用户名: 密码: 验证码:
基于~1H-NMR代谢物组学技术的多基源中藏药品种质量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药/民族药的质量控制关系到药物临床使用的安全性和有效性。由于药材本身成分的复杂性,加上仪器分析条件、研究思路和方法的局限,中药/民族药的质量控制一直缺乏行之有效的方法。目前,中药/民族药质量控制及评价的研究角度、思路和方法需要总结和创新,以期建立一套既能反映整体观和系统性,又能体现“安全有效、科学、先进实用”等特点的中药/民族药质控方法。
     中药/民族药品种的多基源性自古有之,品种的多样性与复杂性导致来源混杂、真伪难辨、优劣难评,严重制约药材的质量控制、质量标准制订、临床合理利用和新药开发。利用现代科学技术加强复杂多基源中药/民族药的品种鉴别、质量控制与评价研究,促进药材质量标准的完善与提高,是提升中药/民族药的科技水平,推动其现代化、产业化的必由之路。
     目的:以常用多基源中药“黄连”及藏药“藏茵陈”为模式药物,采用代谢物组学技术研究不同品种药材的代谢物差异,寻找特征代谢标志物(metabolic markers),为黄连和藏茵陈药材的品种鉴别、质量控制及临床合理利用提供理论依据,也为当前中药/民族药的质量控制及评价提供方法学参考。
     方法:
     1、采用1H-NMR代谢物组学技术,建立黄连药材的整体代谢物指纹图谱,并结合主成分分析(PCA)、偏最小二乘法判别分析(PLS-DA)等方法,系统分析三个黄连品种(味连Coptis chinensis、雅连C. deltoidea和云连C. teeta)的初生和次生代谢产物差异,并找出引起差异的代谢标志物。
     2、应用定量核磁共振(qNMR)技术,建立黄连药材中小檗碱、黄连碱、非洲防己碱、药根碱等6种主要生物碱成分的定量分析方法,并采用配对t检验评价qNMR与常规HPLC定量方法的一致性。
     3、采用1H-NMR代谢物组学技术,同时检测分析“藏茵陈”药材的整体代谢成分,结合PLS-DA、HCA方法研究5种獐芽菜属植物(印度獐牙菜Swertia chirayita、川西獐牙菜S. mussotii、抱茎獐牙菜S. franchetiana、四数獐牙菜S.tetraptera阳高獐牙菜S. elata)的代谢物差异及其亲缘关系。
     结果:
     1、从黄连提取物中同时检测出16个(类)化合物,包括小檗碱、巴马汀、黄连碱、表小檗碱、非洲防己碱、药根碱、木兰花碱、绿原酸、阿魏酸、蔗糖、α-葡萄糖、β-葡萄糖、丙氨酸、不饱和脂肪酸类、饱和脂肪酸类、甾醇类。
     根据PCA、PLS-DA结果,40个黄连药材样品分类为三组,每一组对应于一个品种。结合方差分析,发现了黄连碱、非洲防己碱、表小檗碱、巴马汀和脂肪酸类成分的含量在味连中最高,而云连和雅连分别含有最多的绿原酸和蔗糖。
     2、成功建立了黄连药材中6种生物碱成分的qNMR定量分析方法,重复性、选择性良好,6种生物碱的平均回收率为96.93-102.39%。t检验结果显示本文建立的qNMR方法与常规的HPLC分析方法的定量结果基本一致(P>0.05)。
     3、从“藏茵陈”原植物药材中同时检测出25个属于不同化学类型的代谢成分,包括(1)口山酮类成分:芒果苷、1,8-二羟基-3,5-二甲氧基口山酮、1,8-二羟基-3,7-二甲氧基口山酮、1-羟基-3,7,8-三甲氧基口山酮、1,5,8-三羟基-3-甲氧基口山酮和7-0-[a-L-吡喃鼠李糖-(1→2)-p-D-吡哺木糖]-1,8-二羟基-3-甲氧基口山酮;(2)环烯醚萜苷类成分:獐牙菜苦苷、獐牙菜苷、落干酸、龙胆苦苷;(3)五环三萜类成分:齐墩果酸;(4)黄酮类成分:异荭草苷;(5)氨基酸类成分:丙氨酸、缬氨酸;糖类成分:蔗糖、α-葡萄糖、β-葡萄糖;(6)其他类成分:胆碱、没食子酸、甲酸、醋酸、丁二酸、饱和脂肪酸类、不饱和脂肪酸类、甾醇类。
     根据PLS-DA和HCA的结果,五种獐牙菜属植物被明显分为五组,齐墩果酸、芒果苷、脂肪酸类和缬氨酸的含量在印度獐牙菜药材中最高,而四数獐牙菜含有最多的龙胆苦苷和胆碱,川西獐牙菜含有最多的落干酸和β-葡萄糖,抱茎獐牙菜含有最多的獐牙菜苦苷。
     结论:
     1、味连、雅连和云连代谢成分有明显的差异,临床使用时要注意生物等效性。黄连碱、表小檗碱、非洲防己碱、小檗碱、巴马汀、药根碱、蔗糖、脂肪酸类和绿原酸为黄连种间差异代谢物,其中表小檗碱和蔗糖在三个品种两两之间均有明显的差异,因此为黄连品种鉴别最重要的代谢标志物。
     2、qNMR方法简便、快速、准确、重复性好,可以应用于黄连药材及其他含生物碱类成分药材的质量控制与评价。
     3、五种獐牙菜属植物的代谢成分具有明显的差异,不应共同作为“藏茵陈’药材的原植物来源。齐墩果酸、芒果苷、獐牙菜苦苷、龙胆苦苷、落干酸、脂肪酸类、缬氨酸、胆碱、糖类为五种獐牙菜属植物种间差异的代谢标志物,今后可作为品种鉴别、质量控制的有效指标。从化学分类学角度来说,印度獐牙菜与其他四种獐牙菜的化学亲缘关系最远,而四数獐牙菜与川西獐牙菜的亲缘关系更近,抱茎獐牙菜和高獐牙菜的亲缘关系更近。
     创新点:
     1、本论文融合多学科理论和技术,创新性应用1H-NMR代谢物组学技术及分析方法,从整体代谢物组(metabolome)角度探索了复杂多基源中藏药品种鉴定、质量评价和化学分类学研究的新思路和新方法。
     2、本文建立了黄连药材的整体代谢物指纹图谱,结合化学计量学方法,首次从代谢物组水平上研究了黄连三个品种(味连、雅连和云连)的初生和次生代谢产物差异,并发现了种间差异的代谢标志物。
     3、首次建立黄连药材中小檗碱、黄连碱、药根碱、巴马汀、非洲防己碱、表小檗碱的qNMR定量分析方法,为其质量控制与评价提供了新的手段。
     4、首次检测分析了“藏茵陈”药材中的整体代谢物组,包括口山酮及其苷类、五环三萜类、环稀醚萜苷类、黄酮类、糖类、氨基酸类及有机酸类等25个成分。其中,蔗糖、胆碱、甲酸、醋酸和丁二酸为首次报道。
The quality control of traditional Chinese medicine and ethnic medicine is closely related to their safety and effectiveness in clinical use. Due to the complex chemical compositions combined with the limitations of instrumental analysis conditions, research ideas and methods, the current quality control methods are not effective for controlling the quality of traditional Chinese medicine and ethnic medicine. At present, in order to establish a suitable quality control method that not only reflects the integrity and systematization, but also has the features of "safety, effectiveness, science, advance and practicality", we must summarize and change the research ideas and methods of quality control for traditional Chinese medicine and ethnic medicine.
     Traditional Chinese medicine and ethnic medicine mostly originates from various species, which leads to the difficulty for distinguishing the identity and evaluating the quality of crude drugs. Species diversity also seriously hampers the quality control, quality standards development and clinical rational use of medicinal material. Therefore, it is very important to strengthen the research of species identification, quality control and quality evaluation for traditional Chinese medicine and ethnic medicine from various species by using modern science and technology. These studies are necessary to heighten the technological level of traditional Chinese medicine and ethnic medicine, and promote the process of their modernization and industrialization.
     Purposes:
     In this paper, Rhizoma Coptidis and "Zangyinchen", two broadly used multi-species medicinal plants, were used as the research objects. The aims of this study were to evaluate the differences of the overall metabolites for the two medicinal materials from various species, and to find out the characteristic metabolic markers by means of1H NMR-based metabolomics. These studies can provide not only a theoretical basis for the species identification, quality control and clinical rational use of Rhizoma Coptidis and "Zangyinchen", but also a new research ideas and methods for the quality control and/or quality evaluation of traditional Chinese medicine and ethnic medicine.
