糖枫热水抽提浓缩液的稀酸水解及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的硫酸盐法制浆造纸工艺中,约75%的半纤维素流失到黑液废水中。流失的半纤维素只能与木质素一起作为锅炉填料来使用,但半纤维素的燃烧热值并不高,只有13.5 MJ/Kg,约为木质素的二分之一,因而半纤维素其实并未得到优化利用。在制浆之前把半纤维素从木材中抽提出来的做法无疑是一项非常有意义的举措,——此举降低了随后蒸煮过程中碱的用量,抽提出来的半纤维素经糖化发酵可用来生产燃料乙醇等多种高附加值化学品。
     论文研究工作以热水抽提硬木糖枫的半纤维素浓缩抽提液为原料,以稀硫酸为催化剂,以600兆赫兹核磁共振氢谱(1H NMR)和二维波谱(2D HSQC)为主要分析手段,对浓缩抽提液分别于常压和带压下的最佳水解工艺进行了摸索探讨,重点分析了水解产物中的各组份的含量受水解工艺条件如反应温度、催化剂酸用量、反应时间等因素的影响。
     同时,在盛行的木质纤维素类生物质水解反应的动力学模型——Saeman模型和两相水解模型的基础进行拓展与改进,提出新的半纤维素稀酸水解反应的动力学模型,运用该模型对浓缩抽提液的稀酸水解反应进行拟合,解析出半纤维素水解反应、单糖降解反应和糠醛与羟甲基糠醛降解反应的速率常数、表观活化能及指前因子等一系列动力学参数。结论如下:
     1)使用稀硫酸催化水解糖枫热水抽提浓缩液能实现半纤维素木聚糖水解成单糖的目的。木糖是水解液中含量最多的单糖组份,占单糖总量的80%以上,其它单糖包括阿拉伯糖、葡萄糖、甘露糖、半乳糖和鼠李糖。除阿拉伯糖外,其余的五种单糖在水解液中的浓度于一定时期内随着反应温度的升高、催化剂酸用量的增加和反应时间的延长呈上涨趋势;当它们的浓度达到最大值后,继续延长反应时间会导致浓度的下降。阿拉伯糖被证实是一种易降解的单糖,多数实验中只能观察到其浓度随反应时间的延长而下降的趋势。醋酸是水解液中含量最多的非糖类副产物,实验证实当催化剂酸浓度达到一定值(≥1%)时,乙酰基会很快地从半纤维素主链上断裂开来,醋酸浓度往往在反应前几分钟(小于两分钟)或升温过程中就达到一个平台值,此后其浓度基本不发生变化。其它的副产物还包括糠醛、羟甲基糠醛和甲酸等,糠醛和羟甲基糠醛的浓度都是随着反应温度的升高、酸浓度的增加和反应时间的延长而增大的,糠醛和羟甲基糠醛在水解液中的存在证实了五碳糖和六碳糖在反应过程中发生了降解,且反映了反应条件越严厉时五碳糖与六碳糖降解的越多。甲酸是在催化剂酸浓度达到一定值(1%)后才开始产生的,一旦产生后其在水解液中的浓度随反应时间的延长而缓慢增长,但其总量相当有限。
     2)水解反应的最佳工艺条件。对于浓缩抽提液1#于常压下的水解,推荐水解反应的最佳工艺条件为:反应温度95~105°C、硫酸与浓缩抽提液的质量比6.2%、反应时间20~30分钟。对于采用高压反应釜做反应器的浓缩抽提液2#的水解,推荐的最佳水解工艺条件为:反应温度120°C、硫酸与浓缩抽提液的质量比1.5%、反应时间25分钟。
     3)由建立的半纤维素水解反应的动力学模型解析出的系列动力学参数,包括各种反应条件下的各反应的速率常数、表观活化能和指前因子。在反应温度85~105°C、酸浓度1.5~6.2%的反应条件下,浓缩抽提液1#中的半纤维素水解反应的速率常数在1.28×10~(-3)~3.29×10~(-2) min~(-1)范围内,反应表观活化能为117.88 KJ/mol,指前因子为6.58×1014 min~(-1);单糖降解反应的速率常数在2.18×10~(-6)~1.74×10~(-3) min~(-1)范围内,反应表观活化能为133.24 KJ/mol,指前因子为9.12×1014 min~(-1);糠醛与羟甲基糠醛降解反应的速率常数保持为零,表明在此种条件下糠醛与羟甲基糠醛没有发生降解。在反应温度120~150°C、酸浓度0~1.0%的反应条件下,浓缩抽提液2#中的半纤维素水解反应的速率常数在1.11×10~(-3)~0.236 min~(-1)范围内,反应表观活化能为103.11 KJ/mol,指前因子为1.18×1012 min~(-1);单糖降解反应的速率常数在7.03×10~(-5)~1.56×10~(-3) min~(-1)范围内,反应表观活化能为142.61 KJ/mol,指前因子为6.01×10~(14) min~(-1);糠醛与羟甲基糠醛降解反应的速率常数在5.35×10~(-5)~8.77×10~(-4) min~(-1)范围内,反应表观活化能为128.77 KJ/mol,指前因子为6.61×10~(12) min~(-1)。
During the traditional process of Kraft pulping, approximately 75% of hemicelluloses in woody biomass are lost into the black liquor. The lost hemicellulosic fraction along with lignin is usually used as boiler feed. In fact, the calorific value of hemicelluloses is low, only 13.5 MJ/kg, as half of the calorific value of lignin. That is to say, the hemicelluloses are not properly utilized. Undoubtedly, extracting hemicelluloses out of woody biomass before pulping process is a novel and meaningful technology, which help to cut down the alkali dosage required in the pulping process. Furthermore, the pre-extracted hemicelluloses can be converted to many kinds of value added products such as bioethanol by saccharification and fermentation and enhances its appeal.
