular docking and mutagenesis validation.
     Methods
     1 High efficiency expression and purification of HAb18G/CD147 extracellular portion(HAb18GEP)
     1.1 Eukaryotic site-directed integration expression of HAb18GEP Expression vector pcDNA5/FRT/HAb18GEP-Fc was transfected in Flp-InTM CHO cells and stable expression cell lines were screened by Hygromycin B. The stable expression CHO cells were cultured with bioreactor and expression products were purified by affinity chromatography; then, fusion-tag was cleaved with HRV 3C protease and the enzymic mixture was further purified.
     1.3 Prokaryotic expression of HAb18GEP Expression vector pET21a(+)/HAb18GEP was transfected into E.coli OrigamiB (DE3), and expression products were purified by two steps of anion-exchange chromatography and one step of gel-filtration chromatography.
     2 Crystallization and structure determination of HAb18GEP
     2.1 Crystallization and preliminary X-ray diffusion Crystals were grown using hanging-drop vapor diffusion method and were preliminary characterized on X-ray diffractometer.
     2.2 Data collection and structure determination X-ray diffraction data of native and Selenomethionine (SeMet)-substituted crystals were collected respectively on Synchrotron Radiation (Photon Factory, Japan). Structure was solved by single-wavelength anomalous diffusion (SAD) method.
     3 Molecular docking of mAb HAb18 and mutagenesis validation Based on the crystal structure of HAb18G/CD147, the epitopes of specific mAb HAb18 were mapped by molecular docking with modeled antibody structure. Furthermore, the effect of the key residues on antigen-antibody recognition was evaluated by site-directed mutagenesis.
     Results
     1 High efficiency expression and purification of HAb18G/CD147 extracellular portion(HAb18GEP)
     1.1 Eukaryotic site-directed integration expression of HAb18GEP A stable CHO cell line expressing HAb18GEP-Fc was generated and designated as H8F8E10. After large-scale cell culture, target proteins were harvested by affinity chromatography. Pure proteins were obtained by fusion-tag removal and subsequent purification.
     1.2 Prokaryotic expression of HAb18GEP Soluble HAb18GEP expressed in E.coli OrigamiB (DE3) was purified by two steps of anion-exchange chromatography and one polishing step of gel-filtration chromatography and was subsequently used for crystallization.
     2 Crystallization and structure determination of HAb18GEP
     2.1 Crystallization and preliminary X-ray diffusion Tetragonal crystals were grown from prokaryotic expressed HAb18GEP after extensive screening of crystalization conditions. Crystals diffracted to 2.8~3.0? were selected by preliminary X-ray diffraction and prepared for data collection on Synchrotron Radiation.
     2.2 Data collection and structure determination Diffraction data of SeMet-substituted crystals (3.1?) and native crystals (2.8?) were used for structure determination and refinement. HAb18G/CD147 crystallizes in space group P41212 with four monomers in the asymmetric unit. This structure comprises an N-terminal IgC2 domain and a C-terminal IgI domain, which are connected with a 5-residue flexible linker. The four monomers adhere together and form homo-oligomer in the crystal.
     3 Epitope mapping of mAb HAb18 and mutagenesis validation
     The molecular docking mapped the epitope of specific mAb HAb18 to three discrete areas on HAb18G/CD147 N-terminal domain, and three residues Glu49、Thr51、Asp65 are regarded as the key residues of the epitope. Western-blot assay revealed sharply decreased binding affinity after mutation of these residues.
     Conclusion
     1. The crystal structure of HAb18G/CD147 reveals for the first time an atomic view of an IgSF member with a C2–I domain organization and may represent a general architecture of other CD147 family members.
     2. The dimerization mediated by IgC2 domain in the crystal presents a novel paradigm for the existing IgSF homophilic adhesion model.
     3. The crystal structure of HAb18G/CD147 also provides a good structural explanation for the oligomerization-dependent multifunction of CD147.
