基于Sigma点滤波的移动机器人同时定位与地图创建算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:移动机器人的同时定位与地图创建(SLAM)(?)司题是移动机器人学研究领域的热点问题之一,它作为机器人进行导航、避障、路径规划及执行其它任务的基础,决定着机器人能否真正实现对未知环境的自主探索。所谓同时定位与地图创建,是指移动机器人利用自身携带的传感器,从一个未知环境开始移动,构建未知环境地图的同时,确定自身在该地图中位姿的过程。该过程中涉及到了传感器信息的处理、地图表示方法的选择及SLAM算法的实现等问题,而SLAM算法的实现又是其中非常重要的一个方面。
     针对SLAM问题中机器人运动模型和观测模型的非线性特性,Sigma点滤波方法被引入到SLAM算法中。论文对基于不同采样规则的Sigma点卡尔曼滤波(SPKF)——包括无迹卡尔曼滤波(UKF)和中心差分卡尔曼滤波(CDKF)的SLAM算法,从准确度、一致性和计算复杂度等方面,对其性能进行了分析比较。在此基础上提出一些改进算法,以提高SLAM算法的准确度、计算效率和鲁棒性等性能,拓展其使用范围。论文的创新性工作主要包括:
     (1)提出一种基于平方根CDKF (SR-CDKF)的SLAM算法,该算法通过QR分解和Cholesky更新实现了对状态方差矩阵平方根矩阵的直接更新,提高了基于CDKF的SLAM算法的计算效率。
     (2)提出一种计算复杂度降低的基于CDKF (CR-CDKF)的SLAM算法,它以CDKF的线性回归卡尔曼滤波形式为基础,通过重构预测、观测更新和地图增广过程中的状态变量和相应的方差矩阵改进上述过程中的Sigma点采样策略,使算法的计算复杂度降为O(n2)。对该算法应用压缩滤波的思想,提出一种基于压缩CDKF的SLAM算法,进一步降低计算复杂度,实现了其在大规模环境中的应用。
     (3)提出一种基于优化迭代SPKF (O-ISPKF)的SLAM算法,该算法在观测更新过程中采用阻尼高斯-牛顿迭代的方法,通过引入调节参数和相应的判定条件,增强算法的稳定性,能够有效提高基于SPKF的SLAM算法的准确度。
     (4)探讨了基于非线性H∞滤波的SLAM算法中滤波参数γ对估计准确度和收敛性的影响。提出一种改进的基于Sigma点H∞滤波(SPHF)的SLAM算法,它利用改进的Sigma点采样策略降低计算复杂度,且与基于SPKF的SLAM算法相比具有更好的鲁棒性。
     论文通过不同环境中的仿真实验和用于评价SLAM算法的标准数据集的实验对所提出的算法分别进行了验证,实验结果表明了算法的有效性。
Mobile robot Simultaneous Localization and Mapping (SLAM) problem is one of the most active research areas in mobile robotics. As the base of navigation, obstacle avoidance, path planning and other tasks, it determines the realization of truly autonomous for mobile robot in unknown environment. SLAM is the process of building a map of an unknown environment with onboard sensors, while at the same time determining the pose of the mobile robot within this map. The process concerns several aspects including sensor techniques, map representation and algorithm realization. And the SLAM algorithm realization is one of the most important aspects.
     Considering the nonlinear characteristics of the motion model and observation model in SLAM, Sigma point filter is introduced into SLAM algorithms. In this dissertation, Sigma point Kalman filter (SPKF), including unscented Kalman filter (UKF) and central difference Kalman filter (CDKF) SLAM algorithms with different sampling rules are studied. The properties including accuracy, consistency and computational complexity of these algorithms are analyzed and compared. Several improved algorithms are proposed to improve accuracy, computational efficiency, robustness respectively and to extend SLAM application domains. The innovation of this dissertation is as follows.
     (1) A square root CDKF (SR-CDKF) SLAM algorithm is presented. By using QR factorization and Cholesky update to get the square root of the state covariance matrix directly, the computational efficiency is impoved.
     (2) A computational complexity reduced CDKF (CR-CDKF) SLAM algorithm is proposed. It is presented in the context of the linear regression Kalman filter. An improved sampling strategy is given by reconstructing the estimated state and its covariance during prediction, observation update and map augmentation process. The computational complexity of this algorithm is reduced to O(n2). The idea of compressed filter is then used in the above algorithm and a compressed CDKF SLAM algorithm is proposed. The computational complexity is further reduced which makes it more suitable for the application in large scale environment.
     (3) An optimized iterated SPKF (O-ISPKF) SLAM algorithm is proposed. The damped Gauss-Newton iteration is adopted by introducing the parameter λ and the corresponding condition during the observation update process. The proposed algorithm is proved to be stable and be able to improve the accuracy of SPKF SLAM algorithm effectively.