     Methods:
     1. A1H NMR-based metabolomics protocol coupled with multivariate statistical analysis (e.g., principal component analysis and partial least squares discriminant analysis) was applied to establish the metabolic fingerprinting of Rhizoma Coptidis, to evaluate the differences of the three species (Coptis chinensis, C. deltoidea and C. teeta) for their primary and secondary metabolites, and to identify potential metabolic markers that could be responsible for the discrimination of the three species.
     2. A rapid, simple and accurate quantitative nuclear magnetic renonance (qNMR) method was developed for simultaneous determination of berberine, jatrorrhizine, epiberberine, coptisine, palmatine and columbamine in Rhizoma Coptidis. Moreover, paired t-test was performed to compare the quantitative data obtained by the'H NMR with those obtained through a HPLC-DAD method.
     3. A1H NMR-based metabolomics method coupled with multivariate statistical analysis (e.g., partial least squares discriminant analysis and hierarchical cluster analysis) was applied to simultaneously analyze the overall metabolites of "Zangyinchen", and to study the phylogenetic relationship of the five Swertia species (Swertia chirayita, S. mussotii, S. franchetiana, S. tetraptera and S. elata) and their differences in the primary and secondary metabolites.
     Results:
     1. Approximately16metabolites were identified in the methanol extract of Rhizoma Coptidis including berberine, palmatine, coptisine, epiberberine, columbamine, jateorrhizine, magnoflorine, chlorogenic acid, ferulic acid, sucrose, a-glucose, β-glucose, alanine, unsaturated fatty acids, saturated fatty acids and sterols.
     By combining PCA, PLS-DA and ANOVA results, we found that the40samples of Rhizoma Coptidis could be clearly classified into three groups according to different species, respectively. Palmatine, coptisine, epiberberine, columbamine and fatty acids contents were highest in C. chinensis, whereas C. deltoidea and C. teeta showed the highest levels of sucrose and chlorogenic acid, respectively.
     2. A quantitative1H NMR method having good linearity, precision, repeatability and accuracy was successfully applied for simultaneous determination of six protoberberine alkaloids in Rhizoma Coptidis. The average recoveries were between96.93%and102.39%with RSD values of less than2.33%for all the six compounds. The results of the paired t-test showed that there are good agreements between the1H NMR and HPLC-DAD methods for their quantitative results.
     3. A broad range of metabolites belonging to different chemical types were detected from "Zangyinchen" by means of1H NMR spectroscopy, including (1) xanthones:mangiferin,1,8-dihydroxy-3,5-dimethoxy xanthone,1,8-dihydroxy-3,7-dimethoxy xanthone,1-hydroxy-3,7,8-trimethoxy xanthone,1,5,8-trihydroxy-3-methoxy xanthone,7-O-[a-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl]-1,8-dihydroxy-3-methoxy xanthone;(2) iridoid glycosides:swertiamarin, sweroside, gentiopicrin, loganic acid;(3) pentacyclic triterpenoids:oleanolic acid;(4) flavonoids: isoorientin;(5) amino acids:alanine, valine;(5) sugars:sucrose, a-glucose, β-glucose;(6) others: gallic acid, choline, formic acid, acetic acid, succinic acid, saturated fatty acids, unsaturated fatty acids, sterols.
     By combining PCA, PLS-DA and ANOVA results, we found that all samples of "Zangyinchen" could be clearly classified into five groups according to different species, respectively. Oleanolic acid, mangiferin, fatty acids and valine contents were highest in S. chirayita, whereas S. tetraptera showed the highest levels of gentiopicroside and choline, S. mussotii showed the highest levels of loganic acid and β-glucose, S. franchetiana showed the highest level of swertiamarin.
     Conclusions:
     1. Metabolites of C. chinensis, C. deltoidea and C. teeta have significant differences, and so it was important to show solicitude for their bioequivalence in clinical use. In addition, the critical markers responsible for the discrimination of different Rhizoma Coptidis species were found to be palmatine, coptisine, epiberberine, jateorrhizine, columbamine, berberine, sucrose, fatty acids and chlorogenic acid. Among them, epiberberine and sucrose are the most important metabolic markers as their contents have significant differences between any two of the three species.
     2. The qNMR method is simple, fast, accurate and reproducible, which can be applied for the quality control and/or quality evaluation of Rhizoma Coptidis or other herbs containing alkaloids.
     3. Metabolites of S. chirayita, S. mussotii, S. franchetiana, S. tetraptera and S. elata have significant differences, thus they should not be together as the original plant source of the "Zangyinchen". The critical markers responsible for the discrimination of different "Zangyinchen" species were found to be oleanolic acid, mangiferin, swertiamarin, gentiopicroside, loganic acid, fatty acids, valine, choline and sugars. These metabolites can be effective as the indicators for the species identification and quality control of "Zangyinchen". In addition, from the chemotaxonomic point of view, S. chirayita has the farthest phylogenetic relationship with the other four Swertia. whereas S. mussotii has a closer phylogenetic relationship with S. tetraptera and S. franchetiana has a closer phylogenetic relationship with S. elata.
     Innovations:
     1. In this study, by integration of multidisciplinary theories and techniques, we applied the1H NMR-based metabolomic technologies and analysis methods to study the species identification, quality evaluation and chemical taxonomy of multi-species traditional Chinese medicine and ethnic medicine from the perspective of the overall metabolome.
     2. This paper has established the metabolic fingerprinting of Rhizoma Coptidis. In addition, by the combination of chemometric methods, we studied the difference of primary and secondary metabolites of the three species (C. chinensis, C. deltoidea and C. teeta) from the metabolome level for the first time.
     3. Quantitative1H NMR (qNMR) method was first developed for simultaneous determination of berberine, jatrorrhizine, epiberberine, coptisine, palmatine and columbamine in Rhizoma Coptidis, which provides a new mean for the quality control and/or quality evaluation of Rhizoma Coptidis.
     4. The overall metabolites present in "Zangyinchen" were simultaneously detected for the first time including xanthones and their glycosides, pentacyclic triterpenoids, iridoid glycosides, flavonoids, sugars, amino acids and organic acids. Among them, sucrose, choline, formic acid, acetic acid and succinic acid were reported for the first time in "Zangyinchen"
引文
[1]万德光,裴瑾.论中药品种鉴定在中药质量控制中的地位和作用.药学实践杂志,2000,18(5):260-262.
    [2]李敏,贾君君,张钰苓.从《中国药典》近3版的变化对一药多基源问题的探讨.中国中药杂志,2008,33(14):1782-1784.
    [3]万德光.论中药材正品.药用植物研究与中药现代化—第四届全国药用植物学与植物药学术研讨会论文集,2004,407-409.
    [4]李普衍,东珠.藏药质量研究概述.西北药学杂志,1997,12(6):251
    [5]钟国跃,王昌华,周华蓉,秦松云,古锐.藏药材的生药学特点及品种整理研究策略.世界科学技术-中医药现代化,2008,10(2):28-32.
    [6]罗达尚.新修晶珠本草.成都:四川科学技术出版社,2004.
    [7]J.K. Nicholson, J.C. Lindon. Systems biology: Metabonomics. Nature,2008,455 (7216):1054-1056.
    [8]J.K. Nicholson, J. Connelly. J.C. Lindon, E. Holmes. Metabonomics:a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov.,2002,1(2): 153-161.
    [9]邹忠杰,袁经权,龚梦鹃,沈志滨.代谢组学技术在中药研究中的应用.广东药学院学报,2009,25(4):424-428.
    [10]盛龙生.代谢组学与中药研究.中国天然药物,2008,6(2):98-102.
    [11]M. Coen, E. Holmes, J.C. Lindon, J.K. Nicholson. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol.,2008,21(1):9-27.
    [12]E.Y. Xu, W.H. Schaefer, Q. Xu. Metabolomics in pharmaceutical research and development: metabolites, mechanisms and pathways. Curr. Opin. Drug Discov. Devel.,2009,12(1):40-52.
    [13]吴泽明,孙晖,吕海涛.代谢物组学研究进展及其在中医药研究中的应用展望.世界科学技术-中医药现代化,2007,9(2):99-103.
    [14]淡墨,高先富,谢国祥,刘忠,赵爱华,贾伟.代谢组学在植物代谢研究中的应用.中国中药杂志,2007,32(22):2337-2341.
    [15]焦旭雯,赵树进.药用植物代谢组学的研究进展.广东药学院学报,2007,23(2):228-231.
    [16]H.K. Kim, Y.H. Choi, R. Verpoorte. NMR-based metabolomic analysis of plant. Nature protocol,2010,5:536-549.
    [17]F. van der Kooy, F. Maltese, Y.H. Choi, H.K. Kim, R. Verpoorte. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med.,2009,75:763-775.
    [18]E. Holmes, H.R. Tang, Y.L. Wang, C. Seger. The assessment of plant metabolite profiles by NMR-based methodologies. Planta Med.,2002,72:771-785.
