燃煤烟气中SO_2、NO和Hg~0同时氧化及脱除实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤产生的二氧化硫、一氧化氮和元素态汞均会对生态环境和人体造成巨大危害。截止目前,针对二氧化硫、一氧化氮和元素态汞等单一污染物,国际国内专家已经先后研发出一系列相应的成熟控制技术,例如石灰石-石膏法脱硫,选择性催化还原(SCR)和选择性非催化还原(SNCR)脱硝以及活性炭脱汞。这种分级治理方式普遍存在占地面积大、设备投资和运行费用高,系统稳定性差等问题。因此,研发具有设备投资费用少、运行成本低和无二次污染的烟气同时脱硫脱硝脱汞新工艺成为了国内外燃煤烟气污染物控制研究的热点。
     本课题在“863”课题,燃煤烟气循环流化床脱硫脱汞一体化及多污染物协同净化技术研究与示范资助下,在详细调研前人研究的基础上,对可实现二氧化硫、一氧化氮和元素态汞同时氧化和脱除的吸收溶液进行了大量筛选,并合成了二过碘酸合铜(diperiodatocuprate(Ⅲ), DPC)和二过碘酸合镍(diperiodatonicke late(Ⅳ), DPN)。通过实验确定了二者在喷射鼓泡反应体系中的最佳实验条件,在最佳条件下,利用DPC溶液可实现同时脱除90%的Hg0,98%的SO2和56.8%的NO;利用DPN溶液可实现同时脱除86.2%的Hg0,98%的SO2和56.2%的NO。为了降低吸收剂成本和二次环境污染,在预氧化体系实验平台上,以H2O2+添加剂N+添加剂F (HNF)为吸收溶液,开展了同时氧化脱除S02、NO和Hg0的最佳实验,在最佳条件下,SO2, NO和Hg0的脱除效率分别达到99%,81.5%和91.2%。通过上述实验研究,提出了三种同时脱硫脱硝和脱汞的新方法。
     通过对反应过程的热力学计算和反应产物的离子色谱(IC)、冷原子荧光和X-射线衍射(XRD)检测,揭示了脱除反应机理,其中DPC体系实验产物检测结果显示SO2的脱除产物为SO42-、NO的脱除产物为NO3-, Hg0被氧化为Hg2+。根据前人研究结果和最佳反应条件下溶液的pH值对DPC存在形态进行了研究,确定DPC溶液主要的氧化形态为[Cu(OH)2(H3IO6)2]3和[Cu(OH)2(H3IO6)]-。DPN体系实验产物的检测结果与DPC相同,且采用相似方法确定DPN溶液主要的氧化形态为[Ni(OH)2(H3IO6)2]2-和[Ni(OH)2(H3IO6)(H2IO6)]3-。预氧化体系实验产物检测结果显示在管道中NO被氧化为NO2;管壁内残渣中检测到亚硫酸盐、硫酸盐、亚硝酸盐和硝酸盐;后续吸收溶液中SO2的脱除产物为SO42-,而NO的脱除产物为NO3-, Hg0被氧化为Hg2+。热力学分析结果证实了反应发生的可能性和反应程度,同时显示在气相产物中可能存在少量的SO3、NO3、N2O5和N203。
     基于上述体系的同时脱硫脱硝脱汞宏观反应动力学实验研究,计算出DPC体系同时脱硫脱硝脱汞反应中SO2、NO和Hg0的分级数分别为1.32、2.08和1.58,反应的平均表观活化能分别为9.89kJ/mol、17.05kJ/mol和28.02kJ/mol。DPN体系同时脱硫脱硝脱汞反应中SO2、NO和Hg0的分级数分别为1.36、2.12和1.63,反应的平均表观活化能分别为12.54kJ/mol、21.27kJ/mol和33.03kJ/mol。预氧化体系同时脱硫脱硝脱汞反应中SO2、NO和Hg0的分级数分别为1.03、1.10和0.83,反应的平均表观活化能分别为6.84J/mol、19.15kJ/mol和11.85kJ/mol。
Sulfur dioxide, nitric oxide and elemental mercury produced by burning coal have harm to ecological environment and human body. Up to now, in order to removal sulfur dioxide, nitric oxide and elemental mercury and other pollutants in a single, international and domestic experts have successively developed a series of corresponding maturity control technology, such as limestone-gypsum desulfurization, selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) denitrification and activated carbon mercury removal. This is common hierarchical governance covers an area of big, the equipment investment and operation cost is high, the poor stability of the system. Research and development has the advantages of low equipment investment cost, low operation cost and no secondary pollution of new technology of flue gas desulfurization denitration at the same time to take off the mercury has become the hot topics in the study of coal-fired flue gas pollution control at home and abroad.