     In this study, concentrated hot-water extract of sugar maple hardwood chips are used as experimental materials and dilute sulfuric acid is adopted as catalyst, acid hydrolysis of concentrated hot-water extract are performed in two different reactors of an oil bath setup and a Parr high pressure reactor. Sequently, 1H NMR spectroscopy and 2D HSQC spectroscopy from 600 MHz Nuclear Magnetic Resonance technology are employed to analyze the concentration of each component in the resulting hydrolysates. The influences of reaction temperature, acid dosage and reaction time on the concentration of each component during acid hydrolysis process are discussed in detail. Accordingly, the optimal technological conditions of dilute acid hydrolysis of concentrated hot-water extract are proposed.
     Based on the two prevalent kinetic models of acid hydrolysis of lignocellulosic materials, Saeman Model and Biphasic Hydrolysis Model, some improvements are made and a new kinetic model of acid hydrolysis of hemicelluloses is advocated. By performing the new model, a series of kinetic parameters of acid hydrolysis are figured out such as rate constants, apparent activation energies and pre-exponential factors.
     Some conclusions are drawn according to the experiments as following:
     1) Dilute sulfuric acid hydrolysis of concentrated hot-water extract can attain the expected goal of the conversion of pre-extracted hemicelluloses to monomeric sugars. Xylose is the most abundant monomeric sugar in the hydrolysate and accounts for more than 80% on a weight basis. There are several other monomeric sugars in the hydrolysate, including arabinose, glucose, mannose, galactose and rhamnose. To an extent, higher temperature, higher acid concentration and longer residence time all favor the increment of the concentrations of monomeric sugars except that of arabinose. Once the concentrations of monomeric sugars obtain the maximum in the hydrolysate, they decrease over prolonged reaction time. Arabinose is confirmed as a readily degradable monomer, the concentration of arabinose is observed decreasing over reaction time in most of the experiments. Acetic acid is the most abundant nonsugar byproduct in the hydrolysate. The acetyl groups cleave from the main chain of xylan very rapidly when the sulfuric acid dosage is more than 1% so that the concentration of acetic acid attains a platform value during the first two-minute reaction or the heating up period, hereafter the concentration of acetic acid keeps nearly unchanged over reaction time. The other nonsugar byproducts include furfural, hydroxymethylfurfural and formic acid, etc. the concentrations of furfural and hydroxymethylfurfural increase with the increments in reaction temperature, acid dosage and residence time, which confirms that more severity in experimental conditions, more pentoses and hexoses degrade. Formic acid generates only when the acid dosage is more than 1%. Once the formation of formic acid starts, the concentration of formic acid goes up very slowly over reaction time. However, the amount of formic acid in the hydrolysate is comparatively small.