     (4) The affections of parameter y in nolinear H∞filter SLAM algorithms to the estimated accuracy and convergence are discussed. An improved Sigma point H∞, filter (SPHF) SLAM algorithm which employs the improved sampling strategy is presented. It has lower computational complexity and better robustness than SPKF SLAM algorithm.
     All of the proposed algorithms are proved to be effective through the simulation experiments of different environments and also through the experiments on the standard datasets for SLAM algorithms' evaluation.
引文
[1]房芳.室内环境下移动机器人定位与环境建模方法的研究[D].南京:东南大学,2007.
    [2]Nilsson N. A Mobile Automation:An Application of Artificial Intelligence Techniques[J]. Autonomous Mobile Robotics:Control, Planning and Architecture.1996,2(1):233-239.
    [3]Siegwart R, Nourbakhsh I R.李人厚译.自主移动机器人导论[M].西安:西安交通大学出版社,2006.
    [4]王志文,郭戈.移动机器人导航技术现状与展望[J].机器人,2003,25(3):470-474.
    [5]季秀才.机器人同步定位与建图中数据关联问题研究[D].长沙:国防科学技术大学研究生院,2008.
    [6]Leonard J J, Durrant-Whyte H F. Mobile Robot Localization by Tracking Geometric Beacons[J]. IEEE Transactions on Robotics and Automation.1991,7:376-382.
    [7]武二永.基于视觉的机器人同时定位与地图构建[D].杭州:浙江大学,2007.
    [8]周武.面向智能移动机器人的同时定位与地图创建研究[D].南京:南京理工大学,2009.
    [9]涂刚毅.移动机器人定位及环境建模关键技术研究[D].南京:东南大学,2010.
    [10]Arulampalam M S, Maskell S, Gordon N. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transaction on Integration Econometrics.1989,57(3):1317-1339.
    [11]Fox D, Burgard W. Active Markov Localization for Mobile Robots[J]. Robotics and Autonomous Systems.1998,25(1):195-207.
    [12]Borenstein J, Everett H R, Feng L. Mobile Robot Positioning:Sensors and Techniques[J]. Journal of Robotic Systems, Special Issue on Mobile Robots.1997,14(4):231-249.
    [13]Elfes A, Moravec H. High Resolution Maps from Wide Angle Sonar[C]. Proceedings of IEEE International Conference on Robotics and Automation. St. Louis MO, USA,1985: 116-121.
    [14]王卫华,陈卫东,席裕庚.基于不确定信息的移动机器人地图创建研究进展[J].机器人,2001,23(6):563-568.
    [15]王海军.未知环境下移动机器人即时定位与地图创建[D].上海:上海大学,2008.
    [16]Csorba M. Simultaneous Localization and Map Building[D]. Oxford:University of Oxford, 1997.
    [17]Guivant J E, Nebot E M. Optimization of the Simultaneous Localization and Map Building Algorithm for Real Time Implementation[J]. IEEE Transactions of Robotics and Automation.2001,17(3):242-257.
    [18]Dissanayake M, Newman P, Clark S, et al. A Solution to the Simultaneous Localization and Map Building (SLAM) Problem[J].IEEE Transactions of Robotics and Automation. 2001,17(3):229-241.
    [19]Durrant-whyte H F, Bailey T. Simultaneous Localization and Mapping:Part I The Essential Algorithms[J]. IEEE Robotics and Automation Magazine.2006,13(2):99-108.
    [20]Smith R, Self M, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty [J]. The International Journal of Robotics Research.1986,5(4):56-68.
    [21]张恒,樊晓平,刘艳丽.移动机器人同步定位与地图构建研究进展[J].数据采集与处 理.2005,20(4):458-465.
    [22]张卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用.2005,22(3):455-460.
    [23]Paz L M, Jensfelt P, Tardos J D, et al. EKF SLAM Updates in O(n) with Divide and Conquer SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy,2007:1657-1663.
    [24]Newman P. An Introduction to SLAM-Using an EKF SLAM Summer School 2004. Available:http://spiderman-2.1aas.fr/SLAM/SLAM 2004/Newman/SLAM%20Summer%2 0School%202004%20Newman.ppt.
    [25]王卫东.未知环境中移动机器人创建地图的研究[D].上海:上海交通大学,2003.
    [26]Lee C, Hyun W, Kim K. A Simultaneous Map Building System by Using Developed Photo PSD Sensors[C]. Proceedings of SICE-ICASE International Joint Conference. Busan, Korea,2006:2999-3004.
    [27]庄严.移动机器人基于多传感器数据融合的定位及地图创建研究[D].大连:大连理工大学,2004.
    [28]Dwon Y, Lee J. A Stochastic Environment Modeling Method for Mobile Robot by Using 2-D Laser Scaner[C]. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, NM, USA,1997:1688-1693.
    [29]Xu Z, Liu J, Xiang Z, et al. Map Building for Indoor Environment with Laser Range Scanner[C]. Proceedings of IEEE International Conference on Intelligent Transportation System. Singapore,2002:136-140.
