CO为还原剂的脱硝催化剂制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx是重要的大气污染物之一,对环境的危害很大。选择性催化还原是一种比较有效的消除氮氧化物的方法,近年来得到了广泛的研究。鉴于以纳米二氧化钛为载体的氧化物催化剂具有较高催化活性,六铝酸盐具有较好的热稳定性和较高的催化活性,本文以二氧化钛为载体的氧化物催化剂和六铝酸盐催化剂的制备及它们催化还原NO的活性为主要研究目标。
     本文采用浸渍法制备了以纳米二氧化钛为载体的不同氧化物活性组分的催化剂;采用共沉淀法制备了不同金属掺杂的锶系六铝酸盐催化剂。用SEM、BET、XRD、H2-TPR等技术对催化剂进行了表征,并用微型反应系统对催化剂的反应活性进行了评价。
     以NiO/TiO2为探针考察了焙烧时间、焙烧温度、负载量等制备条件对二氧化钛负载金属氧化物催化剂结构和催化性能的影响,得出最佳的制备条件为550℃焙烧4h,最佳的负载量为12%;以SrMnAl11O19-δ为探针考察了焙烧时间、焙烧温度对锶基六铝酸盐催化剂结构和催化性能的影响,得出最佳的制备条件为1200℃焙烧4h。
     在纳米二氧化钛上负载不同的金属氧化物作为活性组分,考察其结构和催化活性,筛选出结构和活性都较好的活性组分,用筛选出的氧化物在二氧化钛上进行了双活性组分的负载,进行表征和活性评价。结果表明,Fe2O3、NiO、Cr2O3、CuO作为活性组分时,NO的转化率较高。双组分的催化剂中Fe2O3-Cr2O3/TiO2系列催化剂具有来源广、价格低、比表面积大、低温活性好、热稳定性强等特点,是一种性能较好、前景明朗的脱硝催化剂。
     文中分别将不同的金属离子引入到六铝酸盐进行搀杂,考察其结构和催化活性。铁、钴、镍、铜、铬、锌、锆和铈离子单掺杂制备了SrMAl11O19-δ系列六铝酸盐催化剂,M为铁、钴、镍、铜、铬时,可以形成六铝酸盐结构;当M为Fe、Cu、Cr时,SrMAl11O19-δ催化剂具有很好的NO催化还原活性。用不同量的Fe和Ni掺杂制备了SrMxAl12-xO19-δ系列六铝酸盐催化剂,结果表明,过渡金属只能适量的取代六铝酸盐中的铝,过多的活性金属离子会破坏六铝酸盐的结构。
     用Mn、Cd、Co、Cu、Fe、Ni、Zn、Zr、Cr和Y双组份复合掺杂制备了SrMNAl10O19-δ系列六铝酸盐催化剂,锰铁、锰镍、锰铬、锰铜、铁钻、铁铜、铜钴复合掺杂可以形成六铝酸盐结构;其中,锰铁、锰铜、铁钻、铁铜、铜钴复合掺杂的六铝酸盐具有很好的NO催化还原活性。选取性能好的组合掺杂制备了SrMnxFe1-xAl11O19-δ、SrFexCo1-xAl11O19-δ、SrFexCo1-xAl11O19-δ、SrFexCu1-xAl11O19-δ、SrCuxCo1-xAl11O19-δ系列催化剂,进行了表征和活性评价。结果表明,SrMnxFe1-xAl11Ol9-δ系列六铝酸盐的结构和催化活性均较好,具有来源广、来源广、价格低、比表面积大、低温活性好、热稳定性强等特点,是一种性能较好、前景明朗的脱硝催化剂。
NOx is one of the main air pollutants. The decomposition of NOx has received growing interest because of its environmental effect. The SCR offers an attractive alternative method to reduce industrial NOx emission. Metallic oxide catalyst with TiO2 as carriers is a kind of catalytical materials with higher catalytic activities. Hexaaluminates is a kind of catalytical materials with high thermal stability and higher catalytic activities. In this thesis, the preparation methods of the two kinds of catalysts and theirs activities for SCR-DeNOx were studied.
     The impregnation methods was employed to prepare metallic oxide catalysts with TiO2 as carriers. The co-precipitation methods was employed to prepare Sr-hexaaluminate catalysts. The catalysts were characterized by means of XRD, BET, TPR, SEM, TG-DTA etc. The performance of the catalysts was investigated by miniature fixed bed reactor with CO+NO as model reaction.
