稻草秸秆同步糖化发酵制备纤维素乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油、煤炭等传统能源日渐枯竭,且伴随有环境污染。解决能源危机和环境污染迫在眉睫,利用稻草、玉米或小麦秸秆发酵制备生物燃料乙醇能够缓解上述危机。国内外对秸秆燃料乙醇已进行了多年的研究和应用工作,但至今依然存在诸多关键制约因素。文献表明,制约秸秆燃料乙醇规模化生产的瓶颈问题有三:一是原料的预处理造成严重的环境污染或处理成本偏高;二是发酵阶段中糖的利用率低造成燃料乙醇产率偏低;三是纤维素酶由于还原糖的抑制作用致使酶解秸秆效率偏低,导致水解液中还原糖低,造成燃料乙醇生产成本高。
     本文拟采用稻草秸秆绿色化预处理工艺和筛选高产纤维素酶生产菌、耐高温高转化率乙醇酵母及同步糖化发酵工艺解决秸秆纤维素制备燃料乙醇的诸多瓶颈问题。为此,本文通过大量的试验,取得了阶段性的成果。主要包括以下几个方面:
     (1)稻草纤维素预处理条件研究。本文从机械粉碎、微波处理、酸碱处理、甘油处理以及甘油与微波联合处理等方面研究了预处理对稻草酶解的影响。确定了采用7 g甘油与320 W微波联合处理6 min的1g稻草粉作为同步糖化发酵过程优化的实验原料。
     (2)高产纤维素酶生产菌的选育及生物学特性研究。通过一系列筛选和纯化工作,从造纸厂的废纸浆中分离出一株具有较强的产纤维素酶能力的革兰氏阴性菌株JX-2。该菌株初步鉴定为食纤维菌,其最适生长pH为9.0~11.0,最适生长温度为37℃,好氧。在较佳条件下采用JX-2菌株发酵生产纤维素酶,滤纸酶活力(FPA)可达到1158.6 U·ml-1,这一结果已显示了良好的生产潜力和应用前景。
     (3)耐高温高转化率乙醇酵母菌株的选育研究。经过一系列的筛选步骤,从酒精厂的酒糟中筛选得到两株耐高温的优良酵母菌株,分别是P1,5min,P2,10min。P1,5min,菌株能在52℃高温下,或酒精度为16 % (v/v)YPD固体培养基上生长,且其在52℃下发酵产酒精度为2.96 %(v/v);P2,10min菌株与P1,5min菌株类似,也能在52℃高温下,或酒精度为16 % (v/v)YPD固体培养基上生长,其在52℃下发酵产酒精度为2.86%(v/v)。
     (4)同步糖化发酵(SSF)过程的研究。研究发酵温度、起始pH值、酶加量、酵母接种量和发酵时间五个条件对发酵过程的影响,找出每个条件的最适值。根据单因素的研究结果,选取发酵温度、起始pH值、酶加量、酵母接种量四因素进行正交优化。最终确定的最优发酵条件是发酵温度36℃、起始pH值6.0、接种量7%,酶加量22ml(30U/ml的纤维素酶液)。
     (5)基于响应面法同步糖化发酵的优化。在同步糖化发酵研究的基础上,利用响应面法研究温度、接种量和酶的添加量等三个主要影响因子在同步糖化发酵(SSF)过程中对乙醇的产量的影响,通过实验及模型拟合,建立了同步糖化发酵条件对乙醇产量的一阶模型。y = 21.782 + 0.804x 1 + 0.124x 2 + 0.526x3
     利用最速上升法接近最优点,即发酵温度38℃,酶加量16.386u/g,接种量为3.962%,此时乙醇产量接近最大。同理,建立了同步糖化发酵条件对乙醇产量影响的二阶模型:
     对二阶模型进行方差分析,确定了能够真实反应三个变量对响应的影响。且在二阶模型中有交互项,得到最优工作点,即温度为39.16℃,酶的添加量为15.74u,接种量为4.16%,并对最优点进行了正则分析和实验验证,确定了该点既不是最小点又不是鞍点,而是最佳发酵工艺条件。
     该论文有图37幅,表30个,参考文献122篇。
Oil, coal and other traditional energy sources have become depleted and resulted in environmental pollution. To solve the imminent energy crisis and environmental pollution, the use of rice straw preparation of bio-fuel ethanol fermentation to alleviate the above-mentioned crisis. Production,application and extension along with many others of fuel ethanol have been made over years. However, there are many key obstacle factors especially three sides in it today. One is serious environmental pollution and high cost caused by pretreatment of materials, the other is the lower conversional rate of fuel ethanol during sugar fermentation. Thirdly, due to inhibitory effect of glucose on cellulase, conversional rate of cellulose and reducing sugar of saccharification liquid is lower, resulting in higher production cost.
