电力系统紧急状态下切负荷控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前互联电网网架结构日趋复杂,使系统隐性故障和连锁故障发生的概率不断增多,解列事故频发;特别对于受端电网,解列事故会导致系统失去重要输电通道或联络线,出现大容量功率缺额,如果系统紧急控制措施有限,就很可能发生系统失稳。频率崩溃是造成系统大范围停电的重要原因之一,近些年发生的多起电网崩溃都有频率失稳的因素。
     本文结合国家自然科学基金(50837002)课题“集中决策与分布实现相协调的大电网后备保护系统研究”,深入系统地开展了“电力系统紧急状态下切负荷控制策略研究”的论文工作,主要创新性成果如下:
     分析系统运行状态的分类及对应采取的安全控制措施的基础上,深入研究了系统紧急状态的特征;以构建的单机带负荷系统为研究对象,建立了包括系统频率、电压和功角状态变量的代数微分方程组;借助Matlab编程求解系统稳定运行和紧急状态下的状态方程,仿真系统分别受到有功、无功功率扰动时,系统运行状态的变化情况。提出了预防控制与紧急控制作用相结合的系统稳定控制框架;电力系统受到大的有功扰动,预测和判断系统是否将进入紧急状态具有关键作用,进而及时地采取切负荷等有效控制措施,阻止系统中有功、无功功率平衡的破坏和维护系统的稳定。
     基于发电机有功功率扰动和频率变化之间的转子运动平衡方程,分析建立了单机系统的负荷频率控制原理框图,进而扩展到多机及多分区系统的频率响应建模研究;构建了考虑调速器、自动发电控制和联络线功率偏差控制的系统频率响应动态模型图,推导了系统受扰后频率轨迹变化的方程,用于研究系统的频率稳定变化。研究表明,扰动初期的频率变化率只与系统初始的不平衡功率有关,功率缺额越大,频率下降速度越快;系统的稳态频率偏差受到功率缺额和频率调节效应的共同影响;频率的动态过程不仅和有功缺额的大小有关,与扰动位置,电网结构都是密切相关的。
     建立了具有紧急控制作用模块的系统频率响应动态模型,包括系统参数,频率保护的门槛值,系统的受扰功率,紧急控制措施和互联线路的潮流变化对频率稳定的影响。利用建立的地区系统频率响应动态模型,从中长期的角度预测系统受扰后频率的轨迹变化和频率稳定控制的可行性。提出了一个新自适应UFLS控制策略,所建立的系统频率响应动态模型应用于系统紧急控制和保护策略的制定;新策略考虑和低频调速及系统备用容量的快速释放相协调,根据系统扰动自适应地确定减负荷的数量和动作级数,避免了负荷的过切或欠切;在考虑切负荷地点时,采取就地平衡扰动功率的原则,避免潮流转移引起级联事故的发生。
     在研究影响系统频率和频率变化率测量的因素基础上,推导了系统受扰后的有功功率缺额与频率变化率之间的准确函数关系式。进一步,在电压灵敏度分析的基础上,提出了利用电压灵敏度确定切负荷地点与相应切负荷量的自适应切负荷控制策略,目的在于考虑切负荷过程中,有效恢复系统有功平衡的同时,最大限度的实现无功的就地平衡;在系统的脆弱点,即电压和频率下降更多或无功需求更大的地点切负荷,可以提高系统的电压稳定边缘,降低了系统崩溃的风险。提出的切负荷策略有更强的自适应性,是切负荷量,切负荷地点和动作时间的函数关系,能够考虑系统网络拓扑的变化,更有利于系统稳定性的恢复,有应用的优势和价值。
The increasing risk of hidden and cascading failures and splitting of power system brings new challenge as the grid structure is more and more complicated. The power shortage threatens in particular in receiving system when the tie line failures and the system instability can happen if the emergency control is limited. Frequency collapse is one of the most important reasons for blackouts in recent years.
