同杆并架输电线路物理模拟及主保护和重合闸技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国国民经济不断向前发展,电力需求与日俱增,对电网输电容量提出了更高的要求。随着我国第一条500kV同杆并架双回线路洪龙线的投运,同杆并架双回输电线路因其输送容量大、节约输电走廊等优势在我国被广泛应用。同杆并架双回输电线路线间互感关系复杂、故障种类繁多,以往用于单回线路的主保护和重合闸方案不能满足同杆并架双回输电线路的要求;现有同杆并架双回线路的物理模型均只考虑了线路间零序互感,不能模拟同杆并架双回输电线路各互感间存在的差异,无法真实反映同杆并架双回线路各种故障形式下的电气量特征。因此,对同杆并架双回输电线路相关问题的研究有着重要意义。论文围绕同杆并架双回线路的参数对称性、物理模型构建、分相差动电容电流补偿及自适应重合闸等方面的关键技术展开研究和论述。
     同杆并架双回输电线路参数对称性对电网的正常运行和保护的正确动作有着重要意义。同杆并架双回线路之间的空间距离很近,不同相序排列模式会影响线路参数的对称性。论文深入分析了现有的三种相序排列模式对常规同杆并架双回线路和紧凑型同杆并架双回线路参数对称性的影响,并据此提出了能满足同杆并架双回输电线路参数对称要求且简单实用的相序排列模式和换位方式。
     现有双回线路的物理模型都只考虑了线路之间零序互感的影响,难以真实反映同杆并架线路在各种工况和故障状态下的电气量变化特性,论文从同杆并架双回线相与相之间的耦合互感着手,提出了一种构建同杆并架双回输电线路物理模型的新方法,能真实模拟同杆并架双回线各线间互感的差异。论文以某实际同杆并架双回线路为原型,运用该方法构建了物理模型,并通过动态模拟实验和数字仿真验证了该物理模型在各种稳态、暂态情况以及不同工况下其模拟精度均能满足研究和工程应用要求。
     运行经验和大量仿真结果表明,同杆并架双回线路电容受运行方式和环境的影响很大,因而作为同杆并架双回输电线路主保护的分相电流差动保护为保证其动作性能需要反映这种电容的实时动态变化,而现行的电容电流补偿方案不能满足上述要求。论文在对比分析稳态补偿及暂态补偿方法的基础上,提出了一种电容电流动态补偿新方案。该方案可以克服运行方式和环境变化对同杆并架双回线电容的影响,精确地补偿电容电流,从而降低分相差动保护门槛值,提高保护灵敏度。
     目前对自适应重合闸的研究主要集中在单回线路单相故障方面,鲜有专门针对同杆并架双回输电线路的。论文在分析电压自适应和相位自适应重合闸判据的基础上,结合同杆并架双回线单相故障和单相跨单相故障时的电气量特征,提出了一种基于相位自适应判据、电压自适应判据及按相序重合闸的组合判据;仿真结果表明该判据可以准确地判别同杆并架双回线路单相故障和单相跨单相故障的故障性质。
With the constant development of the national economy, our country's electric power demand has been growing day by day. Following the first 500kV double transmission lines on the same tower hong-long lines to be in use, the double transmission lines on the same tower has been widely used because of its advantages in transmission capacity and saving transmission corridor. Due to its complex mutual inductance and various fault kinds, double transmission lines on the same tower can’t adopt the main protection and automatic reclosing used on single circuit transmission lines. The physical model of double transmission lines on the same tower being used only considered the zero-sequence mutual inductance, which can’t simulate the difference in double transmission lines on the same tower’s mutual inductance, so that it also can’t actual reflect the characteristics of electrical quantities under different kinds of faults. Therefore, the research for double transmission lines on the same tower is very important and necessary. The work is very valuable in theory and application to solve the problems in double transmission lines on the same tower such as transmission lines’symmetry, physical model, capacitance current compensation and adapt reclosure.
     For double transmission lines on the same tower , the different phase sequence arrangement mode will affect the transmission lines’symmetry. In this paper, several existing different phase sequence arrangement modes’effects on the symmetry of double transmission lines on the same tower were deeply analyzed. Some suggestions on the phase sequence arrangement and transposition form to ensure the double transmission lines on the same tower’s symmetry were also proposed.
     To solve the problem that the existing double transmission lines on the same tower’s physical model can’t simulate the difference in mutual inductance, this paper presented a new method for designing the physical model. The new physical model designed by the new method can really simulate the difference between the mutual inductances. An actual segment of double transmission lines on the same tower was taken as prototype , and the physical model was constructed using the new method. Moreover, the physical model’s simulation capacity under various normal and fault conditions was confirmed through dynamic simulation test and digital simulation test.