     These problems can be solved through adopting green pretreatment process, screening yeast strains of high-temperature tolerance and high-alcoholicity endurance , breeding strains of excreting cellulase and optimizing process conditions of simultaneous saccharifiction and fermentation. Accordingly,lots of experiments have been done and period-conclusion have been made in this paper. The research results are as follows:
     (1) the study on pretreatment conditions of straw cellulose. The effects of pretreating straw cellulose on enzyme hydrolysis were investigated through mechanically crushing pretreatment, microwave pretreatment, acid-alkali pretreatment, Glycerin Pretreatment and microwave-assisted Glycerin pretreatment. The results show that straw powder(1g) of microwave-assisted ( power 320w) Glycerin(7g) pretreatment was choosed as experimental material of simultaneous saccharifiction and fermentation.
     (2) study on breeding of excreting cellulase strain and biological characteristics. Gram-negative bacteria JX-2 of excreting more cellulase was isolated and purificated through a lot of expriments. The stain was primarily determiated as cytophata whose optimum growth pH and temperature were 9.0~11.0, 37℃,aerobe. The filter paper enzyme activity of cellolase excreted by JX-2 arrived at 1158.6U·ml-1,which showed better industry application prospect.
     (3) study on breeding of yeast strains of high-temperature tolerance and high-alcoholicity endurance. P1,5min,P2,10min were chosen as high-temperature tolerance and high-alcoholicity endurance through plenty of screening work. P1,5min could grow in solid-medium of 16% alcohol concentration under 52℃,and it’s production rate was 2.96% under high teperature of 52℃. P2,10min was similar to P1,5min and it’s production rate was 2.86%.
     (4) study on simultaneous saccharifiction and fermentation producing fuel ethanol by straw powder. The effects of temperature, pH, yeast concentration, enzyme concentration, fermentation time on fermentation process were investigated and their optimum conditions were found out. Based on single-factor results, orthogonal experiments were implemented. The final results showed that best fermentation conditions were temperature 36℃, pH6.0, yeast concentration 7%, enzyme concentration 22ml.
     (5) optimization of SSF process based on response surface. The effects of temperature, Yeast Concentration, enzyme concentration on ethanol production were studied based on response surface method. The first- order model was established between SSF conditions and ethanol rate through a lot of experiments model fitting. It’s as follows: y = 21.782 + 0.804x 1 + 0.124x 2 + 0.526x3
     Upward data design for the best work point, the production rate of ethanol approached to best value under fermentation temperature 38℃, enzyme concentration 16.386u/g, yeast concentration3.962%. Meanwhile, the second-order model was established and it was as follows:
     After analysing variance of the model, the effect of three variables on response was determinated. Moreover, the second- order model consists of interaction factors. The optimum conditions are fermentation temperature 39.16℃, enzyme concentration 15.74u/g, yeast concentration4.16%. It was best process condition that the study were looking for through regular analysis and experiment validation.
     There are 37 figures, 30 tables and 122 references in this Doctor paper.
引文
[1]郑晓理,鲍庆.我国燃料乙醇产业及其对石油消费的局部替代性研究[J].化工技术经济,2006, 24(12):13-17.