     Combined the subject'the Coordinated Research of Centralized Decision-making and Distributed Implementation in Backup Protection for Large Power Grid'(No.50837002) which is supported by the National Natural Science Foundation of China. This thesis'Study on Load Shedding Strategy for Power System under Emergency Situations' is carried on profoundly. The main innovative results are as follows:
     Based on the analysis of different power system operation states and the corresponding control methods, system's emergency state is deeply researched. Taking the single machine single load model as the research model, the algebraic differential equation is established based on the system frequency, voltage and power-angle as state variables. Matlab is used to solve the equation of states both in normal and emergency system and to simulate the operation states when system is disturbed by active power and reactive power disturbance. When a large disturbance occurs, it is important to predict and verify whether the system is in the emergency state and thereby to take effective control measures in time, such as load shedding, to prevent the system from instability and to recover both balances of active power and reactive power.
     By analyzing the dynamic equivalent equation of relating active power disturbance and frequency variation, logic diagram of load frequency control is established in single machine system and multi-machine system with several partitions for further study of frequency response. The dynamic frequency response diagram is clearly established, with the governor, AGC and tie-line bias control considered in the system. The trajectory equation of frequency after the system disturbance is deduced and used in the paper to predict the frequency. It is summarized that at the beginning of the disturbance, frequency change rate is only related to the initial imbalance of power. The frequency decreases faster with a bigger active power shortage and the steady-state frequency deviation is both influenced by the power shortage and frequency regulation factor. The dynamic process of frequency is not only related to the capacity of the active power shortage, but also the disturbance place and power grid's structure.
     Possessing the function of emergency control, the dynamic frequency response model is built in the paper, which considers system parameters, threshold value in frequency protection and influence on frequency caused by the disturbed power and changed power flow in tie line. By the dynamic frequency response model, the trajectory of frequency and possibility to control the frequency after a disturbance are also analyzed from the mid-term and long-time perspective. Moreover, a new adaptive under frequency load shedding method is proposed in order to apply the dynamic frequency response model to analyze emergency control and system protection dynamically. the load shedding method can be coordinated with under frequency governor control, the reserve capacity and automatic generation control. The new method can calculate the amount of shed load and shedding stage according to system disturbance, thus avoiding shedding over or less. When considering the shedding location, it is necessary to obey the rule that the disturbance power should be balanced locally to avoid transfer of power flow causing cascading accidents.
     Considering the existing measurement problems, the factors influencing the frequency and its change rate measurement are studied and a precise equation which reflects the relationship between active power imbalance and frequency change rate is presented. Furthermore, the voltage sensitivity is considered to decide the shedding location and coresponding shedding value, aiming to enable the local reactive power balance. It is more reliable to shed the load in the weaker point, namely the node that its voltage or frequency declines faster or needs more reactive power in the disturbance. This method can improve the voltage stability margin and reduce the risk of system collapse. The proposed load shedding method is more adaptive. It is'the functional relation to shedding amount, location and action time, and the change of grid topology is considered, which is more meaningful for system's stability.