     According to the service experience and the massive simulation results, the capacitance of double transmission lines on the same tower was influenced by the operational model and the surroundings. As phase segregated 8 protection was used as the main protection for double transmission lines on the same tower, the general capacitance current compensation can’t meet the actual operational requirements. A new scheme for capacitance current compensation was proposed in the paper basing on the comparatively analysis of the steady compensation and the transient compensation. The new capacitance current compensation method can get over the effects of the operational model and surroundings, and compensate the capacitance current exactly, thereby reduce the threshold of the protection and improve its sensitivity.
     At present, the researches on adapt reclosure are mainly focused on the single phase fault on the single transmission line, very few researches are specially aimed at the double transmission lines on the same tower. This paper deeply analyzed the voltage adapt reclosure and the phase adapt reclosure, and then presented a new adapt reclosure basing on the characteristics of single phase fault and single phase cross single phase fault in double transmission lines on the same tower . Digital simulation indicated that the new adapt reclosure can judge the fault properties of single phase fault and single phase cross single phase fault in double transmission lines on the same tower exactly.
引文
[1]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002.
    [2]康小宁,梁振锋.同杆平行双回线路保护及自动重合闸综述[J].继电器,2004,32(23):72-76.
    [3]刘庆,李卓君.同杆并架线路保护有关问题的研究[J].广东电力,2007,20(5):10-12.
    [4]周国屏.同杆双回线纵联保护方案的研究[D].吉林:东北电力大学硕士论文,2007.
    [5]黄道春,阮江军,赵华.同杆并架4回输电线路相导线排列方式研究[J].高电压技术,2006,32(3):18-20.
    [6]韦刚,张子阳,房正良,等.多回输电线路并架的不平衡性分析[J].高电压技术,2004,30(10):9-11.
    [7] Huang Weigang. Study on conductor configuration of 500 kV chang-fang compact line[J]. IEEE Trans on PWRD,2003,18(3):1002-1008.
    [8]吴国瑜.电力系统仿真[M].武汉:水利电力出版社,1987.
    [9]甘良杰.电力系统动态模拟装置中同杆双回线的模拟[J].电力系统及其自动化学报,1991,3(2):60-65.
    [10]付育颖,严干贵,戴武昌,等. 500kV同杆并架双回线路的动态物理模型[J].吉林电力,2006,34(2):11-13.
    [11]付育颖. 500kV同杆并架双回线路继电保护测试系统的研究[D].吉林:东北电力大学硕士论文,2006.
    [12] Apostolov, D.Tholomier, S.Sambasivan,et. Protection of double circuit transmission lines[J]. IEEE Protective Relay,2007:85-101.
    [13] Gao Houlei,Jiang Shifang,He Jiali. Development of GPS Synchronized Digital Current Differential Protection[J]. Power System Technology Proceedings,1998:1177-1182.
    [14] S.A.Soman, M.C.Chandorkar. Novel Sensitive Current Differential Protection ofTransmission Line[J]. Power System Technology and IEEE Power India Conference, 2008:1-6.
    [15] E.P.Southern, H.Y.Li,P.A.Crossley,et. GPS Synchronised Current Differential Protection[C]. IEE Sixth International Conference on Development of Power System Protection. UK,25-27th ,March 1997:342-345.
    [16] H.J.Koglin, M.Albert,M.Igel, et. Differential Protection of Multi-tenminal Lines without Synchronization[J]. IEEE,2001:133-139.
    [17] H.Y.Li, P.A.Crossly. Design and Evaluation of A Current Differential Protection Scheme Incorporating a Fiber Optical Current Sensor[C]. Power Engineering Society Summer Meeting,2000,IEEE,Vol.3:1396-1400.
    [18]朱声石.高压电网继电保护原理与技术(第三版)[M].北京:中国电力出版社,2005.
    [19]毕天姝,于艳莉,黄少锋,等.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化,2006,29(15):30-35.
    [20] H.Ito,I. Shuto, H. Ayakawa,et. Development of an improved multifunction high speed operating current differential relay for transmission line protection[J]. Developments in Power System Protection,Conference Publication No.479@IEE 2001:511-514.
    [21] Z.Yining. S.Jiale. Phaselet-based current differential protection scheme based on transient capacitive current compensation[J]. IET Gener. Transm.Distrib.,2008,2(4):469-477.
    [22]索南加乐,张怿宁,齐军,等.基于时域电容电流补偿的电流差动保护研究[J].西安交通大学学报,2005,39(2):1370-1374.
    [23] Nicholas Villamagna,Peter A.Crossley. A CT Saturation Detection Algorithm Using Symmetrical Components for Current Differential Protection[J]. IEEE Trans on Power Delivery,2006,21(1):38-45.
    [24] Yongbin Zhao, Yuping Lu. The theory of CT saturation detection based on virtual impedance in bus-bar differential protection[C]. Power India Conference, IEEE, 2006.
    [25] Yong-Cheol Kang,Seung-Hun Ok,Sang-Hee Kang. A CT Saturation Detection Algorithm[J]. IEEE Trans on Power Delivery,2004,19(1):78-85.