    [19]Y.H. Choi, H.K. Kim, A. Hazekamp, C. Erkelens, A.W.M. Lefeber, R. Verpoorte. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. Journal of Natural Products,2004,67:953-957.
    [20]Y.H. Choi, S. Sertic, H.K. Kim, E.G. Wilson, F. Michopoulos, A.W.M. Lefeber, C. Erkelens, S.D.P. Kricun, R. Verpoorte. Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis. J. Agric. Food Chem.,2005,53:1237-1245.
    [21]G. Roos, C. Roseler, K.B. Buter, U. Simmen. Classification and correlation of St. John's Wort extracts by nuclear magnetic resonance spectroscopy, multivariate data analysis and pharmacological activity. Planta Med,2004,70:771-777.
    [22]H.K. Choi, Y.H. Choi, M. Verberne, A.W.M. Lefeber, C. Erkelens, R. Verpoorte. Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry,2004,65:857-864.
    [23]G.L. Gall, I.J. Colquhoun, A.L. Davis, G.J. Collins, M.E. Verhoeyen. Metabolite profiling of tomato (Lycopersicon esculentum) using'H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem.,2003,51:2447-2456.
    [24]G.L. Gall, S.B. Metzdorff, J. Pedersen, R.N. Bennett, I.J. Colquhoun. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene. Metabolomics,2005,1:181-198.
    [25]Y.H. Choi, E.C. Tapias, H.K. Kim, A.W.M. Lefeber, C. Erkelens, J. Th.J. Verhoeven, J. Brzin, J. Zel, R. Verpoorte. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol.,2004,135:2398-2410.
    [26]O. Hendrawati, Q.Q. Yao, H.K. Kim, H.J.M. Linthorst, C. Erkelens, A.W.M. Lefeber, Y.H. Choi, R. Verpoorte. Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclearmagneticresonancespectroscopy. Plant Science, 2006,170:1118-1124.
    [27]M. Jahangir, H.K. Kim, Y.H. Choi, R. Verpoorte. Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem.,2008, 107:362-368.
    [28]S. Simoh, N. Quintana, H.K. Kim, Y.H. Choi, R. Verpoorte. Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa. Journal of Plant Physiology, 2009,166:1005-1014.
    [29]X.M. Liang, Y. Jin, Y.P. Wang, G.W. Jin, Q. Fu, Y.S. Xiao. Qualitative and quantitative analysis in quality control of traditional Chinese medicines. J. Chromatogr. A,2009,1216:2033-2044.
    [30]Y.Z. Liang, P.S. Xie, K. Chan. Quality control of herbal medicines. Journal of Chromatography B,2004,812:53-70.
    [31]Y.Z. Liang, P.S. Xie, K. Chan. Perspective of chemical fingerprinting of Chinese herbs. Planta Med.,2010,76:1997-2003.
    [32]M. Ganzera. Recent advancements and applications in the analysis of traditional Chinese medicines. Planta Med.,2009,75:776-783.
    [33]范刚,周林,赖先荣,王张,张艺.基于代谢组学技术的中药质量控制研究思路探讨.世界科学技术-中医药现代化,2010,12(6):870-875.
    [34]白瑞,王真真.指纹图谱在中药质量控制中的应用进展.安徽医药,2009,13(12):1458-1462.
    [35]周建良,齐炼文,李萍.色谱指纹图谱在中药质量控制中的应用.色谱,2008,26(2):153.
    [36]国家药典委员会.中华人民共和国药典.2010年版(一部).北京:中国医药利技出版社,2010:285-286.
    [37]张廷模.中药学.北京:高等教育出版社,2008:92.
    [38]J. Tang, Y.B. Feng, S. Tsao, N. Wang, R. Curtain, Y.W. Wang. Berberine and Coptidis Rhizoma as novel antineoplastic agents:A review of traditional use and biomedical investigations. J. Ethnopharmacol.,2009,126:5-17.
    [39]H.Y. Xu, T.J. Zhang, X.Y. Zhu, Y.B. Li. Recent advance on chemical compositions and pharmacodynamic and pharmacokinetic studies of Rhizoma Coptidis. Asian Journal of Pharmacodynamics and Pharmacokinetics,2009,9:11-25.
    [40]田智勇,李振国.黄连的研究新进展.时珍国医国药,2004,15(10):704-706.
    [41]X.S. Ye, Y.B. Feng, Y. Tong, K.M. Ng, S.W. Tsaoc, G.K.K. Lau, C. Sze, Y.B. Zhang, J. Tang. J.G. Shen, S. Kobayashi. Hepatoprotective effects of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. J. Ethnopharmacol.,2009,124:130-136.
    [42]李时珍.本草纲目.第十三卷.草之二.北京:人民卫生出版社,1957:761.
    [43]兰茂.滇南本草.昆明:云南人民出版社,1975:36.
    [44]吴仪洛.本草从新.卷一.草部.上海:上海科学技术出版社,1958:27.
    [45]赵云龙,冯蓓,周宜,曹世霞.雅连和味连对内毒素致小鼠死亡率的影响.辽宁中医杂志,2011,38(7):1448-1449.
    [46]曾洁萍,丁红,阎博华,张瑞明,张蓉,左渝陵,张庆,刘松山,李明权,李继书,周宜.雅连、味连治疗复发性口疮疗效差异性—分层区组、随机双盲、平行对照、多中心临床试验报.中国实验方剂学杂志,2011,17(20):265-268.
    [47]X. Feng, D. Yan, K.J. Zhao, J.Y. Luo, Y.S. Ren, W.J. Kong, Y.M. Han, X.H. Xiao. Applications of microcalorimetry in the antibacterial activity evaluation of various Rhizoma coptidis. Pharm. Biol.,2011,49:348-353.
    [48]D. Yan, C. Jin, X.H. Xiao, X.P. Dong. Anti-microbial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Bioph. Methods,2008,70:845-849.
    [49]R. Enk, R. Ehehalt, J.E. Graham, A. Bierhaus, A. Remppis, H.J. Greten. Differential effect of Rhizoma Coptidis and its main alkaloid compound berberine on TNF-α induced NFkB translocation in human keratinocytes. J. Ethnopharmacol.,2007, 109:170-175.
    [50]L.Q. Tang, W. Wei, L.M. Chen, S. Liu. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J. Ethnopharmacol.,2006,108: 109-115.
    [51]T. Yokozawa, A. Satoh, E.J. Cho, Y. Kashiwada, Y. Ikeshiro. Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J. Pharm. Pharmacol.,2005,57:367-374.
    [52]耿志鹏,郑海杰,张艺,罗维早,瞿显友RP-HPLC测定不同产地黄连中6种生物碱的含量.中国中药杂志,2010,35(19):2576-2580.
    [53]W.J. Kong, Y.L. Zhao, X.H. Xiao, C. Jin, Z.L. Li. Quantitative and chemical fingerprint analysis for quality control of Rhizoma Coptidis chinensis based on UPLC-PAD combined with chemometrics methods. Phytomedicine,2009,16: 950-959.
    [54]S.S. Dou, S.L. Zhu, W.X. Dai, W.D. Zhang, Y. Zhang, R.H. Liu. Qualitative and quantitative analysis for the quality control of Rhizoma Coptidis by HPLC-DAD and HPLC-ESI-MS. Chem. Res. Chinese universities,2010,26:735-741.
    [55]J.H. Chen, H.Q. Zhao, X.R. Wang, F.S.C. Lee, H.H. Yang, L. Zheng. Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 2008.29:2135-2147.
    [56]李佳川,孟宪丽,范听建,赖先荣,张艺,曾勇.黄连改善胰岛素抵抗药效物质基础研究.中国中药杂志,2010,35(14):1855-1858.
    [57]H.Y. Chen, X.L. Ye, X.L. Cui, K. He, Y.N. Jin, Z. Chen, X.G. Li. Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells. Fitoterapia,2012,83:67-73.
    [58]石俊敏,韩伟立,叶文才,陈锡桥,王一涛,张庆文.延胡索的化学成分研究.天然产物研究与开发,2011,23:647-651.
    [59]T.J. Hsieh. Y.C. Chia. Y.C. Wu, C.Y. Chen. Chemical constituents from the stems of Mahonia japonica. J. Chin. Chem. Soc.,2004,51:443-446.
    [60]程春梅.戴云,黄相中,朱芸,戴建辉,刘晓芳,王炯.云南青牛胆块根的化学成分研究.中草药,2010,41(5):689-692.
    [61]H.A. Jung, N.Y. Yoon, H.J. Bae, B.S. Min, J.S. Choi. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res.,2008, 31:1405-1412.
    [62]R.A. Hussain, J. Kim, C.W.W. Beecher, A.D. Kinghorn. Unambiguous carbon-13 NMR assignments of some biologically active protoberberine alkaloids. Heterocycles, 1989,29:2257-2260.