    [30]Paromtchik I E, Asama H. Laser-based Guidance of Multiple Mobile Robots[C]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como, Italy,2001:410-415.
    [31]Gonzalez J, Ollero A, Reina. Map Building for Mobile Robot Equipped with a Laser Range Scanner[C]. Proceedings of IEEE International Conference on Robotics and Automation. San Diego, CA, USA,1994:124-128.
    [32]潘薇.多移动机器人地图构建的方法研究[D].长沙:中南大学,2009.
    [33]陈白帆.动态环境下移动机器人同时定位与建图研究[D].长沙:中南大学,2009.
    [34]Kuipers B, Byun Y. A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations[J]. IEEE Journal of Robotics and Autonomous System.1991,8:47-63.
    [35]Bailey T, Nebot E, Rosenblatt J, et al. Robust Distinctive Place Recognition for Topological Maps[C]. Proceedings of International Conference on Field and Service Robotics. Pittsburgh, PA, USA,1999:347-352.
    [36]Elfes A. Sonar-based Real World Mapping and Navigation[J]. IEEE Journal on Robotics and Automation.1987,3(3):249-264.
    [37]Elfes A. Using Occupancy Grids for Mobile Robot Perception and Navigation[J]. IEEE Computer.1989,6:46-57.
    [38]Schiele B, Crowley J. A Comparison of Position Estimation Techniques Using Occupancy Grids[J]. IEEE Journal of Robotics and Autonomous Systems.1994,12:163-171.
    [39]Thrun S. Learning Occupancy Grid Maps with Forward Sensor Models[J]. Autonomous Robots.2003,15:111-127.
    [40]Chatila R, Laumond J P. Position Referencing and Consistent World Modeling for Mobile Robots[C]. Proceedings of IEEE International Conference on Robotics and Automation. St. Louis, MO, USA,1985:138-145.
    [41]Ohya A, Nagashima Y, Yuta S. Explore Unknown Environment and Map Construction Using Ultrasonic Sensing of Normal Direction of Walls[C]. Proceedings of IEEE International Conference on Robotics and Automation. San Diego, CA, USA,1994: 485-492.
    [42]Chong K S, Kleeman L Mobile Robot Map Building from an Advanced Sonar Array and Accurate Odometry[J]. International Journal of Robotics Research.1999,18(1):20-36.
    [43]郭剑辉.移动机器人同时定位与地图创建方法研究[D].南京:南京理工大学,2008.
    [44]Kuipers B, Byun Y T. A Robot Exploration and Mapping Strategy based on a Semantic Hierarchy of Spatial Representations[J]. Robotics and Autonomous Systems.1999,8: 47-63.
    [45]Shatkay H, Kaelbling L. Learning Topological Maps with Weak Local Odometric Information[C]. Proceedings of the 15th International Joint Conference on Artificial Intelligence. Nagoya, Japan,1997:920-927.
    [46]Dedeoglu G, Mataric M J, Sukhatme G S. Incremental, On-line Topological Map Building with a Mobile Robot[C]. Proceedings of the 1999 Mobile Robots XIV. Boston, MA, USA, 1999:129-139.
    [47]Remolina E, Kuipers B. Towards a General Theory of Topological Maps[J]. Artificial Intelligence.2004,152(1):47-104.
    [48]Thrun S, Bucken A. Integrating Grid-based and Topological Maps for Mobile Robot Navigation[C]. Proceedings of the 13th National Conference on Artificial Intelligence. Portland, OR, USA,1996:944-950.
    [49]Tomatis N, Nourbakhsh I, Arras K, et al. A Hybrid Approach for Robust and Precise Mobile Robot Navigation with Compact Environment Modeling[C]. Proceedings of 2001 IEEE International Conference on Robotics and Automation. Seoul, South Korea,2001: 1111-1116.
    [50]Thrun S, Gutmann J, Fox D, et al. Integrating Topological and Metric Maps for Mobile Robot Navigation:A Statistical Approach[C]. Proceedings of the AAAI 15th National Conference on Artificial Intelligence. Madison, WI, USA,1998:989-995.
    [51]Guivant J, Nebot E, Nieto J, et al. Navigation and Mapping in Large Unstructured Environments[J]. The International Journal of Robotics Research.2004,23(4):1-24.
    [52]Skrzypczynski P. Spatial Uncertainty Management for Simultaneous Localization and Mapping[C]. Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy,2007:4050-4055.
    [53]Thrun S, Burgard W, Fox D. Probabilistic Robotics[M].Cambridge, MA:The MIT Press, 2005.
    [54]赵妍,庄严,王伟.基于概率技术的移动机器人地图构建研究现状与进展[C].2008中国控制与决策会议.中国,烟台,2008:1301-1306.
    [55]Leonard J, Durrant-Whyte H F. Simultaneous Map Building and Localization for an Autonomous Mobile Robot[C]. Proceedings of IEEE International Workshop on Intelligent Robots and Systems. Osaka, Japan,1991:1442-1447.