    [2]张远欣.燃料乙醇的发展状况[J].甘肃科技, 2005,21(4):117-119.
    [3]宋佳明.生物质新能源的技术应用产业化及前景思考[J].现代商业,2008,29:162-164.
    [4]宋安东.生物质(秸秆)纤维素燃料乙醇生产工艺实验研究[博士学位论文[D].郑州:河南农业大学, 2003.
    [5]高德忠,王昌东,李丽华等.燃料乙醇的性能及生产工艺[J].辽宁石油化工大学学报,2004, 24(2):23-26.
    [6]马欢,刘伟伟,张无敌等.燃料乙醇的研究进展及存在问题[J].新能源及工艺,2006, 29-33.
    [7]D Murray.Ethanol’s potential looking beyond corn[J].World environment, 2005,9(2):12-14.
    [8]陈铁,李瑞.燃料乙醇——酒精行业可持续发展之路[J].酿酒科技,2006,4,107-108.
    [9]胡代泽.我国农作物秸秆资源的利用现状与前景[J].资源开发与市场,2000,16(1):19-20.
    [10]刘铁男.燃料乙醇与中国[M].北京:经济科学出版社, 2004, 2-4.
    [11] Shengde Zhou, L.O. Ingram. Simultaneous sacchari?cation and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulose[J]. Biotechnology,2001,2:1455-1462.
    [12]余燕春.利用农林纤维废弃物生产酒精的社会效益[J].江西林业科技,1996, 6:18-20. [13〕余世袁.林产资源的生物转化与利用[J].南京林业大学学报,2000, 24 (2) :1 -5.
    [14]曲音波,高培基,荣寿枢.草浆厂细杂纤维与淀粉质原料共发酵生产酒精[J].中国造纸,1999,2:66-67 [15」杨斌,吕燕萍,高孔荣等.蔗渣水解液发酵乙醇的研究[J].生物工程学报,1997, 13 (3) :380-386
    [16]张德强,张志毅,黄镇亚.木质纤维生物量一步法(SSF)转化成乙醇的研究[J].北京林业大学学报,2000, 22 (6):44-54.
    [17]王成军.燃料乙醇在美国和巴西的发展[J].政策研究, 2005, 2:51-52.
    [18]王正友.美国生物燃料乙醇生产近况[J].粮油食品科技, 2006,14(1): 62.
    [19]王成军,黄少杰.国外燃料乙醇工业的发展现状及其对我国的启示[J].工业技术经济, 2005, 24(5): 110-112.
    [20] Lee,Jeewon. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology, 1997, 56 (1):1-24.
    [21]Sheldon J.B. Duff and Willian D. Murray. Bioconversion of forest products industry waste [15] cellulosics to fuel ethanol:A Review[J].Bioresurce Technology,1996,55:31-33.
    [22]Brooks, T. A,Lngram,L.O.Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2[J].Biotechnol.Prong,1995,(11): 619-625.
    [23]Eklund,Robert,Zacchi,Guido.Simultaneous saccharification and fermentation of steam-pretreated willow[J]. Enzyme and Microbial Technology,1995,17(3):255-259.
    [24]赵律,李志光,李辉勇等.木质纤维素预处理技术研究进展[J].化学与生物工程,2007,24 (5): 5-8.
    [25] Weimer P J, Hackney J M, French A D. Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation [J].Biotechnology and Bioengineering, 1995, 48:169-178 .
    [26] McMillan J D. Pretreatment of lignocellulosic biomass/ Himmel M E, Baker JO, Over end RP. Enzymatic Conversion of Biomass for Fuels Production[J]. ACS Symposium Series, 1994, 292-324.