    [63]H.K. Kim, R. Verpoorte. Sample preparation for plant metabolomics. Phytochem. Anal.,2010.21:4-13.
    [64]N.J. Kruger, A.T. Troncoso-Ponce, R.G. Ratcliffe. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc.,2008,3:1001-1012.
    [65]M. Frederich, Y.H. Choi, L. Angenot, G. Harnischfeger, A.W.M. Lefeber, R. Verpoorte. Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochemistry,2004,65:1993-2001.
    [66]L. Tarachiwin, A. Katoh, K. Ute, E. Fukusaki. Quality evaluation of Angelica acutiloba Kitagawa roots by'H NMR-based metabolic fingerprinting. J. Pharm. Biomed. Anal.,2008,48:42-48.
    [67]E.J. Lee, R. Shaykhutdinov, A.M. Weljie, H.J. Vogel, P.J. Facchini, S.U. Park, Y.K. Kim, T.J. Yang. Quality assessment of ginseng by 1H NMR metabolite fingerprinting and profiling analysis. J. Agric. Food. Chem.,2009,57:7513-7522.
    [68]S. Safer, S.S. Cicek, V. Pieri, S. Schwaiger, P. Schneider, V. Wissemann, H. Stuppner. Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC-ESI-MS. Phytochemistry,2011,72:1379-1389.
    [69]H.K. Kim, Saifullah, S. Khan, E.G. Wilson, S.D.P. Kricun, A. Meissner, S. Goraler, A.M. Deelder, Y.H. Choi, R. Verpoorte. Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry,2010,71: 773-784.
    [70]Y.H. Choi, H.K. Kim, A. Hazekamp, C. Erkelens, A.W.M. Lefeber, R. Verpoorte. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. J. Nat. Prod.,2004,67:953-957.
    [71]M. Defernez, I.J.Colquhoun. Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra. Phytochemistry,2003,62:1009-1017.
    [72]R. Verpoorte, Y.H. Choi, H.K. Kim. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev.,2007,6:3-14.
    [73]S. Chatterjee, S. Srivastava, A. Khalid, N. Singh, R.S. Sangwan, O.P. Sidhu, R. Roy, C.L. Khetrapal, R. Tuli. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry,2010,71:1085-1094.
    [74]G. Knothe, J.A. Kenar. Determination of the fatty acid profile by'H-NMR spectroscopy. Eur. J. Lipid. Sci. Technol.,2004,106:88-96.
    [75]卢红梅,梁逸曾.代谢组学分析技术及数据处理技术.分析测试学报,2008,27(3):325-332.
    [76]阿基业.代谢组学数据处理方法—主成分分析.中国临床药理学与治疗学,2010,15(5):481-489.
    [77]J. Trygg, E. Holmes, T. Lundstedt. Chemometrics in metabonomics. Journal of Proteome Research,2007,6:469-479.
    [78]刘明芝,周仁郁.中医药统计学与软件应用.北京:中国中医药出版社,2006:280.
    [79]T. Okada, F.M. Afendi, Md. Altaf-Ul-Amin, H. Takahashi, K. Nakamura, S. Kanaya. Metabolomics of medicinal plants:the importance of multivariate analysis of analytical chemistry data. Current Computer-Aided Drug Design,2010,6:179-196.
    [80]巴吐尔·买买提明,阿仙姑·哈斯木,陈春丽,哈木拉提·吾甫尔.基于不同模式识别方法的大鼠尿液核磁共振氢谱分析.新疆医科大学学报,2010,33(7):755-761.
    [81]艾斯克尔·吐拉洪,哈木拉提·吾甫尔,豪富华,巴吐尔·买买提明.基于NMR的维吾尔医异常黑胆质型肿瘤患者血浆代谢组学分析.科技导报,2009,27(13):27-31.
    [82]W.J. Kong, Y.L. Zhao, X.H. Xiao, J.B. Wang, H.B. Li, Z.L. Li, C. Jin, Y. Liu. Spectrum-effect relationships between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis. Analytica Chimica Acta, 2009,634:279-285.
    [83]G.F. Wang, L.P. Shi, Y.D. Ren, Q.F. Liu, H.F. Liu, R.J. Zhang, Z. Li, F.H. Zhu, P.L. He, W. Tang, P.Z. Tao, C. Li, W.M. Zhao, J.P. Zuo. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res., 2009.83:186-190.
    [84]Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, K. Iseki. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm..2011.403:136-138.
    [85]A. Andrade-Cetto. H. Wiedenfeld. Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol.,2001,78:145-149.
    [86]L. Bascunan-Godoy, E. Uribe, A. Zuniga-Feest, L.J. Corcuera, L.A. Bravo. Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol., 2006,29:1011-1017.
    [87]H.M. Shu, Z.G. Zhoua, N.Y. Xu, Y.H. Wang, M. Zheng. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal of Agronomy,2009,31:61-68.
    [88]D.P. Hollis. Quantitative analysis of aspirin, phenacetin, and caffeine mixtures by nuclear magnetic resonance spectrometry. Anal. Chem.,1963,35:1682-1684.
    [89]G. del Campo, I. Berregi, R. Caracena, J. Zuriarrain. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl) furfural in soluble coffees by 1H NMR spectrometry. Talanta,2010,81:367-371.
    [90]J.E.A. Rodrigues, G.L. Erny, A.S. Barros, V.I. Esteves, T. Brandao, A.A. Ferreira, E. Cabrita, A.M. Gil. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods. Anal. Chim. Acta,2010.674:166-175.
    [91]V. Rizzo, V. Pinciroli. Quantitative NMR in synthetic and combinatorial chemistry. J. Pharm. Biomed. Anal.,2005,38:851-857.
    [92]R.J. Wells, J.M. Hook, T.S. Al-Deen, D.B. Hibbert. Quantitative nuclear magnetic resonance (QNMR) spectroscopy for assessing the purity of technical grade agrochemicals:2,4-dichlorophenoxyacetic acid (2.4-D) and sodium 2,2- dichloropropionate (Dalapon sodium). J. Agric. Food. Chem.,2002,50:3366-3374.
    [93]A.A. Salem, H.A. Mossa, B.N. Barsoum. Application of nuclear magnetic resonance spectroscopy for quantitative analysis of miconazole, metronidazole and sulfamethoxazole in pharmaceutical and urine samples. J. Pharm. Biomed. Anal., 2006,41:654-661.
    [94]R. Sharma, P.K. Gupta, A. Mazumder, D.K. Dubey, K. Ganesan, R. Vijayaraghavan. A quantitative NMR protocol for the simultaneous analysis of atropine and obidoxime in parenteral injection devices. J. Pharm. Biomed. Anal.,2009. 49:1092-1096.
    [95]V. Gilard, S. Balayssac, M. Malet-Martino, R. Martino. Quality control of herbal medicines assessed by NMR. Curr. Pharm. Anal.,2010,6:234-245.
    [96]F. Malz, H. Jancke. Validation of quantitative NMR. J. Pharm. Biomed. Anal., 2005,38:813-823.
    [97]G.F. Pauli, B.U. Jaki, D.C. Lankin. Quantitative'H NMR:development and potential of a method for natural products analysis. J. Nat. Prod..2005,68:133-149.
    [98]F. van der Kooy, F. Maltese, Y.H. Choi, H.K. Kim, R. Verpoorte. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med.,2009,75:763-775.
    [99]T. Rundlof, M. Mathiasson, S. Bekiroglu, B. Hakkarainen, T. Bowden. T. Arvidsson. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy. J. Pharm. Biomed. Anal.,2010.52:645-651.
    [100]J. Staneva, P. Denkova, M. Todorova, L. Evstatieva. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy. J. Pharm. Biomed. Anal.,2011,54:94-99.
    [101]N.Q. Liu, Y.H. Choi, R. Verpoorte, F. van der Kooy. Comparative quantitative analysis of artemisinin by chromatography and qNMR. Phytochem. Anal.,2010,21: 451-456.
    [102]E.C. Tatsis, V. Exarchou, A.N. Troganis, I.P. Gerothanassis. 1H NMR determination of hypericin and pseudohypericin in complex natural mixtures by the use of strongly deshielded OH group. Anal. Chim. Acta,2008,607:219-226.
    [103]H.K. Kim, Y.H. Choi, W.T. Chang, R. Verpoorte. Quantitative analysis of ephedrine analogues from Ephedra species using 1H-NMR. Chem. Pharm. Bull.,2003, 51:1382-1385.
    [104]K. Hasada, T. Yoshida, T. Yamazaki, N. Sugimoto, T. Nishimura, A. Nagatsu, H. Mizukami. Quantitative determination of atractylon in Atractylodis Rhizoma and Atractylodis Lanceae Rhizoma by 1H-NMR spectroscopy. J. Nat. Med.,2010,64: 161-166.