     Effect of calcination temperature, calcination time, loading factor on the structure and catalytic activities of metallic oxide catalysts were investigated with NiO/TiO2 as model sample. The best calcination temperature is 550℃, the best calcination time is 4 h, The best loading factor is 12%. Effect of calcination temperature, calcination time, on the structure and catalytic activities of Sr-hexaaluminate catalysts were investigated with SrMnAl11O19-δas model sample. The best calcination temperature is 1200℃, the best calcination time is 4h.
     Lots of metallic oxides were loaded on nano-TiO2.Their structure and catalytic activities were investigated. The metallic oxide catalysts with dual-active component were prepared by the metallic oxide expressed well. Their structure and catalytic activities were investigated. The results showed when active component was Fe2O3、NiO、Cr2O3 or CuO, the conversion of NO was high. The Fe2O3-Cr2O3/TiO2 catalysts expressed smaller larger specific surface area, high thermal stability and higher catalytic activities.
     In this thesis, Sr-hexaaluminate catalysts were substituted by lots of metallic element. The structure and catalytic activities of substituted hexaaluminate catalysts were investigated. All the catalysts SrMAl11O19-δ(M= Cu, Co, Zn, Fe, Ni, Cr, Zr, Ce) were prepared by the co-precipitation method. The catalysts SrMAl11O19-δ(M= Cu, Co, Fe, Ni, Cr) were found the formation of the crystal phase of hexaaluminates after samples were calcinated at 1200℃for 4 hours. The catalysts SrMAl11O19-δ(M= Cu, Fe, Cr) expressed high catalytic activities. The catalysts SrMAl11O19-δwere prepared. The results showed crystal phase of hexaaluminates would be broken by excessive metallic element.
     The catalysts SrMNAl10O19-δ(M, N= Mn, Cd, Co, Cu, Fe, Ni, Zn, Zr, Cr, Y) were prepared by the co-precipitation method. In the catalysts substituted by composite metal, the catalysts SrMnFeAl11O19-δ, SrMnCuAl11O19-δ, SrMnCoAl11O19-δ, SrMnCrAl11O19-δ, SrMnNiAl11O19-δ, SrFeCuAl11O19-δ, SrCuCoAl11O19-δ, were found the formation of the crystal phase of hexaaluminates after samples were calcinated at 1200℃for 4 hours; the catalysts SrMnFeAl11O19-δ, SrMnCuAl11O19-δ, SrMnCoAl11O19-δ, SrFeCuAl11O19-δ, SrCuCoAl11O19-δ, expressed high catalytic activities. Then the catalysts SrMnxFe1-xAl11O19-δ, SrFexCo1-xAl11O19-δ, SrFexCo1-xAl11O19-δ, SrFexCu1-xAl11O19-δ, SrMnxCo1-xAl11O19-δ, SrCuxCo1-xAl11O19-δwere prepared. Their structure and catalytic activities were investigated. The results showed SrMnxFe1-xAl11O19-δcatalysts expressed smaller larger specific surface area, high thermal stability and higher catalytic activities.