    [27]辛芬,陈汉平,王贤华等.木质纤维素生物质生产乙醇的预处理技术[J].能源工程,2006,3:24-27
    [28]刘海臣,张敏楠,赵丹华等,酸法与酶法两步降解稻草纤维素工艺条件的优化[J].江苏农业科学,2008(1):228-230
    [29]李静,杨红霞,杨勇等.微波强化酸预处理玉米秸秆乙醇化工艺研究[J].农业工程学报, 2007, 23(6): 199-202.
    [30]李松晔,刘晓非,庄旭品等.棉浆粕纤维素的超声波处理[J].应用化学,2003,20(11): 1030-1034.
    [31] M.Moniruzzaman. Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis[J]. World J.Microbio.Biotechnol.1997,13:11-16
    [32]朱圣东,吴元欣,喻子牛等.微波预处理稻草糖化工艺研究[J].林产化学与工业, 2005, 25(1): 112-114.
    [33] Kitchaiya P, Intanakul P, Krairiksh M. Journal of Wood Chemistry and Technology[J]. 2003, 23(2): 217-225.
    [34] S.A.Amartey, et al. Fermentation of a wheat straw acid hydrolysate by Bacillus stearothe mophilus T-13 in continuous culture with partial cell recycle[J]. Process Biochem.1999,34: 289-294
    [35] Curreli N, Fadda M B, Rescigno A. Mild alkaline/oxidative pretreatment of wheat straw. Process Biochemistry[J]. 1997, 32(8): 665-670.
    [36] Weimer P J, Hackney J M, French A D. Effects of chemical treatments and heating on thecrystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation[J] .Biotechnology and Bioengineering, 1995, 48: 169 -178 .
    [37]Sun Ye, Cheng Jiayang. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology , 2002 , 83 (1) : 1-11.
    [38] Ojumu TV, Ogunkunle OA. Production of glucose f rom lignocellulosic under extremely low acid and high temperature in batch process, autohydrolysis approach[J]. Journal of Applied Sciences, 2005, 5(1): 15-17.
    [39]赵志刚,程可可,张建安等.木质纤维素可再生生物质资源预处理技术的研究进展[J].现代化工, 2006, 26(2): 39-42.
    [40]文新亚,李燕松,张志鹏等.酶解木质纤维素的预处理技术研究进展[J].酿酒科技, 2006, 8: 97-100.
    [41] Ballesteros I,Oliva J M,Negro M J,et al.Enzymic hydrolysis of steamexploded herbaceous agricultural waste(Brassica carinata) at differentparticule sizes[J].Process Biochemistry,2002,38(2):187-192.
    [42] Lin KW, LadischM R, SchaeferD,et al. Reviewon effect of pretreatment on digestibility of cellulosic materials[ J]. Aiche Symposium Series, 1981, 77:102-106.
    [43]Kyoung Heon Kim,Hong Juan.Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis [J].Bioresource Technology,2001,77(2):139-144.
    [44]许凤,孙润仓,詹怀宇等.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术, 2004, 12(1): 45-54.
    [45]王联结,陈建华.木质纤维原料预处理技术的研究现状[J].新能源产业, 2007 , 2: 46-51
    [46]潘亚杰,张雷,郭军等.农作物秸秆生物法降解的研究[J].可再生能源, 2005, 3: 33-35.
    [47]Buswell J A,Odiere. Lignin biodegradation[J]. CRC Crit Rev Biotechno1,1987,6:1-60.
    [48]Kirk T K, Farrell L. Enzymatic“combustion”:The microbial degradation of lignin[J]. Ann Rev Microhiol, 1987, 41 :465-505.
    [49]Yoshida,S.,Yonehara, S.,Minami,S.,Ha, H. C.,Jwahara, K.,Watanabe, T.,Honda, Y.,and Kuwahara,M. Production and characterization enzymes of djerkandera adusta grown on wood meal/wheat bran culture of ligninolytic and production of these enzymes using a rotary-solid fermente[J]r.Mycoscience,1996.37:417-425.
    [50]Camarero, S,Sarkar, S.,Ruiz-Duenas, F. J.,Mart inez, MT, and Martinez, A. T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites[J]. J. Biol. Chem.,1999,274:10324-10330.
