小麦抗条锈新种质及其创制的细胞遗传学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上分布范围最广,总贸易额最高的粮食作物,在世界经济中占有举足轻重的地位。小麦真菌病害和其它自然灾害一样,是影响小麦持续、稳定发展的主要因素之一。条锈病是全世界小麦生产上的主要真菌病害。在条锈病的防治上,抗病品种的应用是最经济也是对环境最安全的防治方法,但小麦品种对条锈病的抗性可能在它们被释放几年后由于新的毒性生理小种的迅速进化而使其失去抗病性,因而创制超前性的小麦抗条锈新抗源和新基因是抗条锈病育种的基础。通过远缘杂交把普通小麦近缘种抗条锈基因导入普通小麦是创制普通小麦抗条锈新种质的重要途径。对已创制的新的抗性种质材料进行系统的细胞遗传学分析及外缘基因导入机理研究,对抗条锈新基因的快速有效利用是非常重要的。
     本研究利用细胞遗传学方法,结合抗病性鉴定和根尖体细胞基本核型分析,对由细胞工程课题组通过普通小麦与六倍体小黑麦杂交、多元回交和花培纯合所创制的9个抗条锈新种质进行了细胞遗传学初步鉴定,并对六倍体小黑麦抗条锈基因定向导入普通小麦的机理进行了初步探讨。结果表明:
     (1)抗病新种质与中国春杂种F_1减数分裂中期Ⅰ出现一定频率的异常构型,结合根尖体细胞基本核型分析和优良株系田间抗病性鉴定,根据已有的理论初步判定:SCV-3-4-100为小麦—黑麦代换系,体克2号-102-1,WT_(SCV)-3-1,WT25-2-11-4-100-1,WT20-2-2A-118-100,WT25-2-11-3-102-1,SCV-3-4-103-1,WT20-7-1-24-100-1,WT37-2-1R-12-25-6-2为小麦—黑麦异易位系,并且这种易位不同于1B/1R易位。
     (2)六倍体小黑麦×普通小麦与普通小麦×六倍体小黑麦两种杂交方式都有比较高的杂交结实率,但前者种子发育好,种子相对饱满,出苗率高,后者种子胚乳发育不良,出苗率低。用普通小麦对其F_1杂种进行回交,可获得一定的结实率,种子出苗率较好。
     (3)六倍体小黑麦×普通小麦与普通小麦×六倍体小黑麦两种杂交方式杂种F_1减数分裂染色体配对行为存在差异。六倍体小黑麦×普通小麦单价体数目多于理论值,而在普通小麦×六倍体小黑麦中单价体数目要少于理论值,同时前者的多价体频率也要低于后者,并且多价体以三价体居多,只有少量的四价体。在以普通小麦为母本的杂交方式中,部分同源染色体配对可能是外源基因导入普通小麦基础。而在其反交中,外源基因的导入则更多依赖于染色体的断裂与拼接。
Wheat is widely cultivated in the world and the total volume of its annual trade is higher than any other cereal crops. It plays an important role in the world economy. Like other natural disaster, the fungous disease of wheat is one of the main factors that affect the production of wheat. Stripe rust is the major fungous disease in wheat. For preventing the disease from breaking out, the application of resistance variety is the most economical way and it's safety for the environment. However, the disease-resistance power of wheat variety may lose with the evolution of new toxicant biological race after the variety is cultivated by the human beings. So it is necessary to develope new sources of stripe rust resistance and search for new gene with stripe rust resistance for wheat breeding. It's a good way to transfer new gene with stripe rust resistance from kindred plant into the cultivar by distant hybridization. Furthermore ,cytogentic analysis and exploration on the mechanism of gene with stripe rust resis
    tance transfered are also needed for the application of the new germplasm speedily.