     This topic is "863" project, the integration of coal-fired flue gas circulating fluidized bed desulfurization to take off the mercury and more pollutants purification technology research and demonstration to fund together. On the detailed investigation and research, we have screened absorbent of desulfurization, denitration and Hg0removal at the same time, and synthesized diperiodatocuprate(Ⅲ)(DPC) and diperiodatonickelate(Ⅳ)(DPN). The best experimental conditions were determined by the experiment in the bubbling reaction system. Under the optimal condition,90%of Hg0,98%of SO2and56.8%of NO were removed by the DPC at the same time. Using DPN solution could remove86.2%of Hg0,98%of SO2and56.2%of NO. In order to reduce the sorbent cost and secondary pollution of the environment, experiments using absorbent of H2O2, additive N and F (HNF) on simultaneous removal of SO2, NO and Hg0were carried out in the preoxidation experiment platform. Under the best condition, SO2, NO and Hg0removal efficiency reached99%,81.5%and91.2%. Through the experimental research, this paper put forward three kinds of methods to simultaneous desulfurization, denitration and mercury removal.
     Detection result produced by the thermodynamic calculation of reaction process and reaction product ion chromatography (IC), cold atomic fluorescence and X-ray diffraction (XRD) revealed the removal mechanism. According to detection result, reaction products of SO2, NO and Hg0were SO42-, NO3-and Hg2+. According to the results of previous studies and the optimum reaction conditions the pH of DPC, the main oxidized form of DPC were [Cu(OH)2(H3IO6)2]3-and [Cu(OH)2(H3IO6)]-.The reaction products of DPN system were as same as the DPC reaction products, the main oxidized form of DPN were [Ni(OH)2(H3IO6)2]2-and [Ni(OH)2(H3IO6)(H2IO6)]3-. In the preoxidation experiment platform, NO was oxidized to NO2, sulfite, sulfate, nitrite and nitrate were detected in the pipeline. In the subsequent bubbling device, reaction products of SO2, NO and Hg0were SO42-, NO3-and Hg2+. Thermodynamic analysis results proved the possibility of a reaction and reaction degree, at the same time shows there may be a small amount of SO3^NO3、N2O5and N2O3in the product gas phase.
     Based on the above system of simultaneous removal of SO2, NO and Hg0macro reaction kinetics experiment research, the reaction order of simultaneous removal of SO2, NO and Hg0with respect to SO2, NO and Hg0were1.32,2.08and1.58, respectively, in DPC system. Apparent active energy of simultaneous removal of SO2, NO and Hg0were9.89kJ/mol,17.05kJ/mol and28.02kJ/mol, respectively, in DPC system. In DPN system, the reaction order of simultaneous removal of SO2, NO and Hg0with respect to SO2, NO and Hg0were1.36,2.12and1.63. Apparent active energy of simultaneous removal of SO2, NO and Hg0in DPN system were12.54kJ/mol,21.27kJ/mol and33.03kJ/mol. In preoxidation experiment platform, the reaction order of simultaneous removal of SO2, NO and Hg0with respect to SO2, NO and Hg0were1.03,1.10and0.83. Apparent active energy of simultaneous removal of SO2, NO and Hg0in preoxidation experiment platform were6.84kJ/mol,19.15kJ/mol and11.85kJ/mol.