引文
[1]郭剑波,姚国灿,徐征雄,等.我国未来大区电网互联可能出现或应该注意的若干技术问题-全国联网和更高一级交流电压等级技术问题研究之一[J].电网技术,1998,22(6):65-69
    [2]钟一俊.特高压输电技术研究和应用综述[D].浙江大学,2008
    [3]文明浩,陈德树,尹项根.远距离输电线路的能量平衡保护[J].中国电机工程学报,2001,21(2):75-80
    [4]余志文,白雪峰,郭志忠,等.大容量远距离输电网暂态稳定控制方法的探讨[J].电力系统自动化,2003,27(4):57-60+65
    [5]闵勇.复杂扩展式电力系统中功率-频率动态过程的分析及低频减载装置整定[D].北京:清华大学,1990
    [6]刘梦欣,王杰,陈陈.电力系统频率控制理论与发展[J].电工技术学报,2007,22(11):135-145
    [7]王梅义,昊竟昌,蒙定中.大电网系统技术(第二版)[M].北京:中国电力出版社.1995:291-302
    [8]Anderson P.M., Fouad A.A.. Power System control and stability[M]. Wiley IEEE Press,2003
    [9]Vittal E., Keane A., Malley M.. Varying penetration ratios of wind turbine technologies for voltage and frequency stability[C]. IEEE Conference Proceedings on Power and Energy Society,2010:1-6
    [10]Doherty R., Mullane A., Nolan G., et al. An assessment of the impact of wind generation on system frequency control[J]. IEEE Transactions on Power Systems,2010,25(1):452-460
    [11]Meegahapola L., Flynn D.. Impact on transient and frequency stability for a power system at very high wind penetration[C]. IEEE Conference Proceedings on Power and Energy Society,2010:1-8
    [12]Yutian Liu, Changgang Li. Impact of large-scale wind penetration on transient frequency stability[C]. IEEE Conference Proceedings on Power and Energy Society,2012
    [13]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11
    [14]李春艳,陈洲,肖孟金.西欧“11.4”大停电分析及对华中电网的启示[J].高电压技术,2008,34(1):163-167
    [15]唐葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):3-5+12
    [16]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42
    [17]Anderson G., Donalek P., Farmer R., et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems, 2005, 20(4):1922-1928
    [18]Morison K., Hamadani H., Lei W.. Practical issues in load modeling for voltage stability studies[C]. IEEE Proceedings on Power Engineering and Society General Meeting,2003(3):1392-1397
    [19]Taylor C.W, Erickson D.C.. Recording and analyzing the July 2 cascading outage[J]. IEEE Computer Applications in Power,1997,10(1):26-30
    [20]Kurita A., Sakurai T.. The power system failure on July 23,1987 in Tokyo[C]. IEEE Conference Proceedings on Decision and Control,1988: 2093-2097
    [21]Kearsley R.. Restoration in Sweden and experience gained from the blackout of 1983[J]. IEEE Transactions on Power Systems,1987,2(2):422-428
    [22]GB/T 26862-2011,电力系统同步相量测量装置检测规范[S].北京:中国标准出版社,2011
    [23]GB/T 26865.2-2011,电力系统实时动态监测系统第2部分:数据传输协议[S].北京:中国标准出版社,2011
    [24]Kundur P., Paserba J., Ajjara V., et al. Definition and classification of power system stability IEEE/CIGRE Joint Task Force on stability terms and definitions[J]. IEEE Transactions on Power Systems,2004,19(2):1387-1401
    [25]孙华东,汤涌,马世英.电力系统稳定的定义与分类述评[J].电网技术,2006,30(17):31-35
    [26]刘取,倪以信.电力系统稳定性与控制综述[J].中国电机工程学报,1990,10(6):3-14
    [27]丛伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33
    [28]袁季修.试论防止电力系统大面积停电的紧急控制—电力系统安全稳定运行的第三道防线[J].电网技术,1999,23(4):3-6
    [29]王伟,陈军,余锐,等.三道防线协调配合保证电网稳定运行[J].中国电力,2011,44(10):16-20
    [30]汤涌.电力系统安全稳定综合防御体系框架[J].电网技术,2012,36(8):1-5