    [56]Williams S, Dissanayake G, Durrant-Whyte H F. Towards Terrain-Aided Navigation for Underwater Robotics[J]. Advanced Robotics.2001,15(5):533-550.
    [57]Newman P, Leonard J, Neira J, et al. Explore and Return:Experimental Validation of Real Time Concurrent Mapping and Localization[C]. Proceedings of IEEE International Conference on Robotics and Automation. Washington D.C., USA,2002:1802-1809.
    [58]Paz L M, Tardos J D, Neira J. Divide and Conquer:EKF SLAM in O(n)[J]. IEEE Transactions on Robotics.2008,24(5):1107-1120.
    [59]Montemerlo M, Thrun S, Koller D, et al. Fast-SLAM:A Factored Solution to the Simultaneous Localization and Mapping Problem[C]. Proceedings of AAAI 18th National Conference on Artificial Intelligence. Edmonton, Alberta, Canada,2002:593-598.
    [60]Montemerlo M, Thrun S, Koller D, et al. Fast-SLAM 2.0:An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges[C]. Proceedings of International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 2003:1151-1156.
    [61]Li M H, Hong B R, Luo R H. Coevolution Particle Filter for Mobile Robot Simultaneous Localization and Mapping[C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering. Wuhan, China,2005: 3015-3020.
    [62]陈白帆,蔡自兴,袁成.基于粒子群优化的移动机器人SLAM方法[J].机器人,2009,31(6): 513-517.
    [63]潘薇,蔡自兴,陈白帆.基于改进粒子滤波器的移动机器人同时定位与建图方法[J].模式识别与人工智能,2008,21(6):843-848.
    [64]Maybeck P S. Stochastic Models, Estimation, and Control, Vol.1[M]. New York: Academic Press,1979.
    [65]Nettleton E W, Gibbens P W, Durrant-Whyte H F. Closed Form Solutions to the Multiple Platform Simultaneous Localization and Map Building (SLAM) Problem[C]. Sensor Fusion:Architectures, Algorithms, and Applications IV. Orlando, FL, USA,2002, vol. 4051:428-437.
    [66]Thrun S, Koller D, Ghahmarani Z, et al. SLAM Updates Require Constant Time. School of Computer Science, CMU, Pittsburgh, Technical Report,2002.
    [67]Thrun S, Liu Y, Koller D, et al. Simultaneous Localization and Mapping with Sparse Extended Information Filters[J]. International Journal of Robotic Research.2004,23(7-8): 693-716.
    [68]Thrun S. Robotic Mapping:A Survey. In Lakemeyer G, Nebel B editors. Exploring Artificial Intelligence in the New Millenium[M]. San Francisco:Morgan Kaufmann,2002.
    [69]Thrun S, Fox D, Burgard W. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots[J]. Machine Learning.1998,31(1-3):29-53.
    [70]Burgard W, Fox D, Jans H, et al. Sonar-based Mapping of Large-scale Mobile Robot Environments using EM[C]. Proceedings of the International Conference on Machine Learning. Bled, Slovenia,1999:67-76.
    [71]Schwartz L, Stear E B. A Computational Comparison of Several Non-linear Filter[J]. IEEE Transactions on Automatic Control.1968,13(2):83-86.
    [72]Bizwas K K, Mahalanabis A K. Suboptimal Algorithms for Nonlinear Smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems.1973,9(4):529-534.
    [73]Feyzioglu T. Analysis of Non-Linear, Non-Normal Economic Time Series and Applications[D]. Pennsylvania:University of Pennsylvania,1989.
    [74]Takata H. Transformation of a Nonlinear System into an Augmented Linear System[J]. IEEE Transactions on Automatic Control.1979,24(4):736-741.
    [75]Van der Merwe R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[D]. Oregon:Oregon Health & Science University,2004.
    [76]侯代文.非线性滤波及其在说话人跟踪中的应用[D].大连:大连理工大学,2008.
    [77]Julier S, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE.2004,92(3):401-422.
    [78]Julier S, Uhlmann J K, Durrant-Whyte H F. A New Approach for Filtering Nonlinear Systems[C]. Proceedings of the American Control Conference. Evanston, IL, USA,1995: 1628-1632.
    [79]Norgarrd M, Poulsen N, Ravn O. New Developments in State Estimation for Nonlinear Systems[J]. Automatica.2000,36(11):1627-1638.
    [80]Ito K, Xiong K. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic Control.2000,45(5):910-927.
    [81]范炜,李勇.Sigma点卡尔曼滤波方法精度分析[C].2009中国控制与决策会议.中国,桂林,2009:2883-2888.
    [82]Hartikainen J, Solin A, Sarkka S. Optimal Filtering with Kalman Filters and Smoothers:a Manual for the Matlab toolbox EKF/UKF, version 1.3. Available: http://www.Ice.hut.fi/research/mm/ekfukf/documentation.pdf.