    Transfering gene resistant to stripe rust new races from hexaploid Triticale into common wheat by cross-fertilization between them as well as multiple back-crossing, nine new germplasms with stripe rust new races resistance were developed. In this study, basic cytogenetic identify of these new germplasms was conducted by using cytogenetic method, screen of strip rust resistance and elementary analysis of karyotype. Some mechanism that gene with strip rust resistance transfered from hexaploid triticale into common wheat was also explored .The results show:
    (l)Some abnormal frequency of chromosome pairing appeared in PMC MI in new germplasm * China Spring. Based on existed theory and combining with identify of strip rust resistance and elementary analysis of karyotype , we can conclude that SCV-3-4-100 is vsheat-triticale substitution line and other eight new germplasms ,TiKe-2-Hao, WTscv-3-1?WT25-2-11-4-100-1 , WT20-2-2A-118-100, WT25-2-11-3-102-1 , SCV-3-4-103-1 , WT20-7-1-24-100-1 , WT37-2-1R-12-25-6-2 are translation line and this kind of translocation is different from 1B/1R translocation line.
    (2): Percentage of seed set in reciprocal cross between triticale and common wheat were high, but percentage of seedling in reciprocal cross were very significant different. Percentage of seedling in hexaploid Tritical X common wheat was more high because endosperm developed very well than that in common wheat X hexaploid Tritical because endosperm developed bad. Many seeds and good seedling were obtained by back-crossing. (3): Abnormalities were observed in PMC MI in reciprocal cross between triticale and
    
    
    common wheat. The number of univalent in triticale x common wheat is higher than theoretical value, but lower in common wheat ^triticale than theoretical value. However, the number of divalent is lower than theroretical value in both of them. At the same time, the number of multivalent and rod divalent is higher in common wheat x triticale than triticale xcommon wheat. In common wheat ^hexaploid triticale, the exogenous genes are transferred by means of homoeologous chromosome pairing. But in hexaploid triticale x common wheat, they rely on the chromosome breakage and recombination.
引文
[1] 鲍晓明,黄百渠,李松涛等.遗传学报,1993,20(1):81-87
    [2] 陈春丽,郭文武,邓秀新.染色体原位杂交技术与植物细胞杂种遗传鉴定.华中农业大学学报,2002,21(2):189-194
    [3] 樊路.中国北部普通小麦品种同源转化群单价体减数分裂后期Ⅰ时的错分裂.作物学报.1986,(1):21-29
    [4] 樊路,韩敬花.普通小麦减数分裂中单价体的错分裂.细胞生物学,1987,(2):60-62
    [5] 樊路,李军辉.小麦族中普通小麦与其近缘种属间染色体自然易位产生的原因.北京农业科学,1999,17(6):11-12
    [6] 郭长虹,王同昌,李集临.杀配子染色体及其在小麦遗传和育种研究中的应用.生物工程进展,2000,20(1):66-69
    [7] 郭嘉义,黄卫东,许兴.分子标记技术及其在小麦遗传育种中的应用.宁夏农林科技,1999,(2):20-21
    [8] 胡能书,万贤国.同工酶技术及其应用.长沙:湖南科技出版社,1985.96-166
    [9] 胡英考,辛志勇,陈孝.抗条锈病小麦-中间偃麦草异附加系的生化与分子标记.西北植物学报.2002,22(1):136-140
    [10] 李大玮,欧阳平,邱纪文等.染色体消失法在小麦育种中应用研究.农业生物技术学报,2000,8(1):17-21.
    [11] 李懋学,陈瑞阳.武汉植物学研究,1985,3(4):297
    [12] 李懋学,张赞平.作物染色体及其研究技术.中国农业出版社,1996.