引文
[1]贾毅峰,兰雯.浅谈氮氧化物的污染治理技术[J].广西轻工业,2007,106(9):98-99
    [2]黄振中.中国大气污染防治技术综述[J].世界科技研究与进展,2004,26(2):30-34
    [3]郑建东.搀杂六铝酸盐高温燃烧催化剂的制备及其在甲烷催化燃烧中性能的研究[D].北京:北京化工大学,2008
    [4]新井纪男.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001,64-69
    [5]曲虹霞.催化脱除燃煤烟气中NOx的研究[D].南京:南京理工大学,2005
    [6]董若凌.水煤浆再燃降低NOx排放的机理与试验研究[D].杭州:浙江大学,2006
    [7]韩奎华.先进再燃脱硝优化试验与机理研究[D].济南:山东大学,2007
    [8]高攀.先进再燃及选择性非催化脱硝优化实验与机理研究[D].济南:山东大学,2008
    [9]李广超,傅梅绮.大气污染控制技术[M].北京:化学工业出版社,2004,26-32
    [10]乔慧萍,杨柳.湿法同时脱硫脱硝工艺中脱硝吸收剂的研究现状[J].电力环境保护,2009,25(1):1-3
    [11]童志权.大气污染控制工程[M].北京:机械工业出版社,2006:311-315
    [12]刘松涛,赵毅,汪黎东,藏振远.富氧型高活性吸收剂同时脱硫脱硝脱汞的实验研究[J].动力工程,2008,28(3):420-424
    [13]马广大.大气污染控制工程[M].北京:中国环境科学出版社,2003:606-610
    [14]张华,赵由才.生物法处理氮氧化物废气的原理与技术研究进展[J].山东建筑工程学院学报,2005,20(3):39-74
    [15]冯西桥.毕列锋,李旭东.微生物法净化含NOx废气[J].环境工程,1998,16(3):37-39
    [16]陈建孟,Lance H,陈浚,等.自养型生物过滤器硝化氧化一氧化氮[J].环境科学,2003,24(2):1-6
    [17]金耀民,陈建孟.络合吸收结合生物转化去除氮氧化物技术[J].环境污染治理技术与设备,2003,4(7):37-40
    [18]商克峰.电晕丙烯活化提高脉冲放电烟气脱硝效率研究[D].大连:大连理工大学,2007
    [19]董丽敏.气—水两相流体中电晕放电脱硫脱硝机理的研究[D].哈尔滨:哈尔滨理工大学,2005
    [20]王永波.SNCR烟气脱硝技术应用探讨[J].中国电力教育,2010,2010年管理论丛与技术研究专刊,455-456
    [21]丁睿彬.SNCR法脱硝工艺影响因素的初步探讨[J].科技资讯,2010,8(34):46
    [22]赵炬明,杨运超,石岩,等.复合气体添加剂影响SNCR简化反应机理模型[J].节能技术,2010,28(6):497-500
    [23]吕洪坤,杨卫娟,周俊虎,等.化学计量比、雾化压力对电站锅炉SNCR脱硝的影响[J].化工学报,2008,59(11):2898-2903
    [24]张彦文,蔡宁生,李振山.加入CH4促进SNCR过程的计算与机理分析[J].热力发电,2005,34(12):9-12
    [25]胡浩毅.以尿素为还原剂的SNCR脱硝技术在电厂的应用[J].电力技术,2009,18(3):22-24
    [26]吕钰,王智化,杨卫娟,等.大型燃煤锅炉SNCR过程数值研究[J].浙江大学学报,2010,44(4):750-755
    [27]黄霞,刘辉,吴少华.选择性非催化还原(SNCR)技术及其应用前景[J].电站系统工程,2008,24(1):12-14
    [28]姜志鹏.循环流化床低NOx排放特性及利用SNCR脱氮技术[J].电力技术,2010,19(6):6-10
    [29]李晓芸,蔡小峰.混合SNCR-SCR烟气脱硝工艺及其应用[J].华电技术,2008,30(3):22-25
    [30]许建华,唐建城,韩斌桥,等.低NOx燃烧与选择性非催化还原联合深度脱硝技术的应用[J].能源工程,2010,30(6):41-44
    [31]蔡小峰,李晓芸SNCR-SCR烟气脱硝技术及其应用[J].电力环境保护,2008,24(3):26-29
    [32]赵毅,朱振峰,贺瑞华,等.V2O5-WO3/TiO2基SCR催化剂的研究进展[J].材料导报,2009,2(1):28-31
    [33]吴忠标.环境催化原理及应用[M].北京:化学工业出版社,2006.372-373
    [34]马涛,王睿.NOx的催化分解研究[J].化学进展,2008,20(6):798-810
    [35]符若文,杜秀英,胡勇军,林远声,徐浩.负载金属活性碳纤维对NO催化分解性能的研究[J].环境技术,2001,19(5):41-46
    [36]Almusaiteer K, Krishnamurthy R, Chuang S S C. In situ infrared study of catalytic decomposition of NO on carbon-supported Rh and Pd catalysts[J]. Catalysis Today,2000, 55(3):291-299
    [37]Sica A M, Dos Santos J H Z, Baibich I M, et al. Preparation and characterization of W/γ-Al2O3 and Pd-W/γ-Al2O3 catalysts from organometallic precursors. The catalytic activity for NO decomposition[J]. Journal of Molecular Catalysis A,1999,137(3): 287-295
    [38]Papp H, Sabde D P. An investigation on the mechanism of NO decomposition over Rh/SiO2 catalysts in presence of pulse injected H2[J]. Applied Catalysis,2005,60(2): 65-71
    [39]Wang Xianqin, Spivey J J, Lamb H. NO decomposition over a Pd/MgO catalyst prepared from [Pd(acac)2] [J]. Applied Catalysis B,2005,56(4):261-268
    [40]Lee Chang Yong, Jung Tae Hwan, Ha Baik Hyon. Characteristics of CuO-Cr2O3/mordenite and its catalytic activity for combustion and NO decomposition [J]. Applied Catalysis B,1996,9(4):77-91