引文
[1]杜建飞.上海酸雨物理化学特征及氮湿沉降研究[D].上海:复旦大学,2012
    [2]王志轩,潘荔,杨帆,等.中国电力工业“十一五”节能减排成效及问题思考[J].环境工程技术学报,2012,(2):3-11
    [3]蒋靖坤,郝吉明,吴烨,等.中国燃煤汞排放清单的初步建立[J].环境科学,2005,(2):36-41
    [4]胡长兴,周劲松,何胜,等.全国燃煤电站汞排放量估算[J].热力发电,2010,(2):7-10
    [5]张昭利.中国二氧化硫污染的经济分析[D].上海:上海交通大学,2012
    [6]Zhenghe Xu, Mao hong Fan, Hongqun Yang. Adsorbents for capturing mercury in coal-fired boiler flue gas[J]. Journal of Hazardous Materials, 2007,146(1):1-11
    [7]赵毅,薛方明,董丽彦,等.燃煤锅炉烟气脱汞技术研究进展[J].热力发电,2013,42(1):9-14
    [8]Zhao Yi, Liu Song Tao, Yao Jie, et al. Removal of HgO with Sodium Chlorite Solution and Mass Transfer reaction Kinetics[J]. Science China Technological Sciences,2010,53(5):1258-1265
    [9]Yan Liu, Teresa M. B., Hongqun Yang, et al. Recent developments in novel sorbents for flue gas clean up[J]. Fuel Processing Technology,2010,9(10): 1175-1197
    [10]Yi Zhao, Fangming Xue, Tianzhong Ma. Experimental study on HgO removal by diperiodatocuprate (Ⅲ) coordination ion solution[J]. Fuel Processing Technology,2012,106(2):468-473
    [11]冯威.火电厂烟气脱硫脱硝一体化技术的发展[J].广州化工,2013,41(8):50-51
    [12]赵毅,赵音,刘凤,等.液相同时脱硫脱硝技术[J].中国电力,2007,(12):104-107
    [13]方朝君,闫常峰,余美玲.同时脱硫脱硝技术的应用与发展现状[J].化工进展,2010,(0):369-373
    [14]王融.同时脱硫脱硝技术研究新进展[J].应用能源技术,2013(5):20-22
    [15]王洪.脱硫脱硝协同技术的应用与发展[J].电站系统工程,2013,(3):84-85
    [16]赵毅,万敬敏,刘凤.亚铁螯合剂在烟气脱硫脱硝中的应用[J].电力环境保护,2006,22(3):29-31
    [17]王慧,李先国,韩欣欣,等.金属络合剂在烟气同时脱硫脱硝中的应用[J].化工环保,2007,(5):32-36
    [18]钟毅.基于WFGD系统的硫、氮、汞污染物协同脱除的理论与实验研究p].浙江:浙江大学,2008
    [19]Hiroshi Takeuchi, Makoto Ando, Nobuo Kizawa. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solution[J]. Industrial & Engineering Chemistry Process Design and Development,1977,16(3): 303-308
    [20]刘凤.喷射鼓泡反应器同时脱硫脱硝实验及机理研究[D].保定:华北电力大学(河北),2009
    [21]姜树栋.利用臭氧及活性分子协同脱除多种污染物的实验及机理研究[D].浙江:浙江大学,2010
    [22]Zhenshu Liu, Mingyen Wey, Chiouliang Lin. Reaction characteristics of Ca(OH)2, HC1 and SO2 at low temperature in a spray dryer integrated with a fabric filte[J]. Journal of Hazardous Materials,2002,95(3):291-304
    [23]Wang Fan, Wanghong Mei, Zhang Fan, et al. SO2/Hg removal from flue gas by dry FGD[J]. International Journal of Mining Science and Technology, 2012,22(1):107-110
    [24]薛长海,蒋军成,高书岭,等.NID烟气脱硫和布袋除尘系统的研究与应用[J].中国电力,2008,(1):80-82
    [25]袁莉莉.半干法烟气脱硫技术研究进展[J].山东化工,2009(8):19-22
    [26]韩斌杰.复合钙基吸收剂脱除硫硝汞烟气污染物试验研究[D].浙江:浙江大学,2012
    [27]刘海蛟MCFB烟气净化系统的多种污染物协同脱除研究[D].浙江:浙江大学,2009
    [28]Changfu You, Yuan Li. Population Balance for CFB-FGD Systems[J]. Powder Technology,2013,235(2):859-865.