    [105]V. Pieri. H. Stuppner. Quantification of cynaropicrin in Artichoke leaf extracts by 1H NMR spectroscopy. Planta Med.,2011,77:1756-1758.
    [106]C.Y. Li, H.X. Xu, Q.B. Han, T.S. Wu. Quality assessment of Radix Codonopsis by quantitative nuclear magnetic resonance. Journal of Chromatography A,2009, 1216:2124-2129.
    [107]耿志鹏,郑海杰,张艺,罗维早,瞿显友RP-HPLC测定不同产地黄连中6种生物碱的含量.中国中药杂志,2010, 35(19):2576-2580.
    [108]钟国跃,黄小平,马开森,陈仕江,张毅,秦松云.我国黄连(味连)质量评价研究.中国中药杂志,2005,30(7):495-497.
    [109]U. Holzgrabe. Quantitative NMR spectroscopy in pharmaceutical applications. Prog. Nucl. Magn. Reson. Spectrosc.,2010,57:229-240.
    [110]International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Topic Q2 (R1):Validation of Analytical Procedures:Text and Methodology, Geneva,2005, p.11.
    [111]G. del Campo, I. Berregi, R. Caracena, J.I. Santos. Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy. Anal. Chim. Acta,2006,556:462-468.
    [112]C.Y. Li, C.H. Lin, C.C. Wu, K.H. Lee, T.S. Wu. Efficient'H nuclear magnetic resonance method for improved quality control analyses of ginkgo constituents. J. Agric. Food Chem.,2004,52:3721-3725.
    [113]S. Moura, F.G. Carvalho, C.D.R. de Oliveira, E. Pinto, M. Yonamine. qNMR: An applicable method for the determination of dimethyltryptamine in ayahuasca, a psychoactive plant preparation. Phytochemistry Letters,2010,3:79-83.
    [114]C.C. Chan, H. Lam, Y.C. Lee, X.M. Zhang. Analytical method validation and instrument performance verification. John Wiley & Sons, Incorporated:Hoboken, NJ, USA,2004.
    [115]F. Malz, H. Jancke. Purity assessment problem in quantitative NMR-impurity resonance overlaps with monitor signal multiplets from stereoisomers. Anal. Bioanal. Chem.,2006,385:760-765.
    [116]钟国跃,古锐,周华蓉,王昌华,赵纪峰,刘翔,泽翁拥忠,秦松云.藏药“蒂达”的名称与品种考证.中国中药杂志,2009,34(23):3139-3144.
    [117]刘启明.藏茵陈临床应用拾零.中国民族民间医药,1995,6:18-19.
    [118]唐丽,朱志慧,王珺,崔箭.藏药藏茵陈原植物概述.中国民族民间医药,20086:8-11.
    [119]中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准·藏药第一册.1995:6,28.
    [120]青海省药品检验所,青海省藏医药研究所.中国藏药·第一卷.上海:上海科学技术出版社,1996:157.
    [121]钟国跃,王昌华,刘翔,秦松云,周华蓉,罗维早.常用藏药“蒂达(藏茵陈)”的资源与使用现状调查.世界科学技术—中医药现代化:2010,12(1): 122-128.
    [122]刘黄刚,张铁军,王莉丽,马琳,张丽娟.獐牙菜属药用植物亲缘关系及其资源评价.中草药,2011,42(8):1646-1650.
    [123]杨慧玲,刘建全.9种“藏茵陈”原植物中的7种有效化学成分研究.中草药,2005,36(8):1233-1237.
    [124]纪兰菊,保怡,陈桂琛,赵明存,孙洪发.15种獐牙菜属植物中主要药用成分的高效液相色谱测定.西北植物学报,2004,24(7):1298-1302.
    [125]张杰,王志平,唐荣江,党合群.藏药抱茎樟牙菜药理实验研究.西北药学杂志,1988,3(4):15-17.
    [126]陈家春,胡衡,贾敏如.獐牙菜属药用植物叶片表皮细胞的计算机图像分析.中草药,2007,38(4):592-595.
    [127]马俊蓉,李子信,温红艳,王庆忠,薛春迎.“藏茵陈”的基原植物和药用亲缘学.广西植物,2009,29(4):552-555.
    [128]刘建全,薛春迎,何廷农.藏药抱茎獐牙菜的胚胎学研究.西北师范大学学报(自然科学版),1998,34(4):59-66.
    [129]薛春迎,何廷农,刘建全.四数獐牙菜的胚胎学及其系统学意义.植物分类学报,1999,37(3):259-263.
    [130]J.Q. Liu, Z.D. Chen, Z.X. Liao, A.M. Lu. A comparison of its sequences of the Tibetan medicine "zang yin chen"-Swertia mussotti and its adulterant species. Acta Pharm. Sin.,2001,36(1):67-70.
    [131]余满堂,黄家乐,宗玉英,邵鹏柱,车镇涛.应用5S rRNA基因间隔鉴定川西獐芽菜和同属混淆品种.中国中药杂志,2008,33(5):502-504.
    [132]刘建全,陈之端,廖志新,路安民.“藏茵陈”原植物及其混淆种类的ITS序列比较.药学学报,2001,36(1):67-70.
    [133]C.Y. Xue, D.Z. Li, J.M. Lu, J.B. Yang, J.Q. Liu. Molecular authentication of the traditional Tibetan medicinal plant Swertia mussotii. Planta Med.,2006,72(13): 1223-1226.
    [134]保怡,吉文鹤,马玉花,纪兰菊.HPLC测定四川及青海地区獐牙菜植物中6种主要成分的含量.中国中药杂志,2006,31(24):2036-2038.
    [135]徐康平,申健,李福双,刘建锋,刘国如,谭健兵,谭桂山.多波长HPLC同时测定3种獐牙菜属植物中6种活性成分.中国中药杂志,2009,34(11):1384-1389.
    [136]尚军,张国燕,杨淳彬,陈志.川西獐牙菜的化学成分研究.青海师范大学学报(自然科学版),2008,4:66-67.
    [137]蔡乐,王曙,李涛,夏宇江.印度獐牙菜的化学成分研究.华西药学杂志,2006,21(2):111-113.
    [138]王世盛,徐青,肖红斌,刘秀梅,杜昱光,韩秀文,梁鑫淼.抱茎獐牙菜中的苷类成分.中草药,2004,35(8):847-849.
    [139]J. Jia, T. Chen, P. Wang, G.C. Chen, J.M. You, Y.J. Liu, Y.L. Li. Preparative separation of methylswertianin, swerchirin and decussatin from the Tibetan medicinal plant Swertia mussotii using highspeed counter-current chromatography. Phytochem. Anal.,2011, DOI:10.1002/pca.1362.
    [140]王世盛,肖红斌,刘秀梅,杜昱光,韩秀文,梁鑫淼.藏药抱茎獐牙菜中的口山酮类成分研究.中草药,2003,34(10):878-879.
    [141]J. Liu. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol., 1995,49:57-68.
    [142]E.J. Yang, W. Lee, S.K. Ku, K.S. Song, J.S. Bae. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology,2012, 50:1288-1294.
    [143]X. Wang, X.L. Ye, R. Liu, H.L. Chen, H. Bai, X. Liang, X.D. Zhang, Z. Wang, W.L. Li, C.X. Hai. Antioxidant activities of oleanolic acid in vitro:possible role of Nrf2 and MAP kinases. Chemico-Biological Interactions,2010,184:328-337.
    [144]V. Jaishree, S. Badami. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against d-galactosamine induced acute liver damage in rats. Journal of Ethnopharmacology,2010,130:103-106.
    [145]J. Vaijanathappa, S. Badami. Anti edematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med.,2009,75: 12-17.
    [146]H. Vaidya, M. Rajani, V. Sudarsanam, H. Padh, R. Goyal. Swertiamarin:a lead from Enicostemma littorale Blume. for anti-hyperlipidaemic effect. European Journal of Pharmacology,2009,617:108-112.
    [147]N. Oztiirk, S. Korkmaz, Y. Ozttirk, K.H.C. Baser. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from Gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med.,2006,72: 289-294.
    [148]Y. Kumarasamy, L. Nahar, P.J. Cox, M. Jaspars, S.D. Sarker. Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine,2003,10: 344-347.
    [149]J. Liu, Y.P. Liu, D.K. Curtis. The effect of Chinese hepatoprotective medicines on experimental liver injury in mice. Journal of Ethnopharmacology,1994,42: 183-191.
    [150]J.C. Li, L. Feng, B.H. Sun, T. Ikeda, T. Nohara. Hepatoprotective activity of the constituents in Swertia pseudochinensis. Biol. Pharm. Bull.,2005,28:534-537.