    [83]Arasaratnam I, Haykin S. Cubature Kalman Filters[J]. IEEE Transactions on Automatic Control.2009,54(6):1254-1269.
    [84]Arasaratnam I. Cubature Kalman Filtering:Theory & Applications[D]. Canada:McMaster University,2009.
    [85]Lefebvre T, Bruyninckx H, Schutter J. Comment on "A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimatiors"[J]. IEEE Transactions on Automatic Control.2002,47(6):1406-1408.
    [86]Li P, Zhang T, Ma B. Unscented Kalman Filter for Visual Curve Tracking[J]. Image and Vision Computing.2004,22(2):157-164.
    [87]Wan E A, Van der Merwe R. The Unscented Kalman Filter. In Haykin S. Kalman Filtering and Neural Networks[M]. NJ:Wiley Publishing,2001.
    [88]Romanenko A, Castro J. The Unscented Filters as an Alternative to the EKF for Nonlinear Estimation:a Simulation Case Study[J]. Computers and Chemical Engineering.2004, 28(3):347-355.
    [89]Sadhu S, Mondal S, et al. Sigma Point Kalman Filter for Bearing Only Tracking[J]. Signal Processing.2006(12):3769-3777.
    [90]Xiong K, Chan C, Zhang H. Detection of Satellite Attitude Sensor Faults Using the UKF[J]. IEEE Transactions on Aerospace and Electronic Systems.2007,43(2):480-491.
    [91]Ristic B, Farina A, et al. Performance Bounds and Comparison of Nonlinear Filters for Tracking a Ballistic Object on Re-entry Radar[J]. IEEE Proceedings on Radar, Sonar and Navigation.2003,150(2):65-70.
    [92]Fontaine E, Burdick J, Barr A. Automated Tracking of Multiple C. Elegans[C]. Proceedings of IEEE 28th Annual International Conference on Engineering in Medicine and Biology Society. New York City, NY, USA,2006:3716-3719.
    [93]陈里铭,陈喆,殷福亮等.基于中心差分卡尔曼-概率假设密度滤波的多目标跟踪方法[J].控制与决策.2012.
    [94]赵凯,岳晓奎,吴侃之.基于中心差分卡尔曼滤波的航天器视觉相对导航算法研究[J].科学技术与工程.2012,12(3):616-619.
    [95]Closas P, Fernandez-Prades C. Bayesian Nonlinear Filters for Direct Position Estimation[C]. Proceedings of 2010 IEEE Aerospace Conference. Big Sky, MT, USA, 2010:1-12.
    [96]Li P, Yu J, Wan M, et al. The Augmented Form of Cubature Kalman Filter and Quadrature Kalman Filter for Additive Noise[C]. Proceedings of IEEE Youth Conference on Information, Computing and Telecommunication. Beijing, China,2009:295-298.
    [97]Rezaie J, Moshiri B, Araabi B N, et al. GPS/INS Integration Using Nonlinear Blending Filters[C]. Proceedings of 2007 Annual Conference on SICE. Takamatsu City, Japan,2007: 1674-1680.
    [98]Wan E A. Sigma-Point Filters:An Overview with Applications to Integrated Navigation and Vision Assisted Control[C]. Proceedings of 2006 IEEE Nonlinear Statistical Signal Processing Workshop. Cambridge, UK,2006:201-202.
    [99]Pesonen H, Piche R. Cubature-based Kalman Filters for Positioning[C]. Proceedings of 7th Workshop on Positioning, Navigation and Communication. Dresden, Germany,2010:1-5.
    [100]Katkuri J R, Jilkov V P, Li X R. A Comparative Study of Nonlinear Filters for Target Tracking in Mixed Coordinates[C]. Proceedings of 2010 42nd Southeastern Symposium on System Theory. Tyler, TX, USA,2010:202-207.
    [101]Van der Merwe R, Wan E A. The Square-Root Unscented Kalman Filter for State and Parameter-Estimation[C]. Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT, USA,2001, vol.6: 3461-3464.
    [102]Van der Merwe R, Wan E A. Efficient Derivative-Free Kalman Filters for Online Learning[C]. Proceedings of the 9th European Symposium on Artificial Neural Networks. Bruges, Belgium,2001:205-210.
    [103]Arasaratnam I, Haykin S. Square-Root Quadrature Kalman Filtering[J]. IEEE Transactions on Signal Processing.2008,56(6):2589-2593.
    [104]卫志农,孙国强,庞博.无迹卡尔曼滤波及其平方根形式在电力系统动态状态估计中的应用[J].中国电机工程学报,2011,31(16):74-80.
    [105]Kamrunnahar M, Schiff S J. A Square Root Ensemble Kalman Filter Application to a Motor-Imagery Brain-Computer Interface[C]. Proceedings of 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA, USA, 2011:6385-6388.