    [51]Ardon, O,Kerem, Z.,and Hadar,Y. Enhancement of lignin degradation and lactase activity in Pleurotus ostreatus[J].Can.J.Microbiol.,1998, 44:676-680.
    [52]Leontievsky, A. A.,Vares, T,Lankinen, P.,et al. Blue and yellow laccases of lignolytic fungi[J].FEMS Microbiol. Lett.,1997, 156:9-14.
    [53]Paola Giardina,Gianna Palmieri,Bianca Fontanella,et a1. Manganese peroxidase isoenzymes produced by Pleurotus grown on wood sawdust[J]. Archives of Biochemistry and Biophysics, 2000, 376(1):171-179.
    [54]Claudia Crest.ini,Giovanni Giovannozzi Sermanni and Dimitris S.Argyropoulos. Structrual modifications induced during biodegradation of wheat lignin by Lentinula edodes[J]. Bioorganic & Medicinal Chemistry,1998,6:967-973.
    [55]杭怡琼,薛惠琴,郁怀丹等.白腐真菌对稻草秸秆的降解及其有关酶活性的变化[J].菌物系统, 2001, 20(3): 403- 407.
    [56]罗鹏,刘忠,杨传民.蒸汽爆破麦草同步糖化发酵转化乙醇的研究[J].化学工程. 2007,35(12):42-45
    [57]常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏农业科学, 2006, 4:12-15
    [58]朱圣东,吴元欣,喻子牛等.植物纤维素原料生产燃料酒精研究进展[J].化学工程, 2003, 20: 5-7.
    [59]武冬梅,李冀新,孙新纪.纤维素类物质发酵生产燃料乙醇的研究进展[J].酿酒科技, 2007.5:15-18
    [60]段钢,孙长平.酶在生物质转化为燃料酒精中的应用[J].食品与发酵工业,2005,31(5): 73-77.
    [61]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展[J].酿酒,2005, 32(2): 13-16.
    [62]林向阳,阮榕生,李资玲等.利用纤维素制备燃料酒精的研究[J].可再生能源, 2005, 6: 51-54.
    [63] Alkasrawi M, Eriksson T, Borjesson J, et al. The effect of tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb[J]. Technol.2003 (33): 71?78.
    [64]吴伟详,闵航,Kamdem D G C,等.一株耐温酵母菌的生物学特性及其木薯酒精发酵特性(英文)[J].浙江大学学报,2001,27(3):277-281.
    [65]王瑞明,关凤梅,马霞,等.固态发酵高产酒精酵母菌株的选育[J].酿酒科技,2002,(1):20-21.274:10324-10330.
    [51]Ardon, O,Kerem, Z.,and Hadar,Y. Enhancement of lignin degradation and lactase activity in Pleurotus ostreatus[J].Can.J.Microbiol.,1998, 44:676-680.
    [52]Leontievsky, A. A.,Vares, T,Lankinen, P.,et al. Blue and yellow laccases of lignolytic fungi[J].FEMS Microbiol. Lett.,1997, 156:9-14.
    [53]Paola Giardina,Gianna Palmieri,Bianca Fontanella,et a1. Manganese peroxidase isoenzymes produced by Pleurotus grown on wood sawdust[J]. Archives of Biochemistry and Biophysics, 2000, 376(1):171-179.
    [54]Claudia Crest.ini,Giovanni Giovannozzi Sermanni and Dimitris S.Argyropoulos. Structrual modifications induced during biodegradation of wheat lignin by Lentinula edodes[J]. Bioorganic & Medicinal Chemistry,1998,6:967-973.
    [55]杭怡琼,薛惠琴,郁怀丹等.白腐真菌对稻草秸秆的降解及其有关酶活性的变化[J].菌物系统, 2001, 20(3): 403- 407.
