输电线路直流融冰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着极端天气的增加,输电线路覆冰已严重威胁电网的安全运行。目前电力系统融冰方法较多,应用最广泛的是利用三相短路产生大电流融冰。鉴于直流电流融冰的优越性,目前已经越来越受到人们关注。本文将分别针对高压交流输电线路和直流输电线路,研究其直流融冰方法。对于高压交流输电线路,本文详细分析了高压交流输电线路融冰原理,并给出了直流融冰方案设计,最后根据设计参数在PSCAD/EMTDC环境下进行了仿真,验证该方案确实可行。同时对于直流输电线路,提出了背靠背融冰方式和双极并联融冰方式,并详细分析了各种运行方式下控制策略,同时参照直流输电标准模型,在PSCAD/EMTDC环境下进行了分别建立了背靠背融冰方式和双极并联融冰方式的模型,通过仿真,得出各种方式的稳态参数和暂态参数,结果表明该方案能够很好的进行融冰,同时明确了无论何种融冰方式并不需要增加换流站的无功补偿及滤波装置。
With the increase in extreme weather, transmission line has been a serious threat to the safe operation of power grid. Now there are several methods of ice melting in power system, the most widely method is melting ice by using three-phase short-circuit-current. In view of the superiority of direct current melting ice, it has been more and more attractive. For high voltage AC transmission line and DC transmission lines, this paper will discuss the DC melting ice method respectively. For high voltage AC transmission line, the paper analyzes its principle of melting ice, presents design of DC-melting ice, and according to the design parameters simulate the design under the environment of PSCAD/EMTDC to verify its feasibility. For DC transmission lines, this paper presents back to back ice-melting method and parallel mode bipolar ice-melting method. Refer to the standard model of HVDC, this paper analyzes various operating mode control strategy and simulates back to back ice-melting method and parallel mode bipolar ice-melting method under the environment of PSCAD/EMTDC to get steady state and transient parameters under different operating modes. The results show that this design is effective in ice-melting.Also we can get the conclusion that for each ice-melting method, it is not necessary to increase the reactive power compensation and filtering devices in the converter station.
引文
[1]邓万婷,江涛,何清.输电线路除(融)冰技术可行性比较[J].湖北电力,2009,33(1):6-8
    [2]申屠刚.电力系统输电线路抗冰除冰技术研究进展综述[J].机电工程,2008,25(7):72-75
    [3]吴元华.输电线路覆冰的潜在危害及对策研究[J].江苏电机工程,2008,27(6):18-21
    [4]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社,2010.2
    [5]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-21
    [6]黄新波,刘家兵,蔡伟,等.电力架空线路覆冰雪的国内外研究状况[J].电网技术,2008,32(4):23-28
    [7]李澍森,左文霞,石延辉,等.直流融冰技术探讨[J].电力设备,2008,9(6):20-23
    [8]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219
    [9]陈玉珊.各种短路手段在融冰工作中的应用[J].华中电力,2008,21(4):29-42
    [10]倪喜军,赵剑锋,杨铭,等.基于高频谐振集肤电流法的线路除冰研究[J].电力系统自动化,2008,29(2):6-9
    [11]文阎成.高压长线路短路法融冰可行性探讨[J].电网技术,2009,33(2):46-50
    [12]常浩,石岩,张民,等.交直流线路融冰技术研究[J].电网技术,2008,32(5):1-6
    [13]C.Horwill, C.C Davidson, M.Granger, A Dery. An Application of HVDC to the de-icing of Transmission Lines[A]. Transmission and Distribution Conference and Exhibition[C],2005/2006 IEEE/PES
    [14]D.L.DickmAnder, S.Y.Lee, G.L.Desilets, M.Granger. AC/DC Harmonic interaction in presence of GIC the Quebec-New England phase II HVDC Transmission[A]. IEEE/PES, Winter meeting, Columbus, OH[C], janv93 WM 062-0 PWED
    [15]谢彬,洪文国,熊志荣,等.500kV复兴变电站固定式直流融冰兼SVC试点工程的设计[J].电网技术,2009,33(18):182-185
    [16]张翔,张建设,田杰,等.直流融冰装置与同杆并架线路间的相互[J].电力系统自动化,2009,33(13):95-98
    [17]傅闯,饶宏,黎小林,等.直流融冰装置的研制与应用[J].电力系统自动化,2009,33(11):53-56
    [18]张庆武,吕鹏飞,王德林.特高压直流线路融冰方案[J].电力系统自动化,2009,33(7):38-42
    [19]张庆武,田杰,傅闯,等.特高压直流控制系统融冰工作方式研究[J],高电 压技术.2008,34(11):2276-2281
    [20]马玉龙,徐玲玲,石岩,等.三广直流工程融冰运行方式仿真试验[J].电网技术,2008,32(19):22-25
    [21]Daniel Kirschen, Ron Allan, Goran Strbac. Contributions of individual generators to loads and flows[J]. IEEE Transactions on power systems,1997,12(1):52-60
    [22]Zhou ming, Sun Liying, Li Gengyin, Ni Yixin. A novel power flow tracing approach considering power losses[A].2004 IEEE International conference on Electric Utility Deregulation, Restructuring and power technologies[C],2004,4:355-359