    [41]Zhu Junjiang, Zhao Zhen, Xiao Dehai, et al. Characterization and catalytic activity in NO decomposition of La2-xSrxCuO4 (O≤x≤1) compounds with T* phase structure[J]. Materials Chemistry and Physics,2005,94(3):257-260
    [42]Hwang Hae Jin, Awano Masanobu. Preparation of LaCoO3 catalytic thin film by. the sol - gel process and its NO decomposition characteristics[J].Journal of the European Ceramic Society,2001,21(10):2103-2107
    [43]Gao Lizhen, Chua Hui Tong, Kawi Sibudjing. The direct decomposition of NO over the La2Cu04 nanofiber catalyst[J]. Journal of Solid State Chemistry,2008,181(10): 2804-2807
    [44]Zhu Yujun, Wang Dong, Yuan Fulong, et al. Direct NO decomposition over La2-xBaxNiO4 catalysts containing BaCO3 phase[J]. Applied Catalysis B,2008,82(4):255-263
    [45]方书农,伏义路,林培瑛.Cu-ZSM-5分子筛中铜的精细结构和NO催化分解[J].催化学报,1995,16(3):213-216
    [46]万家义,余林,陈豫.Cu-ZSM-5上NO催化分解的研究[J].四川大学学报,1999,36(1):126-130
    [47]Groothaert M H, Lievens Kristof, Leeman Hugo, et al. An operando optical fiber UV-vis spectroscopic study of the catalytic decomposition of NO and N2O over Cu-ZSM-5[J]. Journal of Catalysis,2003,220(2):500-512
    [48]Schaya ZoltaAn, KnoEzingerb Helmut, Guczia LaAszloA, et al. On the mechanism of NO decomposition on Cu-ZSM-5 catalysts[J]. Applied Catalysis B,1998,18(4):263-271
    [49]Perez-Ram'irez Javier, Overeijnder Joost, Kapteijn Freek, et al. Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds[J]. Applied Catalysis B,1999,23(1):59-72
    [50]Wu Haipeng, Qian Zhenying, Xu Xiaoling, et al. N2O decomposition over K-promoted NiAl mixed oxidesderived from hydrotalcite-like compounds[J]. Journal of Fuel Chemistry and Technology,2011,39(2):115-121
    [51]Obalova'L, Pacultova'K, Balaba'nova'J, et al. Effect of Mn/Al ratio in Co-Mn-A1 mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O[J]. Catalysis Today,2007,119(4):233-238
    [52]Oi Junko, Obuchi Akira, Ogata Atsushi. Zn,A1,Rh-mixed oxides derived from hydrotalcite-like compound and their catalytic properties for N2O decomposition[J]. Applied Catalysis B,1997,13(3):197-203
    [53]Tanabe Toshitaka, Nagai Yasutaka, Dohmae Kazuhiko, et al. Operando X-ray absorption spectroscopy study of supported Pt catalysts during NO reduction by hydrocarbons[J]. Applied Catalysis B,2011,27(10):217-232
    [54]郭锡坤,陈庆生,张俊豪,等Cu/Al2O3催化剂的改性及其对NO选择性还原的催化性能[J].催化学报,2005,26(12):1104-1108
    [55]Sobczak Izabela, Ziolek Maria, Nowacka Monika. Preparation and characterisation of Pt containing NbMCM-41 mesoporous molecular sieves addressed to catalytic NO reduction by hydrocarbons[J]. Microporous and Mesoporous Materials,2005,78(3):103-116
    [56]Jrai A, Tsolakis A. The effect of H2 and CO on the selective catalytic reduction of NOx under real diesel engine exhaust conditions over Pt/Al2O3[J]. International Journal of Hydrogen Energy,2007,32(12):2073-2080
    [57]Zhang Yueping, Ma Peisheng, Zhu Xinli, et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane[J]. Catalysis Communications,2004,5(1):35-39