     2) The optimal conditions of acid hydrolysis of concentrated hot-water extract are proposed. As to acid hydrolysis of concentrated hot-water extract No.1 at atmospheric pressure, the recommended technological condition is like that reaction temperature between 95°C and 105°C, the weight ratio of sulfuric acid to the extract equal to 6.2%, reaction time between twenty and thirty minutes. As to acid hydrolysis of concentrated hot-water extract No. 2 when a Parr high pressure vessel is used as reactor, the best technological condition is reaction temperature at 120°C, the weight ratio of sulfuric acid to the extract equal to 1.5%, residence time equal to twenty-five minutes.
     3) A series of kinetic parameters are figured out by performing the proposed kinetic model of acid hydrolysis of hemicelluloses, including rate constants, apparent activation energies and pre-exponential factors. Under the conditions of reaction temperature between 85°C and 105°C, the mass ratio of sulfuric acid to the extract between 1.5% and 6.2%, the rate constants of hemicellulose hydrolysis reaction in the concentrated hot-water extract No.1 vary from 1.28×10~(-3) min~(-1) to 3.29×10~(-2) min~(-1), and the rate constants of sugar degradation reaction are in the range of 2.18×10~(-6) min~(-1) to 1.74×10~(-3) min~(-1). The apparent activation energies and pre-exponential factors of hemicellulose hydrolysis reaction and of sugar degradation reaction are 117.88 KJ/mol,133.24 KJ/mol and 6.58×10~(14) min~(-1), 9.12×10~(14)min~(-1), respectively. The rate constant of furfural (including hydroxy-methylfurfural) degradation reaction keeps being zero. i.e., no furfural or hydroxymethylfurfural degrades under the circumstances. Under the conditions of reaction temperature between 120°C and 150°C, the mass ratio of sulfuric acid to the extract between 0 and 1.0%, the rate constants of hemicellulose hydrolysis reaction in the concentrated hot-water extract No.2 vary from 1.11×10~(-3) min~(-1) to 0.236 min~(-1), and the rate constants of sugar degradation reaction are in the range of 7.03×10~(-5) min~(-1) to 1.56×10~(-3) min~(-1), and the rate constants of furfural (including hydroxymethylfurfural) degradation reaction are between 5.35×10~(-5) min~(-1) and 8.77×10~(-4) min~(-1). The apparent activation energies and pre-exponential factors of hemicellulose hydrolysis reaction and of sugar degradation reaction and of furfural (including hydroxymethylfurfural) degradation reaction are 103.11 KJ/mol, 142.61 KJ/mol, 128.77 KJ/mol and 1.18×10~(12) min~(-1), 6.01×10~(14) min~(-1), 6.61×10~(12) min~(-1), respectively.
引文
[1].丁峰.世界油气资源储产量动态(上). http://www.mlr.gov.cn/xwdt/jrxw/201002/t2010 0224_137841.htm, 2010-02-24
    [2].张永胜.世界煤炭储量问题. http://zhangys9311.blog.163.com/blog/static/32230862009 1055495599/, 2009-11-05
    [3]. Sánchez, O.J., Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstock [J]. Bioresource Technology, 2008, 99(13): 5270-5295
    [4]. Taherzadeh M.J., karimi K. Acid-based hydrolysis process for ethanol from lignocellulosic materials: a review [J]. Bioresource, 2007, 2(3): 472-499
    [5]. So S.K., Brown C.R. Economic analysis of selected lignocellulose-to-ethanol conversion technologies [J]. Applied Biochemistry and Biotechnology, 1999, 79(8): 633-640
    [6]. Duchesne L., Ouimet R., Houle D. Basal area growth of sugar maple in relation to acid deposition, stand Health, and soil Nutrients [J]. Journal of Environmental Quality, 2002, 31: 1676-1683