    [23]Kirschen D S, Strbac G. Tracing active and reactive power between generators and loads using real and imaginary currents[J]. IEEE Transactions on Power Systems, 1999,14(4):1312-1319
    [24]曲学基,曲敬铠,于明扬.逆变技术基础与应用[M].北京:电子工业出版社,2006
    [25]李再华,白晓民,周子冠,等.电网防冰技术研究进展[J].电网技术,2008,32(4):7-14
    [26]Chao Wang, Jun Wen, et al. Design on DC De-icing Schemes for High Voltage Transmission Line [A]. CRIS[C],2010
    [27]Gang Liu, Xuezeng Zhao, Yonghui Chen, et al. A De-icing Method of Electric Transmission Line by Adjusting Load Base on Controllable Inductor and Capacitor Compensation[A]. IEEE Bucharest Power Tech Conference, June 28th-July 2nd, Bucharest, Romania[C],2009
    [28]Sullivan C R, Petrenko V F, Mccurdy J D, et al. Breaking the ice transmission line icing[J]. IEEE Industry Applications MAgazine,2003,9(5):49-54
    [29]Horwill C, Davidson C, Granger M, et al. An application of HVDC to the de-icing of transmission lines[A]. Transmission and Distribution Conference and Exhibition, Dallas, TX, USA[C].2005/2006:529-534
    [30]J.Brochu, Beauregard, J.LemAy, et al. Application of the Interphase Power Controller Technology for Transmission Line Power Flow Control[J]. IEEE Transactons on Power Delivery,1997,12(2):888-894
    [31]费圣英,马苏龙.电能质量与节能技术[M].北京:中国电力出版社,2008
    [32]邓广静,周威CIGRE直流输电标准模型的建模及控制策略仿真研究[J].江苏电机工程,2009,28(1):31-34
    [33]浙江大学发电教研室直流输电科研组.直流输电[M].北京:水利电力出版社,1982
    [34]A.Kramer, J.Ruff. Transformer for Phase Angle Regulation Considering the Selection of On-Load Tap-Changers[J]. IEEE Transactions on Power Delivery, 1998,13(2):518-525
    [35]P.Liu, J.F.Peters. Risk Analysis for High-voltage Transmission Line De-icing System[A]. IEEE Canadian Conference on Electrical and Computer Engineering Shaw Conference Center. Edmonton, Alberta, Canada[C], May9-12 1999
    [36]MAurice Huneault, Christian Langheit, Robert St.-Arnaud,et al.A Dynamic Programming Methodology to Develop De-Icing Strategies During Ice Storm by Channeling Load Currents in Transmission Networks [J]. IEEE Transactions on Power Delivery,2006,20(2):1604-1610
    [37]Yang Ye, Mehrdad Kazerani, Victor H. Modeling, Control and Implementation of Three-phase PWM Converters[J]. IEEE Transaction on Power Electronics, 2003,18(3):857-864
    [38]Dong-Choo Lee, Dae-Sik Lim. AC voltage and current sensorless control of three-phase PWM rectifiers[J]. IEEE Transaction on Power Electronics,2002, 17(6):883-890
    [39]Galiana, Fmcisco D, IIic Marijia. A mathematical framework for the analysis and management of power transactions under open access[J]. IEEE Transaction on Power Systems,1999,13(2):681-687
    [40]Macqueen C N, Irving M R. An algorithm for the allocation of distribution system demand and energy losses[J]. IEEE Transactions on Power Systems,1996,11(1): 338-343
    [41]夏道止,沈赞陨.高压直流输电系统的谐波分析及滤波[M].北京:水利电力出版社,1994
    [42]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2004
    [43]Bialek J, Ziemianek, Abi Samra N. Tracing based loss allocation and economic[A]. 13th PSCC Trondheim[C],1999:375-380
    [44]Bialek J. Topological generation and load distribution factors for supplement cost allocation in transmission open access[J]. IEEE Transactions on Power System, 1997,12(3):1185-1193
    [45]Rolf M, Hanbrich H J. Use of the marginal loss coefficients for assessment of transactions in electrical transmission systems[A]. International conference on Electric Power Engineering[C],1999,18
    [46]Rene Cloutier, Andre Bergeron, Jacques Brochu. On-Load Network De-Icer Specification for a Large Transmission Network[J]. IEEE Transactions on Power Delivery,2007,22(3):1947-1954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700