    [151]A. Dar, S. Faizi, S. Naqvi, T. Roome, S. Zikr-ur-Rehman, M. Ali, S. Firdous, S.T. Moin. Analgesic and antioxidant activity of mangiferin and its derivatives:the structure activity relationship. Biol. Pharm. Bull.,2005,28:596-600.
    [152]T. Miura, H. Ichiki, I. Hashimoto, N. Iwamoto, M. Kao, M. Kubo, E. Ishihara, Y. Komatsu, M. Okada, T. Ishida, K. Tanigawa. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine,2001,8:85-87.
    [153]S. Guha. S. Ghosal, U. Chattopadhyay. Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy, 1996,42:443-451
    [154]J. Das, J. Ghosh, A. Roy, P.C. Sil. Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2-NFKB pathways. Toxicology and Applied Pharmacology,2012,260:35-47.
    [155]P.P. Singh, Ambikaa, S.M.S. Chauhan. Activity-guided isolation of antioxidant xanthones from Swertia chirayita (Roxb.) H. Karsten (Gentianaceae). Nat. Prod. Res., 2011,DOI:10.1080/14786419.2011.592836.
    [156]L.Y. Tian, X. Bai, X.H. Chen, J.B. Fang, S.H. Liu, J.C. Chen. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine,2010,17:533-539.
    [157]Z. Sadeghi, S. Elmi, A. Elmi, M. Ghazi-Khansari, H. Hajimehdipoor, Y. Amanzadeh, S.E. Sadat-Ebrahimi. Protective effects of Swertia longifolia Boiss. and its active compound, swerchirin, on paracetamol-induced hepatotoxicity in mice. J. pharm. Pharmacol.,2006,58:277-280.
    [158]肖远灿,魏立新,杨红霞,杜玉枝.藏药材印度獐牙菜质量标准研究.中国药学杂志,2010,45(4):255-258.
    [159]G.L. Li, X.L. Zhang, J.M. You, C.H. Song, Z.W. Sun, L. Xia, Y.R. Suo. Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species:Optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology. Analytica Chimica Acta,2011,688:208-218.
    [160]H.L. Yang, C.X. Ding, Y.W. Duan, J.Q. Liu. Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed. Journal of Ethnopharmacology,2005, 98:31-35.
    [161]Y.L. Li, L.Y. Wang, X.Y. Wang, Y.R. Suo, G.C. Chen, F.Z. Hu, Y.Z. Du, J.M. You. Separation and determination of the major active components in Tibetan folk medicinal species Swertia franchetiana by HPLC with DAD. Journal of Liquid Chromatography & Related Technologiesw,2007,30:1687-1696.
    [162]Y.L. Li, C.X. Ding, H.L. Wang, Y.R. Suo, J.M. You, G.C. Chen. Separation and determination of flavone and xanthone glycosides in Tibetan folk medicinal species Swertia mussotii and S. franchetiana by capillary electrophoresis. Journal of Analytical Chemistry,2008,63:574-579.
    [163]Y.H. Cao, Y. Wang, J.N. Ye. Differentiation of Swertia Mussotii Franch from Artemisiae Capillaris Herba by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis,2005,39:60-65.
    [164]H. Takei, K. Nakauchi, F. Yoshizaki. Analysis of swertiamarin in Swertia herb and preparations containing this crude drug by capillary electrophoresis. Analytical Sciences,2001,17:885-888.
    [165]Z.G. Wang, C.M. Ma, S.H. Tang, H. Xiao, N. Kakiuchi, H. Kida, M. Hattori. Qualitative and quantitative analysis of Swertia Herbs by high performance liquid chromatography-diode array detector-mass spectrometry (HPLC-DAD-MS). Chem. Pharm. Bull.,2008,56:485-490.
    [166]S. Suryawanshi, N. Mehrotra, R.K. Asthana, R.C. Gupta. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabeticy. Rapid Commun. Mass Spectrom.,2006,20:3761-3768.
    [167]Y.M. Liu, Q. Xu, X.Y. Xue, F.F. Zhang, X.M. Liang. Two-dimensional LC-MS analysis of components in Swertia franchetiana Smith. J. Sep. Sci.,2008,31:935-944.
    [168]张秋萍,张彬锋,俞桂新,王峥涛.钩吻地上部分的化学成分.中国中药杂志,2011,36(10):1305-1310.
    [169]D. Prasad, V. Juyal, R. Singh,V. Singh, G. Pant, M.S.M. Rawata. A new secoiridoid glycoside from Lonicera angustifolia. Fitoterapia,2000,71:420-424.
    [170]E.M. Mpondo, J. Garcia, G. Cartier, G. Pellet.6'-O-beta-D-glucosylswertiamarine:A new secoiridoid from Gentiana alpina. Planta Med.,1990, 56:334.
    [171]段朝辉,石宝俊,吴立宏,俞桂新,王峥涛.长梗秦艽的化学成分.中国天然药物,2007,5(6):417-420.
    [172]C.Z. Wang, D.Q. Yu. Diterpenoid, sesquiterpenoid and secoiridoid glucosides from Aster auriculatus. Phytochemistry,1997,45:1483-1487.
    [173]X.L.Yang, M.Y. Jiang, K.L. Hsieh, J.K. Liu. Chemical constituents from the seeds of Morinda citrifolia. Chin. J. Nat. Med. Mar.,2009,7:119-122.
    [174]Z. Giivenalpi, N. Kilic, C. Kazaz, Y. Kaya. L.O. Demirezer. Chemical constituents of Galium tortumense. Turk J. Chem.,2006,30:515-523.
    [175]C.Y. Kim, M.J. Ahn, J. Kim. Preparative isolation of mangiferin from Anemarrhena asphodeloides rhizomes by centrifugal partition chromatography. Journal of Liquid Chromatography & Related Technologiesw,2006,29:869-875.
    [176]J. Zhang, Y. Wang, X.Q. Zhang, Q.W. Zhang, W.C. Ye. Chemical constituents from the leaves of Lophatherum gracile. Chin. J. Nat. Med.,2009,7:428-431.
    [177]G.F. Shi, R.H. Lu, Y.S. Yang, C.L. Li, A.M. Yang, L.X. Cai. Isolation and crystal structure of xanthones from Swertia Chirayita. Chinese J. Struct. Chem.,2004,23: 1164-1168.
    [178]张海涛,张小龙,代东海,纪兰菊.黄花獐牙菜的化学成分研究.中草药,2010,41(9):1430-1432.
    [179]贾静,李玉林,赵晓辉,肖远灿,陈桂琛,尤进茂,魏立新.高速逆流色谱分离纯化川西獐牙菜中3种口山酮苷元.分析化学,2011,39(4):584-587.
    [180]S.S. Wang, X.W. Han, Q. Xu, H.B. Xiao, X.M. Liu, Y.G. Du, X.M. Liang. Xanthone glycosides from Swertia franchetiana. Journal of Asian Natural Products Research,2005,7:175-179.
    [181]YL. Li, Y.R. Suo, Z.X. Liao, L.S. Ding. The glycosides from Lomatogonium rotatum. Natural Product Research,2008,22:198-202.
    [182]R. Nagalekshmi, A. Menon, D.K. Chandrasekharan, C.K.K. Nair. Hepatoprotective activity of Andrographis Paniculata and Swertia Chirayita. Food and Chemical Toxicology,2011,49:3367-3373.
    [183]S. Mukherjee, A. Sur, B.R. Maiti. Hepatoprotective effect of Swertia chirata on rat. Indian J. Exp. Biol.,1997,35:384-388.
    [184]S. Banerjee, T.K. Sur, S. Mandal, P.C. Das, S. Sikdar. Assessment of anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats. Indian Journal of Pharmacology,2000,32:21-24.
    [185]Y. Chen, B. Huang, J.S. He, L. Han, Y.C. Zhan, Y.W. Wang. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita. Journal of Ethnopharmacology,2011,136:309-315.
    [186]P. Saha, S. Mandal, A. Das, P.C. Das, S. Das. Evaluation of anti-carcinogenic activity of Swertia chirata Buch. Ham, an Indian medicinal plant on DMBA-induced mouse skin carcinogenesis model. Phytotherapy Research,2004,18:373-378.
    [187]S. Bhargava, P.S. Rao, P. Bhargava, S. Shukla. Antipyretic potential of Swertia chirata Buch. Ham. Root extract. Scientia Pharmaceutica,2009,77:617-623.
    [188]P. Joshi, V. Dhawan. Swertia chirayita-an overview. Current Science,2005,89: 635-640.
    [189]吉文鹤,卢学峰,陈桂深,纪兰菊.四川西北地区川西獐牙菜指纹图谱研究(I).中国中药杂志,2005,30(13):977-979.
    [190]中国科学院西北高原生物研究所.藏药志.西宁:青海人民出版社,1991:110.