    [31]邓华.电力系统稳定控制第三道防线的研究[D].浙江大学,2006
    [32]Terzija, Koglin H.. Adaptive underfrequency load shedding integrated with a frequency estimation numerical algorithm[J]. IEE Proceedings On Generation, Transmission and Distribution,2002,149(6):713-718
    [33]Imai S., Yasuda T.. UFLS program to ensure stable island operation[C]. Power Systems Conference and Exposition, IEEE PES,2004:282-283
    [34]罗运虎,王勤,邢丽冬,等.系统备用容量优化问题综述[J].电网技术,2007,31(23):41-46
    [35]李政,李兴源,程丽敏,等.孤网频率稳定控制综述[J].华东电力,2012,40(7):1173-1177
    [36]戴剑锋,朱凌志,周双喜,等.基于风险的低压减载策略问题研究[J].中国电机工程学报,2006,39(19):18-22
    [37]Glavic M., Van C. T.. Wide-area detection of voltage instability from synchronized phasor measurements. Part Ⅱ:Simulation results[J]. IEEE Transactions on Power Systems,2009,24(3):1417-1425
    [38]Wang Y., Pordanjani I. R., Li W., et al. Voltage stability monitoring based on the concept of coupled single-port circuit[J]. IEEE Transactions on PowerSystems,2011,26(4):2154-2163
    [39]张晶晶,丁明,李生虎.低压减载相关问题研究[J].合肥工业大学学报(自然科学版),2008,31(12):1978-1982
    [40]任伟.电力系统紧急控制决策算法研究[D].天津大学,2007
    [41]李兴源,李立.电力系统紧急控制综述[J].电力系统自动化,2000,24(9):5-11+41
    [42]范文涛,薛禹胜.电力系统紧急控制[J].继电器,1998,26(3):3-7
    [43]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):5-10
    [44]吴冀湘.电力系统分布式电压紧急控制研究[D].华中科技大学,2006
    [45]陈晟,陈昊,刘启胜.关于电力系统稳定控制方式的探讨[J].电力系统通信,2004,25(12):47-49
    [46]Xue Y.. An emergency control framework for transient security of large power systems[R]. International Symposium on Power Systems,1993:284-289
    [47]张雪焱.基于WAMS信息提高电力系统稳定性的若干控制措施研究[D].华北电力大学(北京),2010
    [48]博书逷,倪以信,薛禹胜.直接法稳定分析(M).北京:中国电力出版社,1999
    [49]Kulkarni A.V., Gao W., Ning J.. Study of power system load shedding scheme based on dynamic simulation[C]. IEEE PES Transmission and Distribution Conference,2010:1-7
    [50]赵强,王丽敏,刘肇旭,等.全国电网互联系统频率特性及低频减载方案[J].电网技术,2009,33(8):35-40
    [51]Sanaye-Pasand M., Davarpanah M.. A new adaptive multi-dimensional load shedding scheme using genetic algorithm[C]. Canadian Conference on Electrical and Computer Engineering,2005
    [52]赵强,刘肇旭,张丽.对中国低频减载方案制定中若干问题的探讨[J].电力系统自动化,2010,34(11):48-53
    [53]裴健.新型低频减载方案的研究[D].山东大学,2005
    [54]Zin A.M., Hafiz H.M.. Static and dynamic under-frequency load shedding:a comparison[C].2004 International Conference on Power System,2004
    [55]Morison G., Gao B., Kundur P.. Voltage stability analysis using static and dynamic approaches[J]. IEEE Transactions on Power Systems,1993,8(3): 1159-1171
    [56]杜奇壮.电力系统低频减载研究[D].华北电力大学(北京),2007
    [57]秦明亮,杨秀朝.减少低频减载方案过切的措施研究[J].电网技术,2002,26(3):83-86
    [58]郭权利.低频减载装置在线整定研究[D].华北电力大学(北京),2006
    [59]常喜强,何恒靖,解大,等.计及频率差变化率的低频减载方案的研究[J].电力系统保护与控制,2010,38(4):68-73
    [60]Rudez U., Mihalic R.. Monitoring the first frequency derivative to improve adaptive underfrequency load-shedding schemes[J]. IEEE Transactions on Power Systems,2011,26(2):839-846
    [61]Chuvychin V.N., Gurov N.S.. An adaptive approach to load shedding and spinning reserve control during underfrequency conditions[J]. IEEE Transsctions on Power system,1996,9(3):1987-1877