    [13] 李义文,李洪杰,梁辉等.荧光原位杂交分析小麦-簇毛麦杂种减数分裂与染色体易位.遗传学报,2000,27(4):317-324
    [14] 廖炳良.核农学通报,1993,14(4):155-158
    [15] 缪颖.AFLP分子标记及其应用(综述).亚热带植物通讯,1999,28(2):55-60
    [16] 刘树兵,王洪刚.植物的微卫星标记及其应用.山东农业大学学报,2002,33(1):112-116
    [17] 马渐新,周荣华,董玉琛等.小麦抗条锈病基因定位及分子标记研究进展.生物技术通报1999,15(1):1-6
    [18] 马渐新,周荣华,贾继增.用基因组原位杂交与RFLP标记鉴定小麦-簇毛麦抗白粉病代换系.遗传学报,1997,24(5):447-452
    [19] 毛健民,李俐俐.DNA分子标记及其在作物遗传育种中的应用.周口师范高等专科学校学报,2001,18(5):30-34
    [20] 牛永春,吴立人.繁6绵阳系小麦抗条锈病变异及对策.植物病理学报,1997,27(1):5-8
    [21] 任正隆,张怀琼.一个改良的染色体C带技术.四川农业大学学报,1995,13(1):1-5
    [22] 邵启全,蒋兴邨,李金国等译.粮食作物的远缘杂交,科学出版社,1980:76-82
    
    
    [23] 苏慧慈,刘彦仿.原位PCR..科学出版社,1995
    [24] 孙允东,王建民,郝小静等.AFLP和SSR技术简介及比较.山东畜牧兽医,2000,(1):32-33
    [25] 王凤乐,吴立人,徐世昌等.绵阳系小麦抗条锈病变异的系统调查.植物病理学报,1996,2692):105-109
    [26] 王和勇,乔爱民,陈敏等.植物遗传标记的发展及利用.仲恺农业技术学院学报,2000,13(4):58-64
    [27] 王占斌,孙仲平.六倍体小黑麦与普通小麦杂交细胞遗传学研究.生物技术,1999,9(2):4
    [28] 吴立人,牛永春.我国小麦条锈病持续控制策略.中国农业科学,2000,33(5):46-54
    [29] 肖顺元,Frederick G.Gmitter J.Jude W.Grosser等.遗传,1995,17(4):40-42
    [30] 辛志勇,徐惠君,陈孝等.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B辑),1991,1:36-42
    [31] 许喜堂,赵惠青,康恩宽.控制小麦条锈病的现状与设想.北京农学院学报,1999,14(2):8-12
    [32] 薛秀庄等.植物遗传理论与应用研讨会文集,中国遗传学会.南京,1999,112-115
    [33] 薛秀庄等著.小麦染色体工程与育种.河北科学技术出版社.
    [34] 颜泽洪,郑有良.小麦异源(黑麦)重组系酯酶同工酶分析.四川农业大学学报,1999,17(1):5-10
    [35] 杨足君,任正隆.导入小麦材料85-DH5304的黑麦染色质的遗传特性研究.四川农业大学学报.2000,18(2):109-112
    [36] 张红军,王洪刚.染色体原位杂交技术及其在麦类作物遗传研究中的应用.山东农业大学学报(自然科学版),2000,31(1):105-109
    [37] 张满良主编.农业植物病理学.世界图书出版社
    [38] 张明,曹家树.染色体原位杂交技术.植物生理学通讯,2000,36(6):544-560
    [39] 张胜雯,王二明,魏荣瑄等.抗白粉病小麦染色体组型的分子标记与生化标记.遗传学报,1997,24(6):524-530
    [40] 张文俊,胡含.小麦-黑麦易位系的创制和利用.遗传,1995,17(增刊),1-5
    [41] 张文俊,翟绍洪,王献平等.黑麦6R抗白粉病基因向小麦的渗进与鉴定.遗传学报,1999,26(5):563-570
    [42] 张学勇.普通小麦异缘易位系的产生及利用.遗传.1991,13(5):39-34
    [43] 张自立.植物染色体技术的进展.遗传,1985,7(6):46-48
    [44] 赵洪璋,王金陵,孙济中主编.作物育种学,北京,农业出版社,1990
    [45] 赵中秋,郑海雷,张春光.分子标记的发展及其在植物研究中的应用.福建热作科技,2000,25(4):13-16
    [46] 钟少斌,徐杰,蒋建东等.用C-带技术识别小麦21对染色体及染色体结构变异.遗传学报,1989,16(6):415-419
    [47] 钟少斌,姚景侠1B/IR易位系-“84059-4-2”的细胞学鉴定,作物学报,1991,17(5):321-326
    [48] 钟少斌,姚景侠.普通小麦1B/4A染色体相互易位的细胞学研究.江苏农业学报 1994,10(4):1-5
    
    
    [49] 钟少斌,张德玉,周楠.用原位杂交技术检测小麦异源染色质及定位核糖体DNA.植物学 报,1991,33(6) :437-442
    [50] 周琳,谷红梅.植物染色体原位杂交研究进展.周口师范高等专科学校学报,2000,17(5) :46-48
    [51] Prabhakara Rao M V.林延安译。原子能农业译丛,1980,(1) :20-23