    [7]. Drohan P.J., Stout S.L., Petersen G.W. Sugar mpale (Acer saccharum Mash.) decline during 1979-1989 in northern Pennsylvania. Forest Ecology and Management, 2002, 170: 1-17
    [8]. Hartmann H., Beaudet M., Mazerole M.J., et al. Sugar maple (Acer saccharum Marsh.) growth is influenced by close conspecifics and skid trail proximity following selection harvest. Forest Ecology and Management, 2009, 258: 823-831
    [9]. Marvin J.W., Morselli M., Laing F.M. A correlation between sugar concentration and volume yields in sugar maple-an 18-year study [J]. Forest Science, 1967, 13(4): 34-351
    [10]. Watson P., Hussein A., Reath S., et al. The Kraft pulping properties of Canadian red and sugar maple [J]. TAPPI Journal, 2003, 2(6): 26-32
    [11].周亚军.用枫树高得率化机浆生产高档涂布纸板.中国造纸, 2003, 22(7): 11-15
    [12]. Aspinall G. The biochemistry of plants (a comprehensive treatise) [M]. New York: Academic Press, 1980, Vol.3: 473–500
    [13].王晓平.关于半纤维素对纸张物理强度的影响.皖西学院学报, 2005, 21(2): 47-48
    [14]. Amidon T.E., Wood C.D., Shupe A.M., et al. Biorefinery: conversion of woody biomass to chemicals, energy and materials [J]. Journal of Biobased Materials and Bioenergy, 2008, 2(2): 100-120
    [15].陈国符.植物纤维化学[M].北京:轻工业出版社, 1980
    [16]. Hawthorne S.B., Yang Yu, Miller D.J. Extraction of organic pollutants from environmental solids with sub- and supercritical water [J]. Analytical Chemistry, 1994, 66: 2912-2920
    [17]. Kronholm J., Hartonen K., Riekkola M.L. Analytical extractions with water at elevated temperatures and pressures [J]. Trends in Analytical Chemistry, 2007, 26(5): 396-412
    [18]. Ong E.S., Len S.M. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal plants [J]. Analytical Chimica Acta, 2003, 482(1): 81-89
    [19]. Kronholm J., Kalpala J., Hartonen K., et al. Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs [J]. The Journal of Supercritical Fluids, 2002, 23(2): 123-134
    [20]. Teo C.C., Tan S.N., Yong J.W.H., et al. Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume by pressurized hot water extraction and microwave-assisted extraction [J]. Journal of Chromatography A, 2008, 1182(1): 34-40
    [21]. Teo C.C., Tan S.N., Yong J.W.H., et al. Pressurized hot water extraction (PHWE) [J]. Journal of Chromatography A, 2010, 1217(16): 2484-2494
    [22]. ?zlem Gü?lü-üstünda?, Balsevich J., Mazza G. Pressurized low polarity water extraction of saponins from cow cockle seed [J]. Journal of Food Engineering, 2007, 80(2): 619-630
    [23]. Pronyk C., Mazza G. Design and scale-up of pressurized fluid extractors for food and bioproducts [J]. Journal of Food Engineering, 2009, 95(2): 215-226
    [24] Colin H.L. Ho, Juan E. Cacace, Mazza G. Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water [J]. Food Science and Technology, 2007, 40(9): 1637-1647
    [25]: Ho C.H.L., Cacace J.E., Mazza G. Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal [J]. Journal of Food Engineering, 2008, 89(1): 64-71
    [26]. Ashutosh Mittal. Kinetics of hemicellulose extraction during autohydrolysis of sugar maple wood [D]. Syracuse, NY USA: SUNY-ESF, 2006
    [27]. Vincent A. Barber. Extraction of hemicelluloses from sugar maple chips after biotreatment with Ceriporiopsis subvermispora [D]. Syracuse, NY USA: SUNY-ESF, 2007