    [106]Jafarzadeh S, Lascu C, Fadali M S. Square Root Unscented Kalman Filters for State Estimation of Induction Motor Drives[C]. Proceedings of 3rd IEEE Energy Conversion Congress and Exposition. Phoenix, AZ, USA,2011:75-82.
    [107]Zhang Y, Gao F, Tian L. INS/GPS Integrated Navigation for Wheeled Agricultural Robot based on Sigma-Point Kalman Filter[C]. Proceedings of Asia Simulation Conference 2008/ 7th International Conference on System Simulation and Scientific Computing. Chengdu, China,2008:1425-1431.
    [108]Zachariah D, Jansson M. Camera-Aided Inertial Navigation Using Epipolar Points[C]. Proceedings of IEEE/ION Position Location and Navigation Symposium. India Wells/Palm Springs, CA, USA,2010:303-309.
    [109]Fernandez-Prades C, Vila-Vails J. Bayesian Nonlinear Filtering Using Quadrature and Cubature Rules Applied to Sensor Data Fusion for Positioning[C]. Proceedings of 2010 IEEE International Conference on Communications. Cape Town, South Africa,2010:1-5.
    [110]Sadhu S, Srinivasan M, Mondal S, et al. Bearing Only Tracking Using Square Root Sigma Point Kalman Filter[C]. Proceedings of IEEE 1st India Annual Conference. Kharagpu, India,2004:66-69.
    [111]Wu C, Han C, Sun Z. A New Nonlinear Filtering Method for Ballistic Target Tracking[C]. Proceedings of 12th International Conference on Information Fusion. Seattle, WA, USA, 2009:1062-1067.
    [112]Closas P, Fernandez-Prades C. The Marginalized Square-Root Quadrature Kalman Filter[C]. Proceedings of 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications. Marrakech, Morocco,2010:1-5.
    [113]Banani S A, Masnadi-Shirazi M A. A New Version of Unscented Kalman Filter[J]. World Academy of Science, Engineering and Technology.2007,26:192-197.
    [114]谢恺,金波,周一宇.基于迭代测量更新的UKF方法[J].华中科技大学学报(自然科学版),2007,35(11):13-15,23.
    [115]Zhan R, Wan J. Iterated Unscented Kalman Filter for Passive Target Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems.2007,43(3):1155-1163.
    [116]袁罡,陈鲸.基于UKF的单站无源定位与跟踪算法[J].电子与信息学报,2008,30(9):2120-2123.
    [117]Shi Y, Han C, Lian F. The Iterated Divided Difference Filter[C]. Proceedings of 2008 IEEE International Conference on Automation and Logistics. Qingdao, China,2008:1799-1802.
    [118]侯代文,殷福亮.基于迭代中心差分卡尔曼滤波的说话人跟踪方法[J].电子与信息学报,2008,30(7):1684-1689.
    [119]穆静,蔡远利.迭代容积卡尔曼滤波算法及其应用[J].系统工程与电子技术,2011,33(7):1454-1457.
    [120]侯代文,殷福亮,陈枯.基于Sigma点H∞滤波的说话人跟踪方法[J].信号处理,2009,25(3):374-378.
    [121]Wang J, Song C, Yao X, et al. Sigma Point H-infinity Filter for Initial Alignment in Marine Strapdown Inertial Navigation System[C]. Proceedings of 2nd International Conference on Signal Processing Systems. Dalian, Chian,2010, vol.1:580-584.
    [122]陈家乾,何衍,蒋静坪.自主移动机器人的室内结构化环境地图创建[J].控制理论与应用,2008,25(4):767-772.
    [123]Borenstein J, Feng L. Measurement and Correction of Systematic Odometry Errors in Mobile Robot[J]. IEEE Transactions on Robotics and Automation.1996,12(6):869-880.
    [124]Chong K S, Kleeman L. Accurate Odometry and Error Modeling for a Mobile Robot[C]. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, NM, USA,1997, vol.4:2783-2788.
    [125]Kelly A. General Solution for Linearized Systematic Error Propagation in Vehicle Odometry[C]. Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robot and Systems. Maui, HI, USA,2001:1938-1945.
    [126]Roy N, Thrun S. Online Self-Calibration for Mobile Robot[C]. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, MI, USA,1999, vol.3: 2292-2297.
    [127]Xu H, Collins J J. Estimating and Odometry Error of a Mobile Robot by Neural Networks[C]. Proceedings of 2009 International Conference on Machine Learning and Applications. Miami Beach, FL, USA,2009:378-385.
    [128]Andrade-Cetto J, Vidal-Calleja T, Sanfeliu A. Unscented Transformation of Vehicle States in SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Barcelona, Spain,2005:323-328.
    [129]Martinez-Cantin R, Castellanos J A. Unscented SLAM for Large-Scale Outdoor Environments[C]. Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, AB, Canada,2005:3427-3432.
    [130]郭剑辉,赵春霞,石杏喜等.尺度Unscented变换在同时定位与地图创建算法中的应用[J].兵工学报,2008,29(7):859-863.