     4. Based on the results of molecular docking and mutagenesis validation, three residues Glu49, Thr51 and Asp65 of HAb18G/CD147 are believed to be the key epitope residues of mAb HAb18.
引文
1. Guo, H., Majmudar, G., Jensen, T. C., Biswas, C., Toole, B. P., Gordon, M. K. Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene 220, 99-108 (1998).
    2. Miyauchi, T., Masuzawa, Y. & Muramatsu, T. The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J Biochem (Tokyo) 110, 770-4 (1991).
    3. Seulberger, H., Unger, C.M. & Risau, W. HT7, Neurothelin, Basigin, gp42 and OX-47--many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett 140, 93-7 (1992).
    4. Reed, B.H., Wilk, R., Schock, F. & Lipshitz, H.D. Integrin-dependent apposition of Drosophila extraembryonic membranes promotes morphogenesis and prevents anoikis. Curr Biol 14, 372-80 (2004).
    5. Biswas, C. et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55, 434-9 (1995).
    6. Nabeshima, K. et al. Emmprin, a cell surface inducer of matrix metalloproteinases (MMPs), is expressed in T-cell lymphomas. J Pathol 202, 341-51 (2004).
    7. Sun, J. & Hemler, M.E. Regulation of MMP-1 and MMP-2 productionthrough CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 61, 2276-81 (2001).
    8. Li, R., Huang, L., Guo, H. & Toole, B.P. Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. J Cell Physiol 186, 371-9 (2001).
    9. Yoshida, S. et al. Homo-oligomer formation by basigin, an immunoglobulin superfamily member, via its N-terminal immunoglobulin domain. Eur J Biochem 267, 4372-80 (2000).
    10. Seulberger, H., Lottspeich, F. & Risau, W. The inducible blood--brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. Embo J 9, 2151-8 (1990).
    11. Fossum, S., Mallett, S. & Barclay, A.N. The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. Eur J Immunol 21, 671-9 (1991).
    12. Jiang, J.L. et al. HAb18G/CD147-mediated calcium mobilization and hepatoma metastasis require both C-terminal and N-terminal domains. Cell Mol Life Sci 61, 2083-91 (2004).
    13. Berditchevski, F., Chang, S., Bodorova, J. & Hemler, M.E. Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem 272, 29174-80 (1997).
    14. Tang, W. & Hemler, M.E. Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem 279, 11112-8 (2004).
    15. Guo, H., Li, R., Zucker, S. & Toole, B.P. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase tothe tumor cell surface. Cancer Res 60, 888-91 (2000).
    16. Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683-93 (1996).
    17. Zucker, S. et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 273, 1216-22 (1998).
    18. Tifft, C.J., Proia, R.L. & Camerini-Otero, R.D. The folding and cell surface expression of CD4 requires glycosylation. J Biol Chem 267, 3268-73 (1992).
    19. Tropak, M.B. & Roder, J.C. Regulation of myelin-associated glycoprotein binding by sialylated cis-ligands. J Neurochem 68, 1753-63 (1997).
    20. Kataoka, H., DeCastro, R., Zucker, S. & Biswas, C. Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res 53, 3154-8 (1993).
    21. Tang, W., Chang, S.B. & Hemler, M.E. Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 15, 4043-50 (2004).
    22. Kirk, P. et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. Embo J 19, 3896-904 (2000).
    23. Kuno, N. et al. Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett 425, 191-4 (1998).
    24. Igakura, T. et al. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantationdevelopment and spermatogenesis. Dev Biol 194, 152-65 (1998).
    25. Pushkarsky, T. et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A 98, 6360-5 (2001).
    26. Yurchenko, V. et al. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem 277, 22959-65 (2002).
    27. Igakura, T. et al. Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem Biophys Res Commun 224, 33-6 (1996).
    28. Caudroy, S. et al. EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis 19, 697-702 (2002).
    29. Spinale, F.G. et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102, 1944-9 (2000).
    30. Li, Y.Y., McTiernan, C.F. & Feldman, A.M. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46, 214-24 (2000).
    31. Liang, L., Major, T. & Bocan, T. Characterization of the promoter of human extracellular matrix metalloproteinase inducer (EMMPRIN). Gene 282, 75-86 (2002).