    [56]罗鹏,刘忠,杨传民.蒸汽爆破麦草同步糖化发酵转化乙醇的研究[J].化学工程. 2007,35(12):42-45
    [57]常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏农业科学, 2006, 4:12-15
    [58]朱圣东,吴元欣,喻子牛等.植物纤维素原料生产燃料酒精研究进展[J].化学工程, 2003, 20: 5-7.
    [59]武冬梅,李冀新,孙新纪.纤维素类物质发酵生产燃料乙醇的研究进展[J].酿酒科技, 2007.5:15-18
    [60]段钢,孙长平.酶在生物质转化为燃料酒精中的应用[J].食品与发酵工业,2005,31(5): 73-77.
    [61]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展[J].酿酒,2005, 32(2): 13-16.
    [62]林向阳,阮榕生,李资玲等.利用纤维素制备燃料酒精的研究[J].可再生能源, 2005, 6: 51-54.
    [63] Alkasrawi M, Eriksson T, Borjesson J, et al. The effect of tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb[J]. Technol.2003 (33): 71?78.
    [64]吴伟详,闵航,Kamdem D G C,等.一株耐温酵母菌的生物学特性及其木薯酒精发酵特性(英文)[J].浙江大学学报,2001,27(3):277-281.
    [65]王瑞明,关凤梅,马霞,等.固态发酵高产酒精酵母菌株的选育[J].酿酒科技,2002,(1):20-21.
    [87]Benschoter A S,Ingram L O.Thermal tolerance of Zymomonas mobilis:Temperature-induced changes in membrance composition[J].Applied Environ Microb,1986,6(51):1278-1284.
    [88]Banat,I.M.,Sigam,P.& Marchant,R.The isolation of thermotolerant fermentative yeasts capable of growth at 52℃and ethanol production at 45℃& 50℃[J].World Journal of Microbiology and Biotechnology,1992,(8):259-263.
    [89] Watson,K. Temperature relations In:The Yeasts[J]. Yeast and the environment 1987, 2(5):41-49.
    [90]沈睿,诸葛健.固态发酵用耐高温酿酒酵母YH4的筛选及其特性研究[J].食品与发酵工业,1991,4:8-15.
    [91]蒋亚平,蔡金芝,杨宝玉,等.耐高温酵母WVHY8的生物学特性及其应用[J].微生物学报,1992,19(6):328-331.
    [92]寇运同,胡永松,王忠彦.酒精酵母菌种选育的研究进展[J].四川食品工业科技,1995,3:13-18.
    [93]程志娟,邹海晏,郭彤.国内外对耐高温酒精酵母的研究与应用[J].酿酒科技,1993,2:69-71.
    [94]王瑞明.燃料乙醇固态发酵生产工艺研究[博士学位论文].天津:天津科技大学,2002.
    [95]刘海臣,冉淦侨,张兴,等.酒糟中超高温耐高酒精度酵母菌株的选育[J].酿酒科技,2007,5:28-31.
    [96]王瑞明,关凤梅,马霞,等.固态发酵高产酒精酵母菌株的选育[J].酿酒科技.2002,(1):20-21.