    [191]纪兰菊,保怡,马玉花,陈桂琛.藏药抱茎獐牙菜HPLC指纹图谱研究.西北植物学报,2004,24(11):2092-2095.
    [192]杨路存,陈桂琛,周国英.基于不同DNA序列对四数獐牙菜系统位置分析.西北植物学报,2010,30(9):1773-1779.
    [193]赵纪峰.藏茵陈的资源调查与生药学研究.北京中医药大学硕士研究生学位论文,2008.
    [194]吴学文,熊艳,杜方麓.聚类分析在中药材分类学中的应用.中南药学,2003,1(1):232-234.
    [195]刘明芝,周仁郁.中医药统计学与软件应用.北京:中国中医药出版社,2006:280.
    [196]龚祝南,王燕飞,梁侨丽,王峥涛,徐珞珊,徐国钧.中国桑寄生科植物化学分类学研究.广西植物,2004,24(6):493-496.
    [197]袁菊红,彭峰,冯煦,孙视,何树兰,夏冰.应用HPLC图谱进行石蒜属种 间关系与分类研究.西北植物学报,2007,27(11):2195-2201.
    [198]赵亚波,宁伟,赵鑫,高维凡,曹珍,邓静.11种蒲公英亲缘关系聚类分析.沈阳农业大学学报,2010,41(4):403-406.
    [199]H.Q. Huang, X. Zhang, Z.X. Xu, J. Su, S.K. Yan, W.D. Zhang. Fast determination of saikosaponins in Bupleurum by rapid resolution liquid chromatography with evaporative light scattering detection. J. Pharm. Biomed. Anal., 2009,49:1048-1055.
    [200]M.I. Georgiev, K. Ali, K. Alipieva, R. Verpoorte, Y.H. Choi. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry,2011,72:2045-2051.
    [201]王斯婷,李晓娜,王皎,凌笑梅.代谢组学及其分析技术.药物分析杂志,2010,30(9):1792-1799.
    [202]汪明明,程海婷,薛明.基于LC-MS的代谢组学分析流程与技术方法.国际药学研究杂志,2011,38(2):130-136.
    [203]任洪灿,王广基,阿基业,郝海平,孙建国,查伟斌,严蓓.代谢组学分析技术平台和数据处理的新进展.中国临床药理学与治疗学,2007,12(12):1332-1338.
    [204]林艳萍,司端运,刘昌孝.液相色谱和质谱联用技术结合化学计量学应用于代谢组学的研究进展.分析化学,2007,35(10):1535-1540.
    [205]卢红梅,梁逸曾.代谢组学分析技术及数据处理技术.分析测试学报,2008,27(3):325-332.
    [206]T. Okada, Y. Nakamura, S. Kanaya, A. Takano, K.J. Malla, T. Nakane, M. Kitayama, S. Sekita. Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med.,2009,75: 1356-1362.
    [207]E.C.Y. Chan, S.L. Yap, A.J. Lau, P.C. Leow, D.F. Toh, H.L. Koh. Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Communications in Mass Spectrometry,2007,21,519-528.
    [208]K. Tanaka, T. Tamura, S. Fukuda, J. Batkhuu, C. Sanchir, K. Komatsu. Quality evaluation of Astragali Radix using a multivariate statistical approach. Phytochemistry,2008,69:2081-2087.
    [209]X.J. Yang, L. Yang, A. Xiong, D.X. Li, Z.T. Wang. Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC-DAD/ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 2011,56:165-172.
    [210]C.H. Ma, A.R. Kavalier, B. Jiang, E.J. Kennelly. Metabolic profiling of Actaea species extracts using high performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry. Journal of Chromatography A,2011,121:1461-1476.
    [211]S. Tianniam, L. Tarachiwin, T. Bamba, A. Kobayashi, E. Fukusaki. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. Journal of Bioscience and Bioengineering,2008,105: 655-659.
    [212]Y.N. Ni, M.H. Mei, S. Kokot. One-and two-dimensional gas chromatography-mass spectrometry and high performance liquid chromatography—diode-array detector fingerprints of complex substances:A comparison of classification performance of similar, complex Rhizoma Curcumae samples with the aid of chemometrics. Analytica Chimica Acta,2012,712:37-44.
    [213]C.F. Ma, H.H. Wang, X. Lu, H.F. Li, B.Y. Liu, G.W. Xu. Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography A.2007,1150:50-53.
    [214]J.F. Wu. X. Lu, W.Y. Tang, H.W. Kong, S.F. Zhou, G.W. Xu. Application of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry in the analysis of volatile oil of traditional Chinese medicines. Journal of Chromatography A,2004,1034:199-205.
    [215]朱超,梁琼麟,王义明,罗国安.代谢组学的整合化发展及其新进展.分析化学,2010,38(7):1060-1068.
    [216]H.R. Tang, C.N. Xiao, Y.L. Wang. Important roles of the hyphenated HPLC-DAD-MS-SPE-NMR technique in metabonomics. Magnetic Resonance in Chemistry,2009,47:S157-S162.
    [217]D. Staerk, J.R. Kesting, M. Sairafianpour, M. Witt, J. Asili, S.A. Emami. J.W. Jaroszewski. Accelerated dereplication of crude extracts using HPLC-PDA-MS-SPE-NMR:quinolinone alkaloids of Haplophyllum acutifolium. Phytochemistry,2009,70: 1055-1061.
    [218]K. Sprogφe, D. Sta?rk, H.L. Ziegler, T.H. Jensen, S.B. Holm-Mφller, J.W. Jaroszewski. Combining HPLC-PDA-MS-SPE-NMR with circular dichroism for complete natural product characterization in crude extracts:levorotatory gossypol in Thespesia danis. J. Nat. Prod.,2008,71:516-519.
    [219]C. Seger, M. Godejohann, L.H. Tseng, M. Spraul, A. Girtler, S. Sturm, H. Stuppner. LC-DAD-MS/SPE-NMR hyphenation. a tool for the analysis of pharmaceutically used plant extracts:identification of isobaric iridoid glycoside regioisomers from Harpagophytum procumbens. Anal. Chem.,2005,77:878-885.
    [220]M.A. Farag, A. Porzel, L.A. Wessjohann. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS. LC-MS and 1D NMR techniques. Phytochemistry,2012,76:60-72.
    [221]E.J. Kim, J.K. Kwon, S.H. Park, C. Park, Y.B. Seo, H.K. Shin, H.K. Kim, K.S. Lee, S.Y. Choi, D.H. Ryu, G.S. Hwang. Metabolite profiling of Angelica gigas from different geographical origins using 1H NMR and UPLC-MS analyses. Journal of Agricultural and Food Chemistry,2011,59:8806-8815.
    [222]Y. Jung, Y.G. Ahn, H.K. Kim, B.C. Moom, A.Y. Lee, D.H. Ryu, G.S. Hwang. Characterization of dandelion species using 1H NMR- and GC-MS-based metabolite profiling. Analyst,2011,136:4222-4231.
    [1]李玉衡.天然药物是国内创新药研制的突破口-专访我国著名天然药物化学专家、中国工程院院士于德泉教授.首都医药,2008,11:34-36.
    [2]孙汉董.充分利用天然药物资源,发展云南天然药物.云南民族大学学报(自然科学版),2011,20(6):441-442.
    [3]陈立亚,于宝珠,尹华.现代分析在天然药物质量控制中的应用进展.中国药事,2002,16(10):639-642.
    [4]淡墨,高先富,谢国祥,刘忠,赵爱华,贾伟.代谢组学在植物代谢研究中的应用.中国中药杂志,2007,32(22):2337-2341.
    [5]焦旭雯,赵树进.药用植物代谢组学的研究进展.广东药学院学报,2007,23(2):228-231.
    [6]许国旺.代谢组学-方法与应用.北京:科学出版社,2008:150.
    [7]H.K. Kim, Y.H. Choi, R. Verpoorte. NMR-based metabolomic analysis of plant. Nature protocol,2010,5:536-549.
    [8]F. van der Kooy, F. Maltese, Y.H. Choi. H.K. Kim, R. Verpoorte. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med.,2009,75:763-775.
    [9]E. Holmes, H.R. Tang, Y.L. Wang, C. Seger. The assessment of plant metabolite profiles by NMR-based methodologies. Planta Med.,2002,72:771-785.
    [10]P. Krishnan, N.J. Kruger. R.G. Ratcliffe. Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany,2005,56:255-265.
    [11]Y. Jung, Y.G. Ahn, H.K. Kim, B.C. Moon, A.Y. Lee, D.H. Ryu, G.S. Hwang. Characterization of dandelion species using 1H NMR- and GC-MS-based metabolite profiling. Analyst,2011,136:4222-4231.
    [12]M. Frederich, Y.H. Choi, L. Angenot, G. Harnischfeger, A.W.M. Lefeber, R. Verpoorte. Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochemistry,2004.65:1993-2001.