    32. Tomita, T. et al. Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum 46, 373-8 (2002).
    33. Konttinen, Y.T. et al. Increased expression of extracellular matrix metalloproteinase inducer in rheumatoid synovium. Arthritis Rheum 43, 275-80 (2000).
    34. Ibrahim, S.M., Koczan, D. & Thiesen, H.J. Gene-expression profile of collagen-induced arthritis. J Autoimmun 18, 159-67 (2002).
    35. Foda, H.D. et al. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340). Am J Respir Cell Mol Biol 25, 717-24 (2001).
    36. Haseneen, N.A., Vaday, G.G., Zucker, S. & Foda, H.D. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 284, L541-7 (2003).
    37. Zucker, S. et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol 158, 1921-8 (2001).
    38. Davidson, B., Goldberg, I., Berner, A., Kristensen, G.B. & Reich, R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis 20, 161-9 (2003).
    39. Reimers, N. et al. Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res 10, 3422-8 (2004).
    40. Tang, Y. et al. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res 65, 3193-9 (2005).
    41. Menashi, S. et al. Regulation of extracellular matrix metalloproteinase inducer and matrix metalloproteinase expression by amphiregulin in transformed human breast epithelial cells. Cancer Res 63, 7575-80 (2003).
    42. Lim, M. et al. Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription throughMAPK p38. FEBS Lett 441, 88-92 (1998).
    43. Taylor, P.M. et al. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21, 5765-72 (2002).
    44. Marieb, E.A. et al. Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res 64, 1229-32 (2004).
    45. Misra S, G.S., Zoltan-Jones A, Toole BP. . Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem 278, 25285-25288 (2003).
    46. Toole, B.P. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4, 528-39 (2004).
    47. Zoltan-Jones, A., Huang, L., Ghatak, S. & Toole, B.P. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 278, 45801-10 (2003).
    48. Jiang, J.L. et al. The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells. J Biol Chem 276, 46870-7 (2001).
    49. Liotta, L.A. & Stetler-Stevenson, W.G. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51, 5054s-5059s (1991).
    50. Chen, Z.N., Yang, Z., Mi, L., Jiang, J., & Guo, X. The structural and functional analysis of the hepatoma related factor HAb18G. Journal of Cellular and Molecular Immunology 15, 34 (1999).
    51. Chen ZN, L.Y. Monoclonal antibody HAb18 to human hepatoma. Monoclonal Antibodies 8, 11 (1990).
    
    52. Hu, S. et al. A protein chip approach for high-throughput antigen identification and characterization. Proteomics 7, 2151-61 (2007).
    53. Wang, X.H., Chen, Z.N. & Guo, X.N. Correlation between CD147 molecule and expression of MMPs in hepatoma cell lines. J Fourth Mil Med Univ 22, 217-219 (2001).
    54. Xu, H.Y. et al. siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett 247, 336-44 (2007).
    55. Yu, X.L. et al. The glycosylation characteristic of hepatoma-associated antigen HAb18G/CD147 in human hepatoma cells. Int J Biochem Cell Biol 38, 1939-45 (2006).
    56. Li, Y. et al. Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol 9, 2174-7 (2003).
    57. Huang, B.C. et al. [Bio-panning of antagonistic peptides against HAb18G/CD147 and their function of anti-hepatoma invasion]. Zhonghua Zhong Liu Za Zhi 25, 111-4 (2003).
    58. Jones, E.Y., Davis, S.J., Williams, A.F., Harlos, K. & Stuart, D.I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232-9 (1992).