    [26]武在前. 220kV同杆双回线继电保护方案的研究[D].太原:太原理工大学硕士学位论文,2004.
    [27]俞波.超高压同杆并架双回线路微机保护的研究[D].吉林:华北电力大学博士学位论文,2002.
    [28] A.G. Jongepier,L. van der Sluis. Adaptive distance protection of a double-circuit line[J]. IEEE Transactions on Power Delivery,1994,9 (3):1289-1297.
    [29] A.G. Jongepier,L. van der Sluis. Adaptive distance protection of double-circuit lines using artificial neural networks[J]. IEEE Transactions on Power Delivery,1997,11(1): 97-105.
    [30]黄益庄,李春光.微处理机方向横差保护装置的研究与应用[J].清华大学学报(自然科学版),1997,37(1):45-48.
    [31]宋斌,陈玉兰,徐秋林,等.微机横联差动电流方向保护装置[J].电力系统自动化, 2003, 27(10):85-88.
    [32] M.I.Gilany , O.P.Malik , G.S.Hope. A digital protection technique for parallel transmission lines lines using a single relay at each end[J]. IEEE Transactions on Power Delivery,1992,7(1):118-125.
    [33] M.M.Eissa, O.P.Malik. A new digital directional transverse differential current protection technique[J]. IEEE Transactions on Power Delivery,1996,11(3):1285-1291.
    [34]阎晓丁,佟卫东,张新华.零序互感对零序横差保护的影响[J].电力情报,1998,1:20-22.
    [35]解建宝,梁振锋,康小宁,等.平行双回线电流平衡保护的仿真研究[J].电网技术,2007,31(9):81-83.
    [36]康小宁,梁振锋,索南加乐.相邻线路零序互感对平行双回线电流平衡保护的影响及改进措施[J].继电器,2005,33(20):1-4.
    [37]曾耿晖,黄明辉,刘之尧,等.同杆线路纵联零序保护误动分析及措施[J].电力系统自动化,2006,30(20):103-107.
    [38]刘浩芳,葛耀中,刘俊岭,等.自适应电流速断保护在双回线中的应用[J].电力系统自动化,2002,26(10):54-58.
    [39]李幼仪,董新洲,孙元章.基于电流行波的输电线横差保护[J].中国电机工程学报,2002,22(11):6-10.
    [40]蔡国伟,周国屏,李凌.基于同步相量测量的同杆双回路继电保护方案的研究[J].电力自动化设备,2007,27(6):56-59.
    [41]黄震,沈其瑜,李天华,等.同杆双回线跨线故障继电保护方案研究[J].四川电力技术,2002,25(1):11-15.
    [42]陈宝喜,甑威,唐永红.四川洪龙500kV同塔双回线继电保护及自适应重合闸装置RTDS实时仿真试验[J].四川电力技术,2004,6:1-5.
    [43]徐生昶.光纤通信复用继电保护通道告警信号实例分析[J].电力系统通信,2006,02:5-7.
    [44]吴永刚,思晓兰,张惠芳. 330kV同杆并架双回线继电保护优化配置及应用[J].电力系统自动化,2001,25(9):64-66.
    [45]葛耀中.新型继电保护和故障测距的原理和技术[M].西安:西安交通大学出版社,2007.
    [46]郭相国,张保会.自适应自动重合闸现状与发展[J].继电器,2004,32(16):77-80.
    [47] GE Yao- zhong,SUI Feng- hai,XIAO Yuan. Prediction methods for preventing single phase re-closing on permanent fault[J]. IEEE Trans on Power Delivery, 1989,4(1):114-121.
    [48]李斌,李永丽,黄强,等.单相自适应重合闸相位判据的研究[J].电力系统自动化,2003,27(22):41-44.
    [49]李斌,李永丽,曾治安,等.基于电压谐波信号分析的单相自适应重合闸[J].电网技术,2002,26(10):53-56.
    [50] DjurieMB,TerzijaVV. A New Approach to the Arcing Faults Detection for Fast Auto reclosing in Transmission Systems[J]. IEEE Trans on Power Delivery,1995,10(4):1793-1798.
    [51] Aggarwal R K,Johns A T,Song Y H,etc. Neural-network Based Adaptive Single-pole Autoreclosure Technique for EHV Transmission System[J]. IEE Proceedings-C Generation, Transmission & Distribution,1994,14(2):155-160.
    [52]袁兆,强张雯.最优重合闸方法的研究[J].工业技术,2007,25:63-64.
    [53]徐翀.采样值相关度在微机线路保护中的应用研究[D].吉林:华北电力大学博士论文,2007.
    [54]启玫,杨卫国.电力系统物理模拟综述[J].电工技术杂志,1999,1:9-11.
    [55]索南加乐,葛耀中,陶惠良,等.同杆双回线的六序选相原理[J].中国电机工程学报,1981,11(6):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700