    [131]Li S, Ni P. Square-Root Unscented Kalman Filter based Simultaneous Localization and Mapping[C]. Proceedings of 2010 IEEE International Conference on Information and Automation. Harbin, China,2010:2384-2388.
    [132]Razali S, Watanabe K, Maeyama S, et al. An Unscented Rauch-Tung-Striebel Smoother for SLAM Problem[C].2001 Proceedings of SICE Annual Conference. Tokyo, Japan,2011: 1304-1308.
    [133]Shojaie K, Ahmadi K, Shahri A M. Effects of Iteration in Kalman Filters Family for Improvement of Estimation Accuracy in Simultaneous Localization and Mapping[C]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland,2007:1-6.
    [134]Shojaie K, Shahri A M. Iterated Unscented SLAM Algorithm for Navigation of an Autonomous Mobile Robot[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France,2008:1582-1587.
    [135]Zhu J, Zheng N, Yuan Z, et al. Unscented SLAM with Conditional Iterations[C]. Proceedings of IEEE Intelligent Vehicles Symposium, Xi'an, China,2009:134-139.
    [136]W Zhou, C Zhao, and J Guo. The Study of Improving Kalman Filters Family for Nonlinear SLAM[J]. Journal of Intelligent & Robotic Systems.2009,56:543-564.
    [137]Kim C, Sakthivel R, Chung W. Unscented FastSLAM:A Robust and Efficient Solution to the SLAM Problem[J]. IEEE Transactions on Robotics.2008,24(4):808-820.
    [138]赵立军,孙立宁,李瑞峰等.室内环境下同步定位与地图创建改进算法[J].机器人,2009,31(5):438-444.
    [139]Zhu J, Zheng N, Yuan Z, et al. A SLAM Algorithm based on the Central Difference Klaman Filter[C]. Proceedings of IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009:123-128.
    [140]祝继华,郑南宁,袁泽剑等.基于中心差分粒子滤波的SLAM算法[J].自动化学报,2010,36(2):249-257.
    [141]Knight J, Davision A, Reid I. Towards Constant Time SLAM Using Postponement[C]. Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI, USA,2001:405-413.
    [142]Nerurkar E D, Roumeliotis S I. Power-SLAM:a Linear-Complexity, Consistent Algorithm for SLAM[C]. Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA,2007:636-643.
    [143]Leonard J J, Feder J S. Decoupled Stochastic Mapping[J]. IEEE Journal of Oceanic Engineering.2001,26(4):561-571.
    [144]Chong K S, Kleeman L. Feature-based Mapping in Real, Large Scale Environments Using an Ultrasonic Array [J]. The International Journal of Robotics Research.1999,18(1):3-19.
    [145]Williams S B, Dissanayake G, Durrant-Whyte H. An Efficient Approach to the Simultaneous Localization and Mapping Problem[C]. Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA,2002:406-411.
    [146]Bailey T, Durrant-Whyte H. Simultaneous Localization and Mapping (SLAM):Part II[J]. IEEE Robotics and Automation Magazine.2006,13(2):108-117.
    [147]Montemerlo M. FastSLAM:A Factored Solution to the Simultaneous Localization and Mapping Problem with Unknown Data Association[D]. Pittsburgh, PA:Carnegie Mellon University,2003.
    [148]Holmes S, Klein G, Murray D W. A Square Root Unscented Kalman Filter for Visual MonoSLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Pasadena, CA, USA,2008:3710-3716.
    [149]Huang G P, Mourikis A I, Roumeliotis S I. On the Complexity and Consistency of UKF-based SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Kobe, Japan,2009:4401-4408.
    [150]Choi M, Sakthivel R, Chung W K. Neural Network-Aided Extended Kalman Filter for SLAM Problem[C]. Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy,2007:1686-1690.
    [151]Kang J, An S, Oh S. Modified Neural Network Aided EKF based SLAM for Improving an Accuracy of the Feature Map[C]. Proceedings of 2010 International Joint Conference on Neural Networks. Barcelona, Spain,2010:1-7.
    [152]Chatterjee A, Matsuno F. A Neuro-Fuzzy Assisted Extended Kalman Filter-based Approach for Simultaneous Localization and Mapping (SLAM) Problems[J]. IEEE Transactions on Fuzzy Systems.2007,15(5):984-997.
    [153]Kang J, An S, Kim S, Oh S. A New Approach to Simultaneous Localization and Map Building with Learning:NeoSLAM (Neuro-Evolutionary Optimizing)[C]. Proceedings of 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Daejeon, South Korea,2009:278-284.
    [154]West M E, Syrmos V L. Robust Stochastic Mapping towards the SLAM Problem[C]. Proceedings of IEEE International Conference on Robotics and Automation. Orlando, FL, USA,2006:436-441.