    59. Richardson, J.S. beta-Sheet topology and the relatedness of proteins. Nature 268, 495-500 (1977).
    60. Williams, A.F. & Barclay, A.N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol 6, 381-405 (1988).
    61. Yoshihara, Y., Oka, S., Ikeda, J. & Mori, K. Immunoglobulin superfamily molecules in the nervous system. Neurosci Res 10, 83-105 (1991).
    62. Davies, D.R. & Metzger, H. Structural basis of antibody function. Annu Rev Immunol 1, 87-117 (1983).
    63. Kabat, E.A. & Wu, T.T. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147, 1709-19 (1991).
    64. Brady, R.L. et al. Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains. Science 260, 979-83 (1993).
    65. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238, 528-39 (1994).
    66. Vaughn, D.E. & Bjorkman, P.J. The (Greek) key to structures of neural adhesion molecules. Neuron 16, 261-73 (1996).
    67. Chothia, C., Boswell, D.R. & Lesk, A.M. The outline structure of the T-cell alpha beta receptor. Embo J 7, 3745-55 (1988).
    68. Bjorkman, P.J. & Parham, P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59, 253-88 (1990).
    69. Bentley, G.A., Boulot, G., Karjalainen, K. & Mariuzza, R.A. Crystal structure of the beta chain of a T cell antigen receptor. Science 267, 1984-7 (1995).
    70. Bodian, D.L., Jones, E.Y., Harlos, K., Stuart, D.I. & Davis, S.J. Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution. Structure 2, 755-66 (1994).
    71. Jones, E.Y. et al. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature 373, 539-44 (1995).
    72. Ryu, S.E. et al. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348, 419-26 (1990).
    73. Wang, J.H. et al. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348, 411-8 (1990).
    74. Bella, J., Kolatkar, P.R., Marlor, C.W., Greve, J.M. & Rossmann, M.G. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci U S A 95, 4140-5 (1998).
    75. Casasnovas, J.M., Springer, T.A., Liu, J.H., Harrison, S.C. & Wang, J.H. Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387, 312-5 (1997).
    76. Leahy, D.J., Axel, R. & Hendrickson, W.A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell 68, 1145-62 (1992).
    77. Holden, H.M., Ito, M., Hartshorne, D.J. & Rayment, I. X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 A resolution. J Mol Biol 227, 840-51 (1992).
    78. Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in proteins. Embo J 5, 823-6 (1986).
    79. Bork, P. & Doolittle, R.F. Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci U S A 89, 8990-4 (1992).
    80. Leahy, D.J., Hendrickson, W.A., Aukhil, I. & Erickson, H.P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of theselenomethionyl protein. Science 258, 987-91 (1992).
    81. Main, A.L., Harvey, T.S., Baron, M., Boyd, J. & Campbell, I.D. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71, 671-8 (1992).
    82. Huber, A.H., Wang, Y.M., Bieber, A.J. & Bjorkman, P.J. Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A. Neuron 12, 717-31 (1994).
    83. Leahy, D.J., Aukhil, I. & Erickson, H.P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-64 (1996).
    84. Holmgren, A. & Branden, C.I. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342, 248-51 (1989).
    85. de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306-12 (1992).
    86. Kwong, P.D. et al. Molecular characteristics of recombinant human CD4 as deduced from polymorphic crystals. Proc Natl Acad Sci U S A 87, 6423-7 (1990).
    87. Ryu, S.E., Truneh, A., Sweet, R.W. & Hendrickson, W.A. Structures of an HIV and MHC binding fragment from human CD4 as refined in two crystal lattices. Structure 2, 59-74 (1994).
    88. Rutishauser, U., Acheson, A., Hall, A.K., Mann, D.M. & Sunshine, J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240, 53-7 (1988).
    89. Withka, J.M. et al. Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2. Structure 1, 69-81 (1993).
    90. Osborn, L. et al. Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (alpha 4 beta 1). J Cell Biol 124, 601-8 (1994).
    91. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J. & Liddington, R.C. Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47-56 (2000).