    [52] Ahloowalia BS. Spectrum of variation in sormaclones of triploid ryegrass. Crop Sci, 1983,23: 1141-1147
    [53] Armstrong K C, Nakamura C.Keller W A. Karyotype instability in tissue culture regenetants of Triticale (xTriticosecale Wittmack) ev.'Welsh' from 6-month-old callus cultures. Z. Pflanzenzuchtg, 1983,91 :233-245
    [54] Autrique JE,et al. RFLP mapping of genes associated with different agronomic traits and disease resistance wheat. Abstract of Internation Plant Genome ni,1995,p8,San Diego.USA
    [55] Barclay I R.High frequencies of haploid production in wheat (Triticum aestivum L.) by chromosome elimination .Nature (London),1975,256-411.
    [56] David E Mcmillin.Isozymes in Plant Genetics and Breedings.Part A, 1983:3-13
    [57] Davis,T M. Template mixing: A method of enhancing detection and interpretation of codominant RAPD markers[J].Theor.Appl.Genet.l995,91(4) :582-588
    [58] Dweikat,et al. Abstract of International Triticeae Mapping Initiative,June,25-27,1997.
    [59] Endo,T.R. Complete identification of wheat Chromosome by means of a C-banding technique. Jpn.J. Genet. 1986 , 61 :89-93
    [60] Endo,T.R. 1994. Jpn.J.Genet.69, 13-19.
    [61] Endo,T.R.1988. J.Hered.79,366-370
    [62] Endo,T.R. 1979. Wheat Inf. Serv.No.50,24-28.
    [63] Endo,T.R. 1985. Jpn.J.Genet.60, 125-135
    [64] Endo,T.R..1982. Can.J.Gener.Cytol,24,201-206
    [65] Endo,T.R.and Katayama,Y. 1978. Wheat Inf.Serv.No.47,32-35
    [66] Endo,T.R.and Tsunewaki,K.1975. J.Hered.66,13-18
    [67] Fang D Q.Roose M L.Identification of closely related circrus cultivars with inter-simple sequence repeat markers.Theor.Appl.Genet.,1997,95 :408-417
    [68] Friebe B.,Heun,M. Tuleen ,N. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat .Crop-science .1994,34(3) :621-625
    [69] Gall J G,Pardue M L . Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc NatI Acad Sci USA. 1969,69:378-383
    [70] Gill BS.Friebe B;Endo TR.Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Friticumaestivum). Genome, 1991,34:830-839
    
    
    [71] Gill KS.and Gill BS.Endo TR.A Chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat .Chromosoma 1993,102:374-381
    [72] Gill KS.Gill BS.Endo TR.Mukai Y. Fine physical mapping of phi, a chromosome pairing regulator gene in polyploid wheat .Genetics .19935,134:1231-1236.