    [97]华子安.选育耐高温酒精酵母的研究[J].酿酒.2003,30(3):37-39
    [98]赵华,韩晓东.耐温型酒精浓醪发酵酵母菌的选育[J].酿酒科技,2005,(1):35-41
    [99]刘海臣,钱甜甜,阮时雷.耐高温酵母利用稻草粉同步糖化发酵的研究[J].酿酒科技. 2007 (11):25-28
    [100]刘振,王金鹏,张立峰.木薯干原料同步糖化发酵生产乙醇[J].过程工程学报. 2005,5(3):353-356
    [101]方毅,印培民,黄筱萍.红薯干原料同步糖化发酵燃料乙醇的研究[J].江西科学. 2008,26(5):719-723
    [102]侯金淑,袁兴中,曾光明.利用废旧报纸同步糖化发酵生产乙醇的研究[J].食品与发酵工业. 2006 (10):66-69
    [103] Badal C. Saha , Loren B. Iten, Michael A. Cotta. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol[J]. Process Biochemistry , 2005(2):25-18
    [104]刘小杰,郝向丽.利用稻草粉同时糖化发酵的初步研究[J].粮油加工.2007,(3): 86-88
    [105]林仁权,胡文兰,陈国亮.重铬酸钾氧化分光光度法测定酒中乙醇含量[J].浙江预防医学. 2008,18(3):78-79
    [106]郑阿齐. MATLAB实用教程[M].北京:电子工业出版社,2005:30-83,130-146
    [107]张泽生,史家宁,张婕,等.响应面法优化褐孔菌胞外多糖发酵条件[J].现代食品科技,2009,25(3):298-311
    [108]王世宽,侯华,冉燃,等,响应面法优化奶啤发酵工艺参数[J].中国酿造,2009,2:129-131
    [109]张智,朱宏亮,钮宏富,等.响应面法优化枯草芽孢杆菌产蛋白酶的发酵条件[J].食品科学,2008,29(12):400-403
    [110]罗锦洪,卢红梅,张义明,等.利用响应面法优化细菌纤维素发酵培养基[J].中国酿造,2008,22:39-42
    [111]郝学财,余晓斌,刘志钰,等.响应面方法在优化微生物培养基中的应用[J].食品研究与开发. 2006.27(1):38—41
    [112] AL-Sarraniqm, EL-Naggar, M Y M. Applicationof Plackett-Burman factorial design to improve citrininproduction in Monascus ruber batch cultures Abdulaziz[J].BotanicalStudies, 2006, 47: 167-174[16] Majumder A, Singh A, Goyal A. Application of response surfacemethodology forglucan production from Leuconostoc dextranicum and its structural characterization[ J]. Carbo-hydrate Polymers, 2009, 75: 150-156
    [113] Li Y Q, Jiang H X,Xu Y Q, et a.l Optimization of nutrient components for enhanced phenazine-1 - carboxylic acid production by gacA-inactivated Pseudomonas sp.M18G u-sing response surfacemethod[J].ApplMicrobiolBiotechn-o,l 2008, 77: 1207-1217
    [114] Naveena B J,AltafMd, BhadrayyK, et al. Direct fermenta-tion of starch to l (+) lactic acid in SSF by Lactobacillusamylophilus GV6 using wheat bran as support and substrate:medium optimization using RSM [ J]. Process Bio-chemistry, 2005, 40: 681-690
    [115] Myers W R. Response Surface Methodology. EncyclopediaofBiopharmaceutical Statistics[M]. Markel Dekker: New York, 2003, 858-869
    [116] Ghorbania F, Younesia H, Ghasempouria SM. Application of response surface methodology for optimization of cadmi-um biosorption in an aqueous solution by Saccharomyces cerevisiae[ J]. Chemical Engineering Journa,l 2008, 145:267-275
    [117] MirhosseiniH,Tan C P,Hamid N S A, et a.l Characteriza-tion of the influence ofmain emulsion components on the physicochemical properties of orange beverage emulsion u- sing response surfacemethodology[J].FoodHydrocolloids,2009, 23: 271-280
    [118] Majumder A, Singh A, Goyal A. Application of response surfacemethodology forglucan production from Leuconostoc dextranicum and its structural characterization[ J]. Carbo- hydrate Polymers, 2009, 75: 150-156
    [119]王万忠.试验的设计与分析[M].北京:高等教育出版社, 2004:274-321
    [120]Douglas C.Montgomery,汪仁官,陈荣昭译. Design and Analysis of Experiments[M].中国统计出版社. 1998:591-623
    [121]李稳宏,吴大雄.麦秸纤维素酶解法产糖预处理过程工艺条件[J].西北大学学报(自然科学版).1997,27(3):227-230
    [122]苏金明,matlab6.1实用指南[M],北京:电子工业出版社,2002:85-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700