    [28]. Laser Mark. A comparison of liquid hot water and steam pretreatment of sugar cane bagasse for bioconversion to ethanol [J]. Bioresource technology, 2002, 81: 33-44
    [29].徐明忠,庄新姝,袁振宏,等.木质纤维素类生物质稀酸水解技术研究进展[J].可再生能源, 2008, 26(3): 43-48
    [30].雷以超,刘世界,吴渊,等.蔗渣的热水抽提和碱法制浆[J].中国造纸, 2009, 28(7): 73-75
    [31]. Sreenath H.K., Koegel R. G., Moldes A.B., et al. Ethanol production from alfalfa fiber fractions by saccharification and fermentation [J]. Process Biochemistry, 2001, 36: 1199-1204
    [32]. Shijie Liu. A kinetic model on autocatalytic reactions in woody biomass hydrolysis [J]. Journal of Biobased Materials and Bioenergy, 2008, 2: 135-147
    [33]. Liu S., Amidon T.E., Wood C.D. Membrane filtration: concentration and purification of hydrolysates from biomass [J]. Journal of Biobased Materials and Bioenergy, 2008, 2: 121-134
    [34].姜崛,姚嘉吴,吴昊,等.稀酸水解玉米皮制备丁二酸发酵糖液的研究[J].食品与发酵工业, 2007, 33(10): 6-9
    [35].田沈,姚莹秋,蔺增曦,等.木质纤维素稀酸水解糖液乙醇发酵研究进展.微生物学通报, 2007, 34(2): 355-358
    [36]. Harris E.E., Beglinger E. Madison wood sugar process [J]. Industrial and Engineering Chemistry, 1946, 38(9): 890-895
    [37].罗鹏,刘忠.木质生物资源的水解[J].林产化学与工业, 2006, 26(2): 99-104
    [38]. Kim J.S., Lee Y.Y., Torget R. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions [J]. Applied Biochemistry and Biotechnology, 2001, 91/93: 331-340
    [39]. Bose S.K., Barber V.A., Alves E.F., et al. An improved method for the hydrolysis of hardwood carbohydrates to monomers. Carbohydrate Polymers, 2009, 78(3): 396-401
    [40].付泽鹏,田沈,董晓宇,等.木质纤维素两步稀酸低温水解研究[J].太阳能学报, 2007, 28(9): 967-971
    [41].王欢,郭瓦力,王洪发,等.玉米秸秆酸水解制糖新工艺[J].安徽农业科学, 2007, 35(35): 11603-11605, 11625
    [42]. Karimi K., Kheradamandinia S., Taherzadeh M.J. Conversion of rice straw to sugars by dilute-acid hydrolysis [J]. Biomass and Bioenergy, 2006, 30(3): 247-253
    [43]. Kim K.H., Tucker M., Nguyen Q. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis [J]. Bioresource Technology, 2005, 96(11): 1249-1255
    [44]. Sanchez G., Pilcher L., Roslander C., et al. Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava [J]. Bioresource Technology, 2004, 93(3): 249-256
    [45]. Iranmahboob J., Nadim F., Monemi S. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips [J]. Biomass and Bioenergy, 2002, 22(5): 401-404
    [46]. Papatheofanous M. G., Koullas D. P., Koukios E. G. Two-stage acid catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures [J]. Bioresource Technology, 1995, 54: 305-310
    [47].戴宇胜,颜涌捷,熊利红,等.生物质能源开发一一甘蔗渣制燃料酒精[J].燃料化学学报, 1989, 17(4): 359-364
    [48]. Beck M.J., Strickland R.C. Production of ethanol by bioconversion of wood sugars derived from two-stage dilute acid hydrolysis of hardwood [J]. Biomass, 1984, 6(1-2): 101-110
    [49].李文志.纤维素废弃物稀酸水解制取还原性单糖的研究[D].上海,华东理工大学, 2009
    [50]. Nguyen Q.A., Tucker, Melvin P. Dilute acid/metal salt hydrolysis of lignocellulosics [P]. US: 6423145, 2002
    [51].颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报, 1999, 20(1): 57-58
    [52].庄新姝,王树荣,骆仲泱,等.纤维素低浓度酸水解试验及产物分析研究[J].太阳能学报, 2006, 27(5): 521-522
    [53].伯永科,崔海信,蔡鸿昌,等.木质纤维素稀酸糖化研究初探[J].中国农业科技导报, 2007, 9(6): 105-109
    [54].伯永科,崔海信,刘琪,等.基于金属盐助催化剂的秸秆纤维素稀酸水解研究[J].中国农学通报, 2008, 24(9): 435-438
    [55].余强,庄新姝,袁振宏,等.生物质稀酸水解动力学及其反应器的研究进展[J].化工进展, 2009, 28(9): 1657-1661
    [56].庄新姝.生物质超低酸水解制取燃料乙醇的研究[D].杭州:浙江大学,2005
    [57]. Thompson D.R., Grethele H. Design and evaluation of a plug flow reactor for acid hydrolysis of cellulose [J]. Industrial and Engineering Chemistry Research, 1979, 18: 166-169