    [73] Gupta P K and Gupta S N. Cytogenetics of chromosome interchanges in plants. In Chromosome Engineering in Plants ed by P K Gupta and T Tsuchiya Ilsevier. 1991, 87-112
    [74] Harey M J,Muehibuuer F J. Linkage between restriction fragment length isozyme and morphological markers in lentil. Theor Appl Genet, 1989,77:395-401
    [75] Haymer,D S.Random amplified polymorphic DNAs and microsatellites :what are they, and can they tell us anything we don't already know? Ann.Entomol.Soc.Am.,1994,87(6) :717-722
    [76] Jeffreys A J. Nature, 1985,316:76
    [77] Jeffreys A J, Mcleed A, Tamaki A,et al. Nature, 1991,3 54:204
    [78] J G Scandalios.Ann Rev Plant Physiol,1974,25:225-258
    [79] Jiming J,Friebe B and Gill BS. Recent advances in alien gene transfer in wheat . Euphytica, 1994, 73:119-112
    [80] John H A,Birnstiel M L,Johes K W. RNA-DNA hybrids at the cytological level. "Nature, 1969, 223: 582-587
    [81] Jorgensen R B,Anderson B. Karyotype analysis of regenerated plants from callus cultivated barley (Hordeum vulgare L.) Theor. Appl. Genet ,1989,77:343-351
    [82] Kawahara T. Spontaneous translocation in the wild diploid wheat Triticum. Jap J Gentet, 1990,65:221-223
    [83] Langer-Safer. Emmunological method for mapping genes on Drosphila polytene chromosome. Pro Natl Acad Sci USA. 1982,79:4381-4385
    [84] LangeW. Crosses between Hordeum vulgare L. and Hordeum buibosam L: Ⅱ Elimination of chromosome in hybrid tissues. Euphytica,1971,22:181-194
    [85] Lapitan N L V,Sears R G,Gill B S. Translocation and other karyopic structural changes in wheat xrye hybrids regenerated from tissue culture. Theor Appl Genet, 1984,68:547-554
    [86] Lima-de-Faria A.The role of the kinetochore in chromosome organization. Hereditas, 1956, 42: 85-95
    [87] Lukaszewaki.A.J. Genetic mapping in the 1R/1D wheat-rye translocated chromosomes. 1994, 37(6) :945-949
    [88] Lukaszewski ,A.J.and J.P.Gustafson:1983:Theor.AppI.Genet,64:239-248.
    [89] Maan,S.S.1975. Crop.Sci. 15,287-292.
    [90] Mclntosh R A,Hart G F.Dewos K M,et al.Catalogue of gene symbols for wheat[A].ln Proe 9th . Int. Wheat Genet .Symp[C].Vol.5,Sarkat;Universtity Extension Press, 1998, 1:235
    
    
    [91] Mettin D, Bluthner W D and Schlegel G.Additonal evidence on spontaneous 1B/1R wheat-rye sustitution and translocation . Proc 4 th Int Wheat Genet symp, 1973,174-184
    [92] Miller,T.E.1983. In:Kew chromosome conference. 173-182
    [93] Miller T E, Reader S M and Singh D.Sponteous non-Robertsonian translocation between wheat chromosome and a alien chromosome . Proc 7th Int Wheat Genet Symp, 1998,387-390
    [94] Mukai,Y. and Endo.T.R. Physical mapping of a fertility-restoring gene against Aegilops kotschyi cytoplasm in wheat. Jpn.J.genet.l992,67:199-207
    [95] Mueller U G.Wolfenbarger L L. Trends Ecol.Evol.,1999,14:389
    [96] Mettin, D.,R.Schegel,W.D.Bluthner,andM.Weinrich:1976:Biol.Zentralbl.95:35-41
    [97] Naranjo T.Aand Fernandez-Rueda P.Theor.Appl.Genet., 1991,82: 577-586
    [98] Okamoto M, 1957. Wheat Inf. Serv.,5-6
    [99] Peil A.Molecular marker for Aegilops markgrafii chromosomes.In:Proceed 9th Intern. Wheat Genet Symp [M]:2-7. August, 1998,pp140-142,University Extension press .university of sasskatchewan, Canada.