    [29]Yuzhong Li, Huiling Tong, Chunyuan Ma, et al. Analytic study on approach to adiabatic saturation temperature and the control scheme for the amount of water sprayed in the semi-dry FGD process[J]. Fuel,2004,83(17): 2255-2264
    [30]郭天祥.新型复合吸收剂液相同时脱硫脱硝的实验研究[D].北京:华北电力大学(北京),2011
    [31]陈洁鹤.光催化氧化结合液相吸收对燃煤烟气中SO2. NOx和Hg联合脱除的机理研究[D].上海:上海电力学院,2012
    [32]赵清森CuO/γ-Al2O3及其改性催化剂脱硫脱硝性能研究[D].武汉:华中科技大学,2009
    [33]华晓宇.基于活性焦改性协同脱除二氧化硫和汞机理研究[D].浙江:浙江大学,2011
    [34]郭姣姣.改性活性焦烟气脱硫的研究[D].太原:太原理工大学,2012
    [35]张晔.电子束烟气脱硫技术特点及适用条件分析[J].电力环境保护,2000,16(4):47-50
    [36]徐飞.脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究[D].浙江:浙江大学,2009
    [37]邰德荣,韩宾兵.电子束烟气脱硫技术工业示范工程进展[J].环境科学进展,1999,(2):126-136
    [38]温正城.臭氧在烟气中氧化降解多种污染物的机理研究[D].浙江:浙江大学,2009
    [39]马双忱,苏敏,马京香,等.臭氧同时脱硫脱硝技术研究进展[J].中国环保产业,2009(4):29-31
    [40]朱贤,周月桂,柳瑶斌,等.过氧化氢水溶液增湿Ca(OH)2脱硫脱硝的实验研究[J].锅炉技术,2010,(6):77-80
    [41]李彩亭,彭敦亮,范春贞,等Fenton氧化法同时脱硫脱硝的实验研究[J].环境工程学报,2013,(3):263-268
    [42]毛金波.溶胶-凝胶法制备CuO/γ-Al2O3催化吸附剂及其脱硫脱硝研究[D].武汉:华中科技大学,2006
    [43]李兰廷,吴涛,梁大明,等.活性焦脱硫脱硝脱汞一体化技术[J].煤质技术,2009,(3):51-54
    [44]翟尚鹏,刘静,杨三可,等.活性焦烟气净化技术及其在我国的应用前景[J].化工环保,2006,(3):43-47
    [45]高继贤,刘静,翟尚鹏,等.活性焦(炭)干法烟气净化技术的应用进展[J].化工进展,2011,30(5):1097-1105
    [46]Anil Kumar, Paresh Kumar, P. Ramamurthy. Kinetics of oxidation of glycine and related substrates by diperiodatoargentate(III)[J]. Polyhedron,1999, 18(6):773-780
    [47]Chunyan Yang, Zhujun Zhang, Jinli Wang. Flow-injection chemiluminescence determination of dihydralazine sulfate inserum using luminol and diperiodatocuprate(III) system[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2010,75(1):77-82
    [48]Jyothi C. A., Shekappa D. L., Sharanappa T. N. Mechanistic Investigation of Uncatalyzed and Osmium(VIII) Catalyzed Oxidation of Guanidine by Ag(III) Periodate Complex in Aqueous Alkaline Medium:A Comparative Kinetic Approach[J]. Industrial & Engineering Chemistry Research,2009, 48(16):7550-7660
    [49]Yinghai Liu, Yanzhe Zhang, Zhenghao Liu. Graft copolymerization of butyl acrylate onto case in initiated by potassium diperiodatonickelate(IV) in alkaline medium[J]. European Polymer Journal,2002,38(8):1619-1625
    [50]Young C. B., Jeong H. K., Dongnam S.. Reaction of SO2 with sodium chlorate powder triggering oxidation of NO and Hg0[J]. Chemical Engineering Journal,2012,189-190(5):5-12
    [51]Yue Zhao, Zhongming Chen, Xiaoli Shen, et al. Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles[J]. Environmental science & technology,2011,45(8):3317-3324
    [52]David Gray, Eduardo Lissi, Julian Heicklen. Reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide[J]. The Journal of Physical Chemistry, 1972,76(14):1919-1924
    [53]Alvaro I. M., Bela K. D. Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury[J]. Fuel Processing Technology,2007,88(10): 982-987
    [54]C. David Cooper, Christian A. Clausenb, Doug Tomlinb, et al. Enhancement of organic vapor incineration using hydrogen peroxide[J]. Journal of Hazardous Materials,1991,27(3):273-285
    [55]Michelle M. Collins, David Cooper, John D. Dietz, et al. Pilot scale evaluation of H2O2 injection to control to NOx emission[J]. Journal of environmental engineering,2001,127(4):329-336
    [56]杨春艳.过渡金属超常氧化态配合物化学发光新体系的研究与应用[D].西安:陕西师范大学,2010
    [57]Yi Zhao, Fangming Xue, Xiaochu Zhao. Experimental study on elemental mercury removal by diperiodatonickelate (Ⅳ) solution[J]. Journal of Hazardous Materials,2013,260(9):383-388
    [58]马宵颖.液相烟气脱汞实验研究[D].保定:华北电力大学(河北),2008
    [59]刘松涛.烟气同时脱除Hg0、SO2和NOX的实验研究[D].保定:华北电力大学(河北),2009
    [60]Antoine Ghauch, Al Muthanna Tuqan, Nadine Kibbi. Ibuprofen removal by heated persulfate in aqueous solution^ A kinetics study[J]. Chemical Engineering Journal,2012,197(7):483-492