    [62]Ying L., Kao W.S., Chen Y.T.. Study of applying load shedding scheme with dynamic D-Factor values of various dynamic load models to Taiwan power system[J]. IEEE Transactions on Power System,2004,20(4):1976-1984
    [63]彭疆南,孙元章,程林.基于受扰轨迹的紧急控制新方法[J].电力系统自动化,2002,26(21):17-22
    [64]吴小平.基于频率动态特性的电力系统频率稳定概率安全风险评估[D].重庆大学,2010
    [65]孙奇珍.广州电网孤网运行风险分析与策略研究[D].华南理工大学,2010
    [66]Lopes J. A., Wong W., Proenca L. M.. Genetic algorithms in the definition of optimal load shedding strategies[C]. IEEE Conference Proceedings on Power Technology,1999
    [67]Mitchell M.A., Lopes J.A., Fidalgo J.N.. Using a neural network to predict the dynamic frequency response of a power system to an under frequency load shedding scenario[C]. IEEE Conference Proceedings on Power Engineering, 2000
    [68]Hsu C.T., Kang M.S., Chen C.S.. Design of adaptive load shedding by artificial neural networks [C]. IEEE Conference Proceedings on Generation Transmission and Distribution,2005,152(3):415-421
    [69]Mohd Z.A., Mohd H.H., Aziz M.S.. A review of under frequency load shedding scheme on TNB system[C]. IEEE Conference Proceedings on Power and Energy,2004
    [70]熊小伏,周永忠,周家启.计及负荷频率特性的低频减载方案研究[J].中国电机工程学报,2005,25(19):48-51
    [71]PrasetiJ D., Lachs W. R., Sutant D.. A new load shedding scheme for limiting under frequency[J]. IEEE Trans on Power Systems,1994,9(3):1371-1378
    [72]丁伟,胡兆光.特高压输电经济性比较研究[J].电网技术,2006,30(19):7-13
    [73]汤亚芳,王建民,程浩忠,等.配电网经济性综合评估体系[J].电网技术,2007,31(2):127-130
    [74]刘立.配电网经济性和可靠性的综合评估[D].浙江大学,2007
    [75]Cheng C.P., CHEN Shi-he. Under frequency load shedding scheme design based on cost-benefit analysis[C]. IEEE Conference Proceedings on Advances in Power System Control Operation and Management,2003
    [76]Moya O.E.. A spinning reserve load shedding and economic dispatch solution by bender's decomposition[J]. IEEE Transactions on Power Systems,2005, 20(1):384-388
    [77]韩英铎,闵勇,洪绍斌.复杂扩展式电力系统功率频率动态过程分析[J].电力系统自动化,1992,16(1):28-33
    [78]Dadashzadeh M.R., Sanaye-Pasand M.. Simulation and investigation of load shedding algorithms for a real network using dynamic modeling[C]. IEEE Conference Proceedings on Power Engineering,2004
    [79]MIN Yong, HONG Shao-Bin, HAN Ying-Duo, et al. Analysis of power-frequency dynamics and designation of under frequency load shedding scheme in large scale multi-machine power systems[C]. IEEE Conference Proceedings on Advances in Power System Control Operation and Management,1991
    [80]王刚.基于动态等值法的影响电网频率动态特性的因素分析[D].东北电力大学,2006
    [81]李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,(27)3:61-65
    [82]Concordia C., Fink L.H., Poullikkas G.. Load shedding on an isolated system[J]. IEEE Transactions on Power Systems,1995,10(3):1467-1472
    [83]陈俊山,洪兰秀,郑志远.电力系统低频减载研究与应用发展[J].继电器,2007,35(14):79-82
    [84]王君,王晓茹,谢大鹏,等.孤岛系统的低频减载方案研究[J].电力系统保护与控制,2010,38(3):29-33+52
    [85]马平,蔡兴国,于继来,等.基于最小不匹配函数的低压减载算法研究[J].中国电机工程学报,2005,25(1):30-34
    [86]Gao B., Morison G.K., Kundur P.. Voltage stability evaluation using modal analysis[J]. IEEE Transactions on Power Systems,1992,7(4):1529-1542