    [58]宋淑美.NOx吸附—分解催化新体系构建及过程特性研究[D].济南:山东大学,2008
    [59]Huan H Y, Long R Q, Yang R T. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst[J]. Applied Catalysis A,2002,19(12):241-251
    [60]Brandenberger Sandro, Kroher Oliver, Wokaun Alexander, et al. The role of Bronsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. Journal of Catalysis,2009,268(2):297-306
    [61]Sjo " vall Hanna, Olsson Louise, Fridell Erik, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—The effect of changing the gas composition[J]. Applied Catalysis,2006,64(3):180-186
    [62]Olsson Louise, Sjo " vall Hanna, Blint R J. A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5[J]. Applied Catalysis B,2008,81(4):203-217
    [63]杨向光,吴越.类钙钛石型复合氧化物—一种富有应用前景的功能材料[J].化学通报,1997,64(3):24-29
    [64]Harada T, Teraoka Y, Kagawa S. Perovskite-type oxides as catalysts for selective reduction of nitric oxide by ethylene[J]. Applied Surface Science,1997,12(2):505-508
    [65]Furfori Stefania, Russo Nunzio, Fino Debora, et al. NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment[J]. Chemical Engineering Science,2010,65(1):120-127
    [66]Buciuman F C, Joubert Emmanuel, Menezob J C, et al. Catalytic properties of La0.8A0.2MnO3 (A=Sr, Ba, K, Cs) and LaMno.gB0.2O3 (B=Ni, Zn, Cu) perovskites 2. Reduction of nitrogen oxides in the presence of oxygen[J]. Applied Catalysis B,2001, 35(2):149-156
    [67]Zhang Runduo, Villanueva Adrian, Alamdari Houshang, et al. Cu-and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene[J]. Journal of Catalysis,2006,237(2):368-380
    [68]倪哲明,俞卫华,王力耕,等Cu-Co-Al类水滑石的合成、表征及吸附NOx性能的研究[J].高校化学工程学报,2005,19(2):223-227
    [69]肖轶,马骏,任韶玲,等.碳酸根离子柱撑钻铝水滑石的合成与表征[J].催化学报,1999,20(4):459-462
    [70]申延明,吴静,张惠,等.CuMgAl类水滑石的合成,表征及催化性能研究[J].材料科学与工程学报,2005,23(2):185-187
    [71]Yu Junjie, Cheng Jie, Ma Chunyan, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds[J]. Journal of Colloid and Interface Science,2009,333(2):423-430
    [72]Chmielarz Lucjan, Ku'strowski Piotr, Rafalska-tasocha Alicja, et al. Catalytic activity of Co-Mg-Al,Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Applied Catalysis B,2002,35(3):195-210
    [73]Montanari B, Vaccari A, Gazzano M, et al. Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH3[J]. Applied Catalysis B,1997,13(3):205-217
    [74]Jiang Xiaoyuan, Ding Guanghui, Lou Liping, et al. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO+CO reaction[J]. Journal of Molecular Catalysis A,2004,218(2): 187-195
    [75]Nova I, Liettia L, Casagrande L, et al. Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts[J]. Applied Catalysis B,1998,17(3):245-258
    [76]朱清时.催化作用基础[M].北京:科学出版社,2005.251
    [77]吴忠标.环境催化原理及应用[M].北京:化学工业出版社,2006.231-257
    [78]郑建东.掺杂六铝酸盐高温燃烧催化剂的制备及其在甲烷催化燃烧中性能的研究[D].北京:北京化工大学,2008
    [79]王华,何方.熔融盐循环热载体无烟燃烧技术基础[M].北京:冶金工业出版社,2006.15-18
    [80]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004.342-356
    [81]王勇.NiO/CeO2催化剂上CO还原NO的反应研究[D].大连:大连理工大学,2007