    [58]. Torget R., Hsu The-an. Two-temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process [J]. Applied Biochemistry and Biotechnology, 1994, 45/46: 5-22
    [59]. Torget R., Hatzis C., Hayward T.K., et al. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol [J]. Applied Biochemistry and Biotechnology, 1996, 57/58: 85-101
    [60]. Elander R.T., Nagle N.J., Ucker M.P., et al. Initial results from a novel pilot scale pretreat-ment reactor using very dilute acid on a hardwood feedstock [C]. The 24th Symposium on Biotechnology for Fuels and Chemicals. New Jersey: Humana Press,2002
    [61]. Noureddini H., Byun J. Dilute-acid pretreatment of distillers’grains and corn fiber [J]. Bioresource Technology, 2010, 101: 1060-1067
    [62]. Geddes C.C., Peterson J.J., Roslander C., et al. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases [J]. Bioresource Technology, 2010, 101: 1851-1857
    [63]. Qi Benkun, Chen Xiangrong, Wan Yinhua. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production [J]. Bioresource Technology, 2010, 101: 4875-4883
    [64]. Pourbafrani M., Forgács G., Horváth I.S., et al. Production of biofuels, limonene and pectin from citrus wastes [J]. Bioresource Technology, 2010, 101: 4246-4250
    [65].张晶晶,万金泉,赵银中,等.旧瓦楞纸箱稀酸水解制还原糖的研究[J].安微农业科学, 2009, 37(35): 17312-17314
    [66].吴昊,姚嘉旻,刘宗敏,等.玉米籽皮稀酸水解液脱毒发酵制备丁二酸的可行性[J].农业工程学报, 2009, 25(2): 267-272
    [67].黄秋婷,张鹏,张淑荣,等.螺杆挤压连续汽爆玉米秸秆的稀酸水解效果[J].农业工程学报, 2009, 25(7): 190-194
    [68]. Kootstra A. M.J., Beeftink H.H., Scott E.L., et al. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw [J]. Biochemical Engineering Journal, 2009, 46: 126-131
    [69]. Zheng Yi, Pan Zhongli, Zhang Ruihong, et al. Enzymatic saccharification of dilute acid pre-treated saline crops for fermentable sugar production [J]. Applied Energy, 2009, 86: 2459-2465
    [70]. Monavari S., Galbe M., Zacchi G. Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production [J]. Bioresource Technology, 2009, 100: 6312-6316
    [71].伯永科,崔海信,刘琪,等.基于稀酸水解法的制糖残渣纤维素糖化研究[J].中国农业科技导报, 2008, 10(5): 88-93
    [72].张素平,亓伟,具文华,等.木质纤维素生物质稀酸水解研究(I)—连续水解反应器的研究与开发[J].太阳能学报, 2008, 29(5): 532-535
    [73].李岩,张晓东,孟祥梅,等.玉米秸秆稀酸水解与水解液发酵的实验研究[J].现代化工, 2008, 28(增2): 352-355
    [74].程旺开,汤斌,张庆庆,等.麦秸秆稀酸水解条件的研究[J].安徽工程学院院报, 2008, 23(1): 26-28
    [75].江滔,路鹏,李国学.玉米秸秆稀酸水解糖化法影响因子的研究[J].农业工程学报, 2008, 24(7): 175-180
    [76]. Guo Gia-Luen, Chen Wei-Hsi, Chen Wen-Heng, et al. Characterization of dilute acid pretreatment of silvergrass for ethanol production [J]. Bioresource Technology, 2008, 99: 6046-6053
    [77].李文志,颜涌捷,许洁,等.纤维素废弃物双酸水解制取还原性单糖的研究[C].第二届全国研究生生物质能研讨会论文集, 2007, 12: 490-500
    [78]. Orozco A., Ahmad M., Rooney D., et al. Dilute acid hydrolysis of cellulose and cellulosic bio-Waste using a microwave reactor system [J]. Process Safety and Environmental Protect-ion, 2007, 85(5): 446-449
    [79].袁振宏,方宏,颜涌捷,等.反应条件对松木稀酸水解过程的影响[J].太阳能学报, 2006, 27(6): 628-630
    [80]. Karimi K., Emtiazi G., Taherzadeh M.J. Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus [J]. Process Biochemistry, 2006, 41: 653-658
    [81]. Karimi K., Emtiazi G., Taherzadeh M.J. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae [J]. Enzyme and Microbial Technology, 2006, 40: 138-144
    [82].安宏,王树荣,庄新姝,等.纤维素稀酸水解的试验研究[J].新能源及工艺, 2005, 2: 22-25
    [83].庄新姝.生物质超低酸水解制取燃料乙醇的研究[D].杭州:浙江大学, 2005.