    [87]袁志昌,夏涛.低压减载整定方法综述[J].电力系统保护与控制,2012,40(15):136-142
    [88]马世英,易俊,孙华东,等.电力系统低压减载配置原则及方案[J].电力系统自动化,2009,33(5):45-49
    [89]Balanathan R., Pahalawaththa N.C., Annakkage U.D., et al. Under-voltage load shedding to avoid voltage instability[C]. IEEE Conference Proceedings on Generation Transmission and Distribution,1998,145(2):175-181
    [90]Smon I., Verbic G., Gubina F.. Local voltage-stability index using Tellegen's theorem[J]. IEEE Transactions on Power Systems,2006,21(3):1267-1275
    [91]唐朝,卢继平,汪洋,等.基于风险的低压切负荷量的确定方法[J].电力系统自动化,2008,32(23):4-8
    [92]Tso S.K., Zhu T.X., Zeng Q.. Evaluation of load shedding to prevent dynamic voltage instability based on extended fuzzy reasoning[C]. IEEE Conference Proceedings on Generation Transmission and Distribution,1997
    [93]Taylor C.W.. Concepts of under voltage load shedding for voltage stability[J]. IEEE Transactions on Power Delivery,1992,7(2):480-488
    [94]Tuan T.Q., Fandino J., HadJsaid, et al. Emergency load shedding to avoid risks of voltage instability using indicators[J]. IEEE Transactions on Power Systems,9(1):341-351,1994
    [95]傅旭,王锡凡.一种新的节点静态电压稳定指标及切负荷算法[J].电网技术,2006,30(10):8-12,17
    [96]刘斌,陈磊,闵勇.考虑暂态电压稳定的低压减载地点选择[J].电力系统自动化,2008,32(5):11-14
    [97]Van C.T., Moors C., Lefebvre D.. Design of load shedding schemes against voltage instability using combinational optimization[C]. IEEE Conference Proceedings on Power Engineering,2002
    [98]任先成,薛禹胜,韦化.低频低压切负荷布点及轮次的优化与协调[J].电力系统自动化,2009,33(11):1-7
    [99]佘庆媛,沈沉,乔颖,等.电力系统低压减载和低频减载协调控制策略[J].电力系统自动化,2008,32(23):23-27
    [100]侯玉强,方勇杰,杨卫东,等.综合电压频率动态交互影响的自动减负荷控制新方法[J].电力系统自动化,2010,34(5):24-28
    [101]徐泰山,李碧君,鲍颜红,等.考虑暂态安全性的低频低压减载量的全局优化[J].电力系统自动化,2003,27(22):12-15
    [102]侯玉强,方勇杰,杨卫东,等.基于多代理技术的低频低压减负荷控制[J].电力系统自动化,2011,35(4):1-5
    [103]Novosel D., Khoi T.V., Hart D., et al. Practical protection and control strategies during large power system disturbances[C]. Proceedings of the IEEE Transmission and Distribution Conference,1996
    [104]Larsson M., Rehtanz C. Predictive frequency stability control based on wide area phasor measurements[C]. IEEE Proceedings on Power Engineering and Society,2002
    [105]Kearslev R.. Restoration in Sweden and experience gained from the blackout in 1983[J]. IEEE Transactions on Power Systems,1987,2(2):422-428
    [106]Vu K., Begovic M., Novosel D.,et al. Use of local measurements to estimate voltage stability margin[J]. IEEE Transactions on Power Systems,1999,14(3): 1029-1035
    [107]Milosevic B., Begovic M.. Voltage stability protection and control using a wide-area network of phasor measurements[J]. IEEE Transactions on Power Systems,2003,18(1):121-127
    [108]林湘宁,李正天,薄志谦,等.适用于微网孤岛运行的低频减载方法[J].电网技术,2010,35(3):16-20
    [109]吴军.基于功率平衡保护原理的电力系统紧急控制研究[D].华中科技大学,2006
    [110]李常刚.电力系统暂态频率稳定评估与控制研究[D].山东大学,2012
    [111]Wiszniews A.. New criteria of voltage stability margin for the purpose of load shedding[J]. IEEE Transactions on Power Delivery,2007,22(3):1367-1371