    [61]J. Saien, Z. Ojaghloo, A.R. Soleymani, et al. Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate [J]. Chemical Engineering Journal,2011,197(1):172-182
    [62]Fang Ping, Cenchao Ping, Tangzi Jun. Experimental study on the oxidative absorption of HgO by KMnO4 solution[J]. Chemical Engineering Journal, 2008,158(2):410-416
    [63]Renato Figi, Oliver Nagel, Harald Hagendorfer. A straightforward wet-chemistry method for the determination of solid and gaseous mercury fractions in Backlight Cold Cathode Fluorescence Lamps[J]. Talanta,2012, 100(10):134-138
    [64]Huawei Zhang, Jitao Chen, Peng Liang, et al. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke[J]. Journal of Environmental Sciences,2012,24(12):2083-2090
    [65]John C. S. Chang. Simulation and Evaluation of Elemental Mercury Concentration Increase in Flue Gas Across a Wet Scrubber[J]. Environmental science & technology,2003,37(24):5763-5766
    [66]Hans Agarwal, Harvey G. Stenger. Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by C12[J]. Energy & Fuels,2006,20(3): 1068-1075
    [67]Juan He, Gunugunuri K. Reddy, Stephen W. Thiel, et al. Simultaneous Removal of Elemental Mercury and NO from Flue Gas Using CeO2 Modified MnOx-TiO2 Materials[J]. Energy & Fuels,2013,27(8): 4832-4839
    [68]Xiaoyu Wen, Caiting Li, Xiaopeng Fan, et al. Experimental Study of Gaseous Elemental Mercury Removal with CeO2/y-A12O3[J]. Energy & Fuels,2011,25(7):2939-2944
    [69]J. Aveston. Hydrolysis of potassium periodate:ultracentrifugation, potentiometric titration, and Raman spectra[J]. Journal of the Chemical Society A:Inorganic, Physical, Theoretical,1969,273-275
    [70]Chunyan Yang, Zhujun Zhang, Zuolong Shi. A novel chemiluminescence reaction system for the determination of lincomycin with diperiodatonickelate(IV)[J]. Microchimica Acta,2010,168(3):293-298
    [71]S.A. Chimatadar, T. Basavaraj, S.T. Nandibewoor. A study of the kinetics and mechanism of oxidation of L-tryptophan by diperiodatonickelate(IV) in aqueous alkaline medium[J]. Russian Journal of Physical Chemistry A,2007, 81(7):1046-1053
    [72]Shweta J. Malode, Nagaraj P. Shetti, Sharanappa T. Nandibewoor. Thermo dynamic Quantities for the Different Steps Involved in the Oxidation of the Drug Ketorolac by Copper(Ⅲ) Periodate Complex in Aqueous Alkaline Medium:A Mechanistic Approach[J]. Journal of Solution Chemistry,2010,39(3):417-430
    [73]Shekappa D. Lamani, Praveen N. Naik, Sharanappa T. Nandibewoor. Spectral and Mechanistic Investigation of the Osmium(Ⅷ) Catalyzed Oxidation of Diclofenac Sodium by the Copper(Ⅲ) Periodate Complex in Aqueous Alkaline Medium[J]. Journal of Solution Chemistry,2010,39(9): 1290-1310
    [74]Mahantesh A. Angadi, Suresh M. Tuwar. Oxidation of Fursemide by Diperiodatocuprate(Ⅲ) in Aqueous Alkaline Medium-a Kinetic Study[J]. Journal of Solution Chemistry,2010,39(2):165-177
    [75]G.C. Hiremath, R.M. Mulla, S.T. Nandibewoor. Mechanistic study of the oxidation of isonicotinate ion by diperiodatocuprate(Ⅲ) in aqueous alkaline medium[J]. Journal of Chemical Research,2005(3):197-201
    [76]Abdulazizkhan L. Harihar, Mohammedsaleem R. Kembhavi, S.T. Nandibewoor. Kinetics and Mechanism of the Oxidation of 1,10-Phenanthroline by Diperiodatonickelate(IV)in Aqueous Alkaline Medium[J]. Monatshefte Fur Chemie,2000,131(11):1129-1137
    [77]Carl E. Crouthamel, Homer V. Meek, D. S. Martin, et al. Spectrophotometric Studies of Dilute Aqueous Periodate Solutions[J]. Journal of the American Chemical Society,1949,71(9):3031-3035
    [78]Chitra Kalyanaraman, Sri Bala Kameswari Kanchinadham, Vidya Devi, et al. Combined advanced oxidation processes and aerobic biological treatment for synthetic fatliquor used in tanneries[J]. Industrial & Engineering Chemistry Research,2012,51(50):16171-16181.