    [155]West M E, Syrmos V L. Navigation of an Autonomous Underwater Vehicle (AUV) Using Robust SLAM[C]. Proceedings of IEEE International Conference on Control Applications. Munich, Germany,2006:1801-1806.
    [156]Pakki K, Chandra B, Gu D, et al. SLAM Using EKF, EH∞ and Mixed EH2/EH∞ Filter[C]. Proceedings of 2010 IEEE International Symposium on Intelligent Control. Yokohama, Japan,2010:818-823.
    [157]Ahmad H, Namerikawa T. H∞ Filtering Convergence and Its Application to SLAM[C]. Proceedings of ICROS-SICE International Joint Conference. Fukuoka, Japan,2009: 2875-2880.
    [158]Ahmad H, Namerikawa T. Robot Localization and Mapping Problem with Unknown Noise Characteristics[C]. Proceedings of 2010 IEEE International Conference on Control Applications. Yokohama, Japan,2010:1275-1280.
    [159]Ahmad H, Namerikawa T. Covariance Inflation Efficiency in H∞ Filter based SLAM[C]. Proceedings of International Conference on Electrical, Control and Computer Engineering. Pahang, Malaysia,2011:136-141.
    [160]张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法[J].机器人,2010,32(2):190-195.
    [161]Wang H, Wang J, Yu L, et al. A New SLAM Method based on SVM-AEKF for AUV[C]. Proceedings of OCEANS 2011. Kona, HI, USA,2011:1-6.
    [162]弋英民,刘丁.有色过程噪声下的轮式机器人同步定位与地图构建[J].电子学报,2010,38(6): 1-5.
    [163]弋英民,刘丁.有色量测噪声下机器人同步定位与地图构建[J].计算机工程,2009,35(24):29-32.
    [164]Shen J, Hu H. A Matlab-based Simulator for Autonomous Mobile Robots[C]. Proceedings of 3rd I*PROMS Virtual International Conference. UK,2007.
    [165]Bailey T. SLAM Simulations. Available:http://www-personal.acfr.usyd.edu.au/tbailey/.
    [166]Arras K O. The CAS Robot Navigation Toolbox:Users Guide and Reference. Available: http://www.cas.kth.se/toolbox.
    [167]Neira J, Tardos J D. Data Association in Stochastic Mapping Using the Joint Compatibility Test[J]. IEEE Transactions on Robotics and Automation.2001,17(6):890-897.
    [168]Sola J, Monin A, Devy M, et al. Undelayed Initialization in Bearing Only SLAM[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada,2005:2499-2504.
    [169]Bailey T, Nieto J, Guivant J, et al. Consistency of the EKF-SLAM Algorithm[C]. Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China,2006:3562-3568.
    [170]郭剑辉,赵春霞,石杏喜.一种改进的联合相容SLAM数据关联方法[J].仪器仪表学报,2008,29(11):2260-2265.
    [171]曾文静,张铁栋,姜大鹏.SLAM数据关联方法的比较[J].系统工程与电子技术,2010,32(4):860-864.
    [172]Huang G P, Mourikis A I, Roumeliotis S I. Analysis and Improvement of the Consistency of Extended Kalman Filter-based SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Pasadena, CA, USA,2008:473-479.
    [173]Huang S, Dissanayake G Convergence and Consistency Analysis for Extended Kalman Filter based SLAM[J]. IEEE Transactions on Robotics.2007,23(5):1036-1049.
    [174]Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York, USA:Wiley-Interscience Publication,2001.
    [175]张海强,窦丽华,方浩,陈杰.基于压缩EKF的SLAM改进算法[J].系统仿真学报,2009,21(18):5668-5671,5680.
    [176]H Zhang, L Dou. CEKF-SLAM simulator. Available: https://svn.openslam.org/data/svn/cekfslam
    [177]Sibley G,Sukhatme G, Matthies L. The Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo[C]. Proceedings of Robotics:Science and Systems. Philadelphia, PA, USA,2006:263-270.
    [178]Dennis J E, Schnabel R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia, USA:Society for Industrial Mathematics,1987.
    [179]Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in C:The Art of Scientific Computing (Second Edition)[M]. Cambridge, USA:Cambridge University Press,1992.
    [180]Tully S, Moon H, Kantor G,et al. Iterated Filters for Bearing-Only SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation. Pasadena, CA, USA,2008: 1442-1448.
    [181]Einicke G,White L. Robust Extended Kalman Filtering[J]. IEEE Transactions on Signal Processing.1999,47(9):2596-2599.
    [182]Shaked U, Berman N. H∞ Nonlinear Filtering of Discrete-Time Processes[J]. IEEE Transactions on Signal Processing.1995,43(9):2205-2209.
    [183]Simon D. Optimal State Estimation[M]. New York, USA:Wiley-Interscience Publication, 2006.
    [184]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [185]Hassibi B, Saved H, Kailath T. Linear Estimation in Krein Spaces-Part Ⅱ:Applications[J]. IEEE Transactions on Automatic Control.1996,41(1):34-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700