稻草秸秆的预处理及生产乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素生物质作为一种来源广泛、价格低廉的可再生资源,如果被用来生产液体燃料-乙醇,不仅可以减少化石能源的消耗而且可减少汽车尾气中的有害成分,且大量用秸杆生产燃料乙醇可以避免其在农田中大量直接焚烧,这都将大大减少引发全球气候变化的温室气体的排放。本论文主要研究了稻草秸秆的化学、离子液体和羟氧自由基预处理技术,同时对稻草秸秆高浓度底物的同步糖化发酵以及半纤维素水解液的制备和发酵等方面也进行了较为全面的研究。本课题在能源问题和环境问题上均有一定的理论和现实意义。
     用稀酸、石灰和氢氧化钠等化学物质对稻草秸秆进行了处理,2% NaOH预处理效果最好,121℃处理1h木质素去除率达到88.9%,同时有38.7%的半纤维素被脱除,处理后的残渣酶解60小时水解率高达96.1%,分离后的碱液可以重复利用2-3次,进而降低预处理的成本。
     对氢氧化钠处理的秸秆残渣进行了酶法水解,就其酶解动力学和机制以及酶解条件进行优化。结果表明底物的酶解得率与木质素的去除率有关,纤维素酶系的组成对酶解具有重要的影响,酶系中因纤维二糖酶的不足会造成纤维二糖对整个酶解的反馈抑制,可通过补加纤维二糖酶解除这种抑制;获得的最佳酶解条件为底物浓度80 g/L,纤维素酶加入量20 FPU/g底物,纤维二糖酶12 CBIU/g底物,此时,48 h酶解得率为86.7%。在此最优的条件下,进行3 L反应器实验48 h酶解得率89.3%。
     以糖得率并结合红外分析稻草秸秆处理前后结晶指数的变化,筛选得到离子液体[EMIM]OAc,其对稻草秸秆具有较好的溶解特性。对处理秸秆(重生的纤维材料)的性能研究表明,重生的纤维材料由于结晶纤维素向无定型纤维素的转化,更易与酶形成酶与底物复合物,这种酶与底物复合物因酶与纤维素结合更为紧密而起到保护酶的作用,使纤维素酶能耐更高的温度,并在这样的温度下水解纤维素提高酶水解糖得率;通过考察[EMIM][OAc]浓度对纤维素酶的影响,发现[EMIM] [OAc]对纤维素酶具有较大的毒性,[EMIM] [OAc]达到3 M时,酶解液中基本上没有糖。同时,实验结果说明稻草秸秆的水解与木质素的去除和纤维素结晶度在一定范围内存在一定程度的对应关系,且木质素去除率与纤维素的结晶度呈拟合的线性关系。FTIRs、XRD和SEM对[EMIM] [OAc]处理秸秆的结构形态分析表明,稻草秸秆经[EMIM][OAc]处理后有部分纤维素转变为纤维素Ⅱ或无定型纤维素。
     稻草秸秆用羟氧自由基处理,在Ox-B浓度、处理温度和液固比等单因素实验的基础上,基于Box-Benhnken中心组合实验设计原理,利用Design-Expert 7.0.0软件进行实验方案设计和数据拟合,得到羟氧自由基处理的最优条件为:Ox-B浓度为21g/L处理温度为57.2℃,液固比为40:1时。模型验证实验还原糖得率为94.5%,与预测值接近,表明实验结果与模型预测结果没有显著性差异。羟氧自由基处理稻草秸秆的效果明显,但是处理的稻草秸秆重量损失比较大。
     对稻草秸秆用稀酸稀碱结合处理,获得纤维素含量为88.5%,木质素含量只有4.5%的纤维素含量丰富的底物,用耐高温活性干酵母40℃同步糖化发酵浓度160 g/L的底物,发酵液中乙醇浓度达到58.7 g/L,超过了蒸馏对于纤维素酒精发酵液含量不得低于50 g/L的要求,降低了纤维素酒精蒸馏阶段的能耗;物料平衡衡算的结果是:0.175kg乙醇/kg稻草秸秆(干重)即1kg稻草秸秆(干重)通过稀酸稀碱处理后,残渣同步糖化发酵得到0.125kg乙醇,结合半纤维素水解液的发酵所获得的0.05 kg,总共得到0.175kg乙醇/kg稻草秸秆(干重)。
     休哈达假丝酵母(Candida shehatae 1766)木糖发酵的基础研究表明:该酵母在混合糖发酵时会优先利用葡糖糖;在纯木糖和混合糖相同糖浓度对比发酵中,两者乙醇产量和糖利用率没有太大区别,发酵72 h乙醇浓度都为16 g/