    [112]Verbic G., Gubina F.. A new concept of voltage-collapse protection based on local phasors[J]. IEEE Transactions on Power Delivery,2004,19(2):576-581
    [113]Gong Y., Schulz N., Guzman A.. Synchrophasor-based real-time voltage stability index[C]. Proceedings of the Power System Conference & Exposition,2006:1029-1036
    [114]Glavic M., Van C.T.. Wide-area detection of voltage instability from synchronized phasor measurements. Part Ⅰ:Principle[J]. IEEE Transactions on Power Systems,2009,24(3):1408-1416
    [115]De la O Serna J.A., Martin K.E.. Improving phasor measurements under power system oscillations[J]. IEEE Transactions on Power Systems,2003,18(1): 160-166
    [116]韩祯祥,童建中.大规模电力系统紧急状态控制综述(一)[J].电力系统自动化,1988,12(6):50-56
    [117]韩祯祥,童建中.大规模电力系统紧急状态控制综述(二)[J].电力系统自动化,1989,13(1):49-51
    [118]丁明,李生虎,吴红斌,等.基于充分性和安全性的电力系统运行状态分析和量化评价[J].中国电机工程学报,2004,24(04):47-53
    [119]程向辉,刘俊勇,杨嘉湜,等.电力系统运行状态分析和识别方法研究[J].四川电力技术,2009,32(1):20-23
    [120]Gubina F., Strmcnik B.. Voltage collapse proximity index determination using voltage phasor approach[J]. IEEE Transactions on Power Systems, 1995, 10(2):788-793
    [121]Terzija V.V.. Adaptive under frequency load shedding based on the magnitude of the disturbance estimation[J]. IEEE Transactions on Power Systems, 2006, 21(3):1260-1266
    [122]Parniani M., Nasri A..SCADA based under frequency load shedding integrated with rate of frequency decline[C]. Proceedings of the IEEE Power Engineering Society General Meeting,2006
    [123]Saffarian A., Sanaye-Pasand M.. Enhancement of power system stability using adaptive combinational load shedding methods[J]. IEEE Transactions on Power Systems,2010,26(3):1010-1020
    [124]张岩.基于PV曲线的分群低压减载配置方法研究[D].华北电力大学,2012
    [125]黄镔,赵良,马世英,等.基于PV曲线的低压减载配置方法[J].电网技术,2008,32(23):29-34
    [126]张岩,吴丽华,张卫东,等.基于P-V曲线的低压减载分群配置方案[J].南方电网技术,2012,6(2):84-88
    [127]Saffarian A., Sanaye-Pasand M., Asadi H. Performance investigation of new combinational load shedding schemes[C]. Power System Technology and IEEE Power India Conference,2008
    [128]Seyedi H., Sanaye-Pasand M.. New centralized adaptive load shedding algorithms to mitigate power system blackouts[J]. IET Generation Transmission and Distribution,2009,3(1):99-114
    [129]Begovic M., Novosel D., Milisavljevic M.. Trends in power system protection and control[J]. Decision Support Systems,2001,30(3):269-278
    [130]Lachs W.R.. Area wide system protection scheme against extreme contingencies[C]. Proceeding of the IEEE,2005,93(5):1004-1027
    [131]Jung J., Liu C.C., Tanimoto S.L., et al. Adaptation in load shedding under vulnerable operating conditions[J]. IEEE Transactions on Power Systems, 2002,17(4):1199-1205
    [132]Delfino B., Massucco S., Morini A., et al. Implementation and comparison of different under frequency load shedding schemes[C]. IEEE Proceedings on Power Engineering and Society,2001
    [133]Kunder P.. Power system stability and control[M]. New York, USA: McGraw-Hill Inc.,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700