    [84]. Saha B.C., Iten L.B., Cotta M.A., et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol [J]. Process Biochemistry, 2005, 40: 3693-3700
    [85]. Sun Ye, Cheng J.J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production [J]. Bioresource Technology, 2005, 96: 1599-1606
    [86]. Kamiyama Y., Sakai Y. Rate of hydrolysis of xylo-oligosaccharides in dilute sulfuric acid [J]. Carbohydrate Research, 1979, 73: 151
    [87]. Mcparland J.J., Grethlein H.E., Converse A.Q. Kinetics of acid hydrolysis of corn stover [J]. Solar Energy, 1982, 28(1): 55-63
    [88]. Maloney M.T., Chapman T.W. Dilute acid hydrolysis of paper birch: kinetics studies of xylan and acetyl group hydrolysis [J]. Biotechnology and Bioengineering, 1985, Vol. XXVII: 355-361
    [89]. Kim S.B.; Lee Y.Y. Kinetics in acid-catalyzed hydrolysis of hardwood hemicellulose [R]. Biotechnology and Bioengineering Symposia, 1987, 17: 71
    [90].李庭琛,王杰,颜涌捷.稻壳两步水解工艺条件及动力学研究[J].太阳能学报, 1995, 16(2): 143-149
    [91].侯永发,杨维生,秦文龙.山杨和速生杨硫酸盐浆多相水解动力学的研究[J].林产业化学与工业, 1995, 15(2): 50-55
    [92]. Choi C.H., Mathews A.P. Two-step acid hydrolysis process kinetics in the saccharification of low-grade biomass: 1. Experimental studies on the formation and degradation of sugars [J]. Bioresource Technology, 1996, 58(2): 101-106
    [93]. Esteghlalian A., Hashimoto A.G., Fenske J.J., et al. Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar and switchgrass [J]. Bioresource Technology, 1997, 59: 129-136
    [94]. Kim S.B., Yum D.M., Park S.C. Step-change variation of acid concentration in a percolation reactor for hydrolysis of hardwood hemicellulose [J]. Bioresource Technology, 2000, 72: 289-294
    [95]. Lavarack B.P., Griffin G.J., Rodman D. Measured kinetics of the acid-catalysed hydrolysis of sugar cane bagasse to produce xylose [J]. Catalysis Today, 2000, 63(2-4): 257-265
    [96]. Aguilar R., Ramírez J.A., Garrote G., et al. Kinetic study of the acid hydrolysis of sugar cane bagasse [J]. Journal of Food Engineering, 2002, 55(4): 309-318
    [97]. Rahman S.H.A., Choudhury J.P., Ahmad A.L. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid [J]. Biochemical Engineering Journal, 2006, 30: 97–103
    [98].孙勇,张金平,杨刚,等.盐酸水解玉米秸秆木聚糖的动力学研究[J].化学工程, 2007, 35(10): 49-52.
    [99].刘仁成,姚伯元,黄广民.椰壳酸水解制备木糖的反应动力学[J].化工学报, 2007, 58(11): 2810-2815
    [100].孙勇,林鹿,邓海波,等.麦草纤维在甲酸体系中的水解动力学研究[J].江西农业大学学报, 2008, 30(1): 154-159
    [101]. Lu Xuebin, Zhang Yimin, Liang Ying., et al. Kinetic studies of hemicellulose hydrolysis of corn stover at atmospheric pressure [J]. Korean Journal of Chemistry Engineering, 2008, 25(2): 302-307
    [102]. Lu Yulin, Mosier N.S. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover [J]. Biotechnology and Bioengineering, 2008, 101(6): 1170-1181
    [103]. Yat S.C., Berger A., Shonnard D.R. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass [J]. Bioresource Technology, 2008, 99(9): 3855-3863
    [104].亓伟.生物质稀酸催化水解机理的研究[D].上海:华东理工大学, 2009
    [105]. Zhuang Xinshu, Yuan zhenhong, Ma Longlong, et al. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water [J]. Biotechnology Advances, 2009, 27(5): 578-582
    [106]. Saeman J.F. Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature [J]. Industrial and Engineering Chemistry, 1945, 37(1): 43-52
    [107]. Kobayashi T., Sakai Y. Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid [J]. Bulletion of the Agricultural Chemical Society of Japan, 1956, 20(1): 1-7
    [108]. Hu Ruofei, Lin Lu, Liu Tingjun, et al. Reducing sugar content in hemicellulose hydrolysate by DNS method: a revisit [J]. Journal of Biobased Materials and Bioenergy, 2008, 2: 156-161.