    [79]Nazafarin Lahoutifard, Laurier Poissant, Susannah Scott L. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Que'bec[J]. Science of the total environment,2006,355(1):118-126
    [80]Desanka Z, Suznjevic, Ferenc T. Pastor, et al. Polarographic study of hydrogen peroxide anodic current and its application toantioxidant activity determination[J]. Talanta,2011,85(3):1398-1403
    [81]Guangli Wang, Xiaoying Zhu, Huanjun Jiao, et al. Ultrasensitive and dual functional colorimetric sensors for mercury (Ⅱ) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles[J]. Biosensors and Bioelectronics,2012,31(1):337-342
    [82]Futoshi Matsumoto, Shinji Uesugi, Nobuyuki Koura, et al. Enhancement of electrochemical reduction of hydrogen peroxide andobservation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode[J]. Journal of Electroanalytical Chemistry,2003,549(6): 71-80
    [83]Francisco J. Real, F. Javier Benitez, Juan L. Acero, et al. Elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate, and 2-Phenoxyethanol in ultrapure water and secondary effluents by photo lytic and radicalary pathways[J]. Industrial & Engineering Chemistry Research, 2012,51(50):16209-16215
    [84]Rebecca N. Sliger, John C. Kramlich, Nick M. Marinov. Towards the development of a chemical kineticmodel for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Processing Technology,2000,65-66(6): 423-438
    [85]Timothy S. Pasakarnis, Maxim I. Boyanov, Kenneth M. Kemner, et al. Influence of Chloride and Fe(II) Content on the Reduction of Hg(II) by Magnetite[J]. Environmental Science & Technology,2013,47(13): 6987-6994
    [86]Wan X. Yu, Yong F. Diao, Heng Shen. Kinetics study for the effect of alkali metals on the homogenous mercury oxidation under isothermal conditions[J]. Energy & Fuels,2013,27(6):3410-3415
    [87]Joseph De Laat, Truong Giang Le. Kinetics and Modeling of the Fe(III) H2O2 System in the Presence of Sulfate in Acidic Aqueous Solutions[J]. Environmental science & technology,2005,27(6):3410-3415
    [88]Ding Wang, James R. Bolton, Ron Hofmann. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research,2012,46(15):4677-4686
    [89]Balaji Krishnakumar, Joseph J. Helble. Determination of transition state theory rate constants to describe mercury oxidationin combustion systems mediated by Cl, C12, HC1 and HOC1[J]. Fuel Processing Technology,2012, 94(1):1-9
    [90]Yuan Yuan, Yongchun Zhao, Hailong Li, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. Journal of hazardous materials,2012,227-228(8):427-435
    [91]Rebecca N. Sliger, John C. Kramlich, Nick M. Marinov. Towards the development of a chemical kineticmodel for the homogeneous oxidation of mercury by chlorine species[J].Fuel Processing Technology,2000,65-66(6): 423-438
    [92]Pushan Shah, Vladimir Strezov, Peter F. Nelson. Speciation of mercury in coal-fired power station flue gas[J]. Energy & Fuels,2009,24(1):205-212
    [93]Brydger Van Otten, Paula A. Buitrago, Constance L. Senior, et al. Gas-phase oxidation of mercury by bromine and chlorine in flue gas[J].Energy & Fuels, 2011,25(8):3530-3536
    [94]Lei Zhang, Shuxiao Wang, Yang Meng, et al. Influence of mercury and chlorine content of coal on mercury emissions from Coal-Fired power plants in China[J]. Environmental science & technology,2012,46(11):6385-6392
    [95]Brydger Cauch, Geoffrey D. Scoilx, Joann S. Lighty, et al. Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases[J]. Environmental science & technology,2008,42(7): 2594-2599