    [82]贺忠.介孔复合半导体NiO-TiO2的制备及其光催化反应性能研究[D].天津:天津大学,2008
    [83]任超,任晓光,宋永吉.焙烧条件对NiOATiO2催化剂结构和脱硝性能的影响[J].工业催化,2011,19(1):23-26
    [84]李惠娟,蒋晓原,张旭,等CuO/TiO2/γ-A12O3催化剂表征及对NO+CO反应性能研 究[J].无机化学学报,2008,14(6):848-855
    [85]董林,金永漱,陈懿.CuO在Ce02载体上的存在状态研究—氧化物-氧化物相互作用的“嵌入模型”[J].中国科学,1996,26(6):561-566
    [86]赵秀华,蒋晓原,陈宏桦,等.CuO/Ce0.5Ti0.5O2的制备与表征及其对NO+CO反应的催化活性[J].物理化学学报,2008,14(6):1023-1029
    [87]蒋晓原,丁光辉,楼莉萍,等CuO/TiO2和CuO-ZrO2/TiO2催化剂对NO+CO反应性能的影响[J].复旦学报(自然科学版),2003,42(3):457-462
    [88]闫继娜,李亮,华子乐,等.MCM—41负载氧化铜活性组分的结构及其氢程序升温还原特性[J].硅酸盐学报,2005,33(4):452-455
    [89]邓双,李会泉,张懿.纳米Cr203的制备、表征及催化性能[J].无机化学学报,2003,19(8):825-830
    [90]Liang Meisheng, Kang Wenkai, Xie Kechang. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. Journal of Natural Gas Chemistry,2009, 18(1):110-113
    [91]楼莉萍,蒋晓原,陈英旭,等.CuO/TiO2的制备及对NO+CO反应性能的研究[J].燃料化学学报,2003,31(50):490-195
    [92]Jiang Xiaoyuan, Du Feng, Zhang Xu, et al. Catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 in NO+CO reaction[J]. Journal of Zhejiang University Science A,2007, 8(11):1839-1845
    [93]Ding Guanghui, Jiang Xiaoyuan, Zheng Xiaoxing. Effects of Carrier on CuO/TiO2 and CuO/Ti0.5Zr0.5O2 Catalysts in the NO+CO Reaction[J]. Chinese Chemical Letters,16(2): 275-278
    [94]程晓庆NiO/CeO2催化剂上NO-CO反应机理研究[D].大连:大连理工大学,2009
    [95]Yin Fengxiang, Ji Shengfu, Wu Pingyi, et al. Preparation, characterization, and methane total oxidation of AAl12O19 and AMAl11O19 hexaaluminate catalysts prepared with urea combustion method[J]. Journal of Molecular Catalysis A,2008,294(1):27-36
    [96]Bukhtiyarova Marina V, Ivanova Aleksandra S, Plyasova Lyudmila M, et al. Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates[J]. Journal of Molecular Catalysis A,2009,357(3):193-205
    [97]Kusar H M J, Ersson Anders G, Jaras Sven G. Catalytic combustion of gasified refuse-derived fuel[J]. Applied Catalysis B,2003,45(1):1-11
    [98]Yashnik S A, Ismagilov Z R, Kuznetsov V V, et al. High-temperature catalysts with a synergetic effect of Pd and manganese oxides [J]. Catal Today,2006,117(4):525-535
    [99]马丽景,崔梅生,王林宏,等BaMnxAl12-xO19-δ六铝酸盐催化剂上甲烷催化燃烧性能[J].中国科学,2008,38(2):110-115
    [100]吴碧君,刘晓勤,王述刚,等.MnOx/TiO2低温NH3选择性催化还原NOx的研究与表征[J].燃烧科学与技术,2008,14(3):221-226
    [101]Liang Meisheng, Kang Wenkai, Xie Kechang. Comparison of reduction behavior of Fe2O3, Zn and ZnFe2O4 by TPR technique[J]. Natural Gas Chemistry,2009,18(1): 110-113
    [102]马丽景,王林宏,李殿卿,等Mn、Fe取代六铝酸盐的结构和甲烷催化燃烧性能[J].化工学报,2006,57(11):2604-2609
    [103]Hodjati S, Bernhardt P, Peti C, et al. Removal of NOx: Part Ⅰ.Sorption/desorption processes on barium aluminate[J]. Applied Catalysis B,1998,19(4):209-219
    [104]Santiago Marta, Hevia M AG, Ramirez J P, et al. Evaluation of catalysts for N2O abatement in fluidized-bed combustion[J]. Applied Catalysis B,2009,90(2):83-88
    [105]Mundschau M V, Gribble D A, Plassmeyer P N, et al. Dry catalytic partial oxidation of diesel-fuel distillates into syngas[J]. Fuel,2010,89(6):1202-1211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700