    [109]. NREL. Dilute acid hydrolysis procedure for determination of total sugars in the liquid fraction of process samples. Ethanol Project CAT Task Laboratory Analytical Procedure #014, 2006
    [110]. NREL. HPLC analysis of liquid fractions of process samples for monomeric sugars and cellobiose. Ethanol Project CAT Task Laboratory Analytical Procedure #013, 2006
    [111]. NREL. HPLC analysis of liquid fractions of process samples for byproducts and degra-dation products. Ethanol Project CAT Task Laboratory Analytical Procedure #015, 2006
    [112].许汉英,赵晓君.分光光度法测定白酒中的中的糠醛[J].应用化学, 1997, 14(3): 84-86
    [113]. C?pür Y., Kiemle D.J., Stipanovic A.J., et al. 1H-NMR spectroscopic determination of carbohydrates in pine and maple pulps [J]. Paperi ja Puu, 2003, 85(3): 158-162.
    [114]. Kiemle D.J., Stipanovic A.J., Mayo K.E. Proton NMR methods in the compositional characterization of polysaccharides [J]. ACS symposium series, 2004, 864: 122-139.
    [115]. Mittal A., Scott G.M., Amidon T.E., et al. Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods [J]. Bioresource Technology, 2009, 100: 6398-6406
    [116]. Hu Ruofei, Lin Lu, Liu Tingjun, et al. Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure [J]. Bioresource Technology, 2010, 101(10): 3586-3594
    [117]. Fengel D., Wegener G. Wood: Chemistry, Ultrastructure, Reactions [M]. New York: Walter de Gruyter, 1989
    [118]. John F. Robyt. Essentials of Carbohydrate Chemistry [M]. New York: Springer, 1997: 48-74
    [119]. ?man P. Chemical composition and in vitro degradability of major chemical constituents in botanical fractions of red clover harvested at different stages of maturity [J]. Journal of the Science of Food and Agriculture, 1985, 36(9): 775-780
    [120]. Albrecht K.A., Wedin W.F., Buxton D.R. Cell-wall composition and digestibility of alfalfa stems and leaves [J]. Crop Science, 1987, 27: 735-741
    [121]. Jung H.G., Morrison T.A., Buxton D.R. Degradability of cell-wall polysaccharides in maize internodes during stalk development [J]. Crop Science, 1998, 38:1047-1051
    [122]. Gunnarsson S., Marstorp H., Dahlin A.S., et al. Influence of non-cellulose structural car-bohydrate composition on plant material decomposition in soil. Biology and Fertility of Soils, 2008, 45(1): 27-36
    [123].亓伟,张素平,任铮伟,等.酸浓度对水解液中葡萄糖分解反应的影响研究[J].太阳能学报, 2008, 29(11): 1395-1398 124. Qi Wei, Zhang Su-ping, Xu Qing-li, et al. Degradation of kinetics of xylose and glucose in hydrolysate containing dilute sulfuric acid [J].过程工程学报, 2008, 8(6): 1132-1137
    [125]. Qian X., Nimlos M. R., Davis M., et al. Ab initio molecular dynamics simulations ofβ-D-glucose andβ-D-xylems degradation mechanisms in acidic aqueous solution [J]. Carbohydr-ate Research, 2005, 340(14), 2319-2327
    [126]. Qian X, Lee Y Y, Torget R W. Kinetics of glucose decomposition during dilute acid hydrolysis of Lignocellulosic Biomass [J]. Applied Bioehemistry and Bioteehnology, 2004, 115(l/3): 1127-1139
    [127]. Antal M.J., Mok W.S.L., Richards G.N. Kinetics studies of the reactions of ketoses and aldoses in water at high temperature. 1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose [J]. Carbohydrate Research, 1990, 199(1): 91-109
    [128]. Van D.H.E., Kieboom A.P.G., Van B.H. The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural [J]. Starch/Starke, 1986, 38(3): 95-101
    [129].彭新文.稀硫酸/盐催化葡萄糖降解反应动力学[D].杭州:浙江大学, 2008
    [130].彭新文,吕秀阳. 5 -甲基糠醛在稀硫酸催化下的降解反应动力学[J].化工学报, 2008, 59(5): 1150-1155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700