    [96]Sagar Roy, Atsawin Thongsukmak, John Tang, et al. Concentration of aqueous hydrogen peroxide solution by pervaporation[J]. Journal of Membrane Science,2012,389(2):17-24
    [97]Silvia Raffellini, Marcela Schenk, Sandra Guerrero, et al. Kinetics of Escherichia coli in activation employing hydrogen peroxide at varying temperatures, pH and concentrations[J]. Food Control,2011,22(6):920-932
    [98]Garrett Mckay, Brittney Sjelin, Matthew Chagnon, et al. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide Temperature dependence and reaction mechanism[J]. Chemosphere,2013, 92(11):1417-1422
    [99]F Garcfa Einschlag, M.R. Feliz, A.L. Cappareili. Effect of temperature on hydrogen peroxide photolysis in aqueous solutions[J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,110(3):235-242
    [100]Dennis Lu, Edward J. Anthony, Yewen Tan, et al. Mercury removal from coal combustion by Fenton reactions-Part A:Bench-scale tests[J]. Fuel, 2007,86(17):2789-2797
    [101]Carlton L. Ho, Maher A.A. Shebl, Richard J. Watts. Development of an Injection System for In Situ Catalyzed Peroxide Remediation of Contaminated Soil[J]. Hazardous waste and hazardous materials,1995, 12(1):15-25
    [102]Joseph De Laat, Herve Gallard. Catalytic Decomposition of Hydrogen Peroxide by Fe(Ⅲ) in Homogeneous Aqueous Solution:Mechanism and Kinetic Modeling[J]. Environmental Science & Techno logy,1999,33(16): 2726-2732
    [103]Yangxian Liu, Jun Zhang, Jianfeng Pan, et al. Investigation on the removal of NO from SO2 containing simulated flue gas by an Ultraviolet/Fenton-Like reaction[J]. Energy & Fuels,2012,22(9): 5430-5436
    [104]Zhihua Wang, Junhu Zhou, Yanqun Zhu, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J]. Fuel Processing Technology,2007,88(8):817-823
    [105]M.A. Raufa,N. Marzouki, Bahadir K. Krbahti. Photolytic decolorization of Rose Bengal by UV:H2O2 and data optimization using response surface method[J]. Journal of hazardous materials,2008,159(2):602-609
    [106]Chinmin Cheng, Pauline Hack, Paul Chu, et al. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy & Fuels,2009, 23(10):4805-4816
    [107]Shishir P. Sable, Wiebren De Jong, Hartmut Spliethoff. Combined Homo-and Heterogeneous Model for Mercury Speciation in Pulverized Fuel Combustion Flue Gases[J]. Energy & Fuels,2007,22(1):321-330
    [108]Shancheng Mao, Qingyu Gao, Hai Wang, et al. Oscillations and Mechanistic Analysis of the Chlorite-Sulfide Reaction in a Continuous-Flow Stirred Tank Reactor[J]. The Journal of Physical Chemistry A,2009,113(7):1231-1234
    [109]Jennifer Wilcox. A Kinetic Investigation of High-Temperature Mercury Oxidation by Chlorine[J]. The Journal of Physical Chemistry A,2009, 113(24):6633-6639
    [110]Balaji Krishnakumar, Joseph J. Helble. Understanding mercury transformations in coal-fired power plants:evaluation of homogeneous Hg Oxidation Mechanisms [J]. Environmental science & technology,2007, 41(22):7870-7875
    [111]Stephen Niksa, Bihter Padak, Balaji Krishnakumar, et al. Process chemistry of Br addition to utility flue gas for Hg emissions control[J]. Energy & Fuels,2009,24(2):1020-1029
    [112]Orchideh Azizi, David Hubler, Glenn Schrader, et al. Mechanism of perchlorate formation on boron-doped diamond film anodes[J]. Environmental science & technology,2011,45(24):10582-10590
    [113]Zhenghe Xu, Maohong Fan, Hongqun Yang. Adsorbents for capturing mercury in coal-fired boiler flue gas[J]. Journal of Hazardous Materials, 2007,146(1):1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700