    92. Shimaoka, M. et al. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99-111 (2003).
    93. Song, G. et al. An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2. Proc Natl Acad Sci U S A 102, 3366-71 (2005).
    94. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327-37 (1995).
    95. Zhang, S.H., Xing, J.L., Yao, X.Y. & Chen, Z.N. [Non-fused expression of HAb18GEF by reducing stability of translational initiation region in mRNA]. Sheng Wu Gong Cheng Xue Bao 20, 175-80 (2004).
    96. Bessette, P.H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96, 13703-8 (1999).
    97. Prinz, W.A., Aslund, F., Holmgren, A. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272, 15661-7 (1997).
    98. Dugruix, A.G., R. Crystalization of Nucleic Acids and Proteins: A Practical Approach. Oxford University Press, New York. (1992).
    99. Pflugrath, J.W. The finer things in X-ray diffraction data collection. ActaCrystallogr D Biol Crystallogr 55, 1718-25 (1999).
    100. Hahn, T. International Tables for X-ray crystallography, Space-group symmetry D. . A vols, Reidel Publishing Company, Boston. (1983).
    101. Matthews, B.W. Solvent content of protein crystals. J Mol Biol 33, 491-7 (1968).
    102. Otwinowski, Z.M., and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. . Methods Enzymol 276 307-326. (1997 ).
    103. Terwilliger, T.C.B., J. . Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849-861 (1999).
    104. Terwilliger, T.C.B., J. . Maximum-likelihood density modification. . Acta Crystallogr. D Biol. Crystallogr. 56, 965-972 (2000).
    105. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. . Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110-119 (1991).
    106. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr 54, 905-21 (1998).
    107. Winn, M., Isupov, M. & Murshudov, G.N. . Use of TLS parameters to model anisotropic displacements in macromolecular refinement. . Acta Crystallogr. D Biol. Crystallogr. 57, 122-133. (2001).
    108. Laskowski, R.A., Moss, D.S. & Thornton, J.M. . Main-chain bond lengths and bond angles in protein structures. . J Mol. Biol. 231, 1049-1067 (1993).
    109. Kabsch, W.S., C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637. (1983 ).
    110. Wang, J., Cieplak, P., Kollman, P.A. How well does a restrainedelectrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049-1074 (2000).
    111. Prakash, K., Prajapati, S., Ahmad, A., Jain, S.K. & Bhakuni, V. Unique oligomeric intermediates of bovine liver catalase. Protein Sci 11, 46-57 (2002).
    112. Sali A, B.T.L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779-815 (1993).
    113. Morris GM, G.D., Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. . J Comp Chem 19, 1639-1662 (1998).
    114. Wang, J. & Springer, T.A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol Rev 163, 197-215 (1998).
    115. Ikemizu, S. et al. Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-A resolution. Proc Natl Acad Sci U S A 96, 4289-94 (1999).
    116. Chothia, C. & Lesk, A.M. Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family. J Mol Biol 182, 151-8 (1985).
    117. Kostrewa, D. et al. X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. Embo J 20, 4391-8 (2001).
    118. Prota, A.E. et al. Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding. Proc Natl Acad Sci U S A 100, 5366-71 (2003).
    119. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity 12, 51-60 (2000).
    120. Springer, T.A. Cell adhesion. A birth certificate for CD2. Nature 353, 704-5 (1991).
    121. Fadool, J.M. & Linser, P.J. Evidence for the formation of multimeric forms of the 5A11/HT7 antigen. Biochem Biophys Res Commun 229, 280-6 (1996).
    122. Shapiro, L., Doyle, J.P., Hensley, P., Colman, D.R. & Hendrickson, W.A. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17, 435-49 (1996).
    123. Lee, J.O., Rieu, P., Arnaout, M.A. & Liddington, R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-8 (1995).
    124. Becker, J.W., Erickson, H.P., Hoffman, S., Cunningham, B.A., and Edelman,G.M. . Topology of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 86, 1088-1092 (1989).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700