    [100] Perez T, Albornoz J, Dominguez A. Mol,Ecol.1998,(7) :1347
    [101] Porter.D.R; Webster.J.A. and Friebe .B. Inheritance of greenbug hiotype Gresistance in wheat.Crop-science. 1994,34(3) :625-628
    [102] Procunier J D .Microsatellite identification of specific D chromosomes for fusarium head blight resistance in hexaploid wheat . University Extension press .University of Sasskatchewan , Canada, 1998, 8,pp143-144,
    [103] Riley,R.etal. Genet.Res.Camb., 1968,12:199-219
    [104] Riley,R...Int. Wheat Genet. Symp., 1968,(3) :185-194
    [105] Rilly R,and Chapman V. a.Nature, 1958,182:713-715
    [106] Salimath S S.Assement of genomic origins and genetic diversity in barly .Genome.1995,38: 757-763
    [107] Schlegel,R.,Z.Zaripova.and A.I.Schapova.Biol.Zentralbl.1980,99:585-590.
    [108] Sears E R.Transfer of alien genetic material to wheat .In : Wheat Science-Today and tomorrow. 1981:75-89
    [109] Sears E R.Chromosome engineering in wheat .Stadler Genet Symp, 1972,4:23-38
    [110] Sears E R. Ann. Wheat Newsl.l983b,29:128
    [111] Sears E R. Proc.6th Int. Wheat Gen. 1972,Pp 5-12
    [112] Sears E R.Can. J. Genet. Cytol. 1977,19:585-593
    [113] Sears E R. In:Wheat Science-Today and Tomorrow (Ed. Evans L T. and Peacock, W.J.) . 1981, pp.75-89
    [114] Sears E R.chromosome engineering in wheat. Stadler symposia, 1972,23-28
    
    
    [115] Sharma H C and Gill B S.Current status of wide hybridize action in wheat.Euphytica ,1983,32:17-31
    [116] Smith E L,Schlebuber A M. Young and HC.L H Edwards.Registration of Agent wheat. Crop Sci, 1968, (8) :511-512
    [117] Snape J.W.,Flavell R.B. O'Dell M.et al. Intrachromosomal mapping of the necleolar organicer region relative to three marker location chromosome IB of wheat (Triticum aestivum). Theor, Appl. Genet. 1985,68:327-334
    [118] Sree RamuluKetal,MutatRes,1985,149:421-430
    [119] Sun GL, Fahima T, Korol AB,etal. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat .Triticum dicoccoides,Theor Appl.Genet ,1997,95:622-628
    [120] Talbert L E,Bruckner P L,Smith L Y et al.Development of PCR markers linked to resistance to wheat streak mosaic Virus in Wheat.Theoretical and Applied Genetics. 1996,93(3) :463-467
    [121] T.Ryu Endo. On the Aegilops chromosomes having gametocidal Action on common wheat. Int .wheat Genetics Symposium,1978,(5) :306-314.
    [122] Tsujimoto,H.and Tsunewaki,K. Int. Wheat Genet.Symp.Kyoto, 1893(6) : 1077-1081
    [123] Tsumura Y ,Ohba K,Strauss S H.Diversity and inheritance of inter-simple sequence polymorphisms in Douglas-fir(Pseu dotsuga menziesii) and sugi (Cryptomeria japoncia)[J],Theor.Appl.Genet.,1996,92:40-45
    [124] Vogel J M et al. Application of genetic diagnostics to plant genome analysis and plant breeding.HortScience, 1996,31 (7) : 1107-1108
    [125] Wall A M,etal. .Genet. Res. 1971a, 18:311-328
    [126] Whelan E D P and Hart G E .A spontaneous translocation that transfers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat .Genome, 1988,30:289-292
    [127] Winfield M O,Schmitt M,Lorz H,Davey M R,Karp A.Nonrandom chromosome variation and morphgogenic potential in cell lines of bread wheat (Triticum aestivum L.). Genome, 1995, 38:869-878
    [128] Zabeau M et al. European patent .0535 858A 1,1 993-03-31
    [129] Zadoks J C. Yellow rust or wheat Studies in epidemiology and physiologic specialization. Tijdschr Plantenziekten,1961, 67: 69-25.
    [130] Zeller F J. 1 B/1R wheat-rye chromosome substitution and translocation . Int Wheat Genet Symp,1973(4) ,209-221
    [131] Zietkiewicz E.Rafalski A.Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplificationp.Genomics,1994 ,20:176-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700