    [13]S. Safer, S.S. Cicek, V. Pieri, S. Schwaiger, P. Schneider, V. Wissemann, H. Stuppner. Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC-ESI-MS. Phytochemistry,2011,72:1379-1389.
    [14]W.T. Chang, Y.H. Choi, R.V. der Heijden, M.S. Lee, M.K. Lin, H.W. Kong, H.K. Kim, R. Verpoorte, T. Hankemeier, J.V. der Greef, M. Wang. Traditional processing strongly affects metabolite composition by hydrolysis in Rehmannia glutinosa roots. Chem. Pharm. Bull,2011,59:546-552.
    [15]S.H. Kim, S.H. Hyun, S.O. Yang, H.K. Choi, B.Y. Lee.1H-NMR-based discrimination of thermal and vinegar treated ginseng roots. Journal of Food Science, 2010,75:577-581.
    [16]E.J. Kim, J. Kwon, S.H. Park, C. Park. Y.B. Seo, H.K. Shin, H.K. Kim, K.S. Lee, S.Y. Choi, D.H. Ryu, G.S. Hwang. Metabolite profiling of Angelica gigas from different geographical origins using 1H NMR and UPLC-MS analyses. J. Agric. Food Chem.,2011,59:8806-8815.
    [17]C.N. Xiao. H. Dai, H.B. Liu, Y.L. Wang, H.R. Tang. Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis. J. Agric. Food Chem.,2008,56:10142-10153.
    [18]S.H. Kim, S.K. Cho, S.H. Hyun, H.E. Park, Y.S. Kim, H.K. Choi. Metabolic profiling and predicting the free radical scavenging activity of Guava (Psidium guajava L.) leaves according to harvest time by'H-nuclear magnetic resonance spectroscopy. Biosci. Biotechnol. Biochem.,2011,75:1090-1097.
    [19]V. Pieri, S. Sturm, C. Seger, C. Franz, H. Stuppner.'H NMR-based metabolic profiling and target analysis:a combined approach for the quality control of Thymus vulgaris. Metabolomics,2012,8:335-346.
    [20]Y.L. Wang, H.R. Tang, J.K. Nicholson, P.J. Hylands, J. Sampson, I. Whitcombe, C.G. Stewart, S. Caiger, I. Oru, E. Holmes. Metabolomic strategy for the classification and quality control of phytomedicine:a case study of Chamomile flower (Matricaria recutita L.). Planta Med.,2004,70:250-255.
    [21]X.M. Qin, Y.T. Dai, N.Q. Liu, Z.Y. Li, X.J. Liu, J. Hu, Y.H. Choi, R. Verpoorte. Metabolic fingerprinting by 1H NMR for discrimination of the two species used as Radix Bupleuri. Planta Med.,2012, (DOI:10.1055/s-0031-1298496).
    [22]Y.H. Choi, H.K. Kim, A. Hazekamp, C. Erkelens, A.W.M. Lefeber, R. Verpoorte. Metabolomic differentiation of Cannabis sativa cultivars using'H NMR spectroscopy and principal component analysis. Journal of Natural Products,2004,67:953-957.
    [23]M.A. Farag, A. Porzel, L.A. Wessjohann. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry,2012,76:60-72.
    [24]H. Dai, C.N. Xiao, H.B. Liu, F.H. Hao, H.R. Tang. Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia Miltiorrhiza Bunge. Journal of proteome research,2010, 9:1565-1578.
    [25]H. Dai, C.N. Xiao, H.B. Liu, H.R. Tang. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Journal of proteome research,2010,9:1460-1475.
    [26]O.P. Sidhu, S. Annarao, S. Chatterjee, R. Tuli, R. Roy, C.L. Khetrapal. Metabolic alterations of Withania somnifera (L.) Dunal fruits at different developmental stages by NMR spectroscopy. Phytochem. Anal,2011,22:492-502.
    [27]S. Chatterjee, S. Srivastava, A. Khalid, N. Singh, R.S. Sangwan, O.P. Sidhu, R. Roy, C.L. Khetrapal, R. Tuli. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry,2010,71:1085-1094.
    [28]H.K. Kim, Y.H. Choi, C. Erkelens, A.W.M. Lefeber, R. Verpoorte. Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis. Chem. Pharm. Bull.,2005,53:105-109.
    [29]N.H. Shuib, K. Shaari, A. Khatib, Maulidiani, R. Kneer, S. Zareen, S.M. Raof, N.H. Lajis, V. Neto. Discrimination of young and mature leaves of Melicope ptelefolia using 1H NMR and multivariate data analysis. Food Chemistry,2011,126: 640-645.
    [30]J. Kang, M.Y. Choi, S. Kang, H.N. Kwon, H. Wen, C.H. Lee, M. Park, S. Wiklund, H.J. Kim, S.W. Kwon, S. Park. Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal pProjections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J. Agric. Food Chem.,2008,56:11589-11595.
    [31]H. Wen, B. Jeon, S. Moon, Y. Song, S. Kang, H.J. Yang, Y. Song, S. Park. Differentiation of antlers from deer on different feeds using an NMR-based metabolomics approach. Arch. Pharm. Res.,2010,33:1227-1234.
    [32]H.K. Choi, K.H. Kim, K.H. Kim, Y.S. Kim, M.W. Lee, W.K. Whang. Metabolomic differentiation of deer antlers of various origins by 1H NMR spectrometry and principal components analysis. Journal of Pharmaceutical and Biomedical Analysis,2006,41:1047-1050.
    [33]S. Agnolet, J.W. Jaroszewski, R. Verpoorte, D. Staerk. 1H NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics,2010,6:292-302.
    [34]H. Wen, S. Kang, Y. Song, S.H. Sung, S. Park. Differentiation of cultivation sources of Ganoderma lucidum by NMR-based metabolomics approach. Phytochemical Analysis,2010,21:73-79.
    [35]M.A. Farag, A. Porzel, J. Schmidt, L.A. Wessjohann. Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop):a comparison of MS and NMR methods in metabolomics. Metabolomics,2012,8:492-507.
    [36]K.N. Ioset, N.T. Nyberg, D.V. Diermen, P. Malnoe, K. Hostettmann, A.N. Shikov, J.W. Jaroszewski. Metabolic profiling of Rhodiola rosea rhizomes by 1H NMR spectroscopy. Phytochemical Analysis,2011,22:158-165.
    [37]Y. Jiang, J. Vaysse, V. Gilard, S. Balayssac, S. Dejean, M.M. Martino, B. David, C. Fiorini, Y. Barbin. Quality assessment of commercial Magnoliae officinalis cortex by 1H-NMR-based metabolomics and HPLC methods. Phytochemical Analysis,2011, (DOI 10.1002/pca.1369).
    [38]L. Tarachiwin, A. Katoh, K. Ute, E. Fukusaki. Quality evaluation of Angelica acutiloba Kitagawa roots by 1H NMR-based metabolic fingerprinting. Journal of Pharmaceutical and Biomedical Analysis,2008,48:42-48.
    [39]S.O. Yang, Y.S. Shin, S.H. Hyun, S. Cho, K.H. Bang, D. Lee, S.P. Choi, H.K. Choi. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages. Journal of Pharmaceutical and Biomedical Analysis,2012,58: 19-26.
    [40]E.J. Lee, R. Shaykhutdinov, A.M. Weljie, H.J. Vogel, P.J. Facchini, S.U. Park, Y.K. Kim, T.J. Yang. Quality assessment of Ginseng by 1H NMR metabolite fingerprinting and profiling analysis. J. Agric. Food Chem.,2009,57:7513-7522.
    [41]J. Kang, S. Lee, S. Kang, H.N. Kwon, J.H. Park, S.W. Kwon, S. Park. NMR-Based metabolomics approach for the differentiation of Ginseng (Panax ginseng) roots from different origins. Arch. Pharm. Res.,2008,31:330-336.
    [42]M.I. Georgiev, K. Ali, K. Alipieva, R. Verpoorte, Y.H. Choi. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry,2011, 72:2045-2051.
    [43]D-G. Watson, E. Peyfoon, L. Zheng, D. Lu, V. Seidel, B. Johnston, J.A. Parkinson, J. Fearnley. Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin. Phytochemical Analvsis.2006,17:323-331.
    [44]范刚,周林,赖先荣,王张,张艺.基于代谢组学技术的中药质量控制研究思路探讨.世界科学技术-中医药现代化,2010,12(6):870-875.
    [45]王广基,查伟斌,郝海平,阿基业.代谢组学技术在中医药关键科学问题研究中的应用前景分析.中国天然药物,2008,6(2):89-97
    [46]朱超,梁琼麟,王义明,罗国安.代谢组学的整合化发展及其新进展.分析化学,2010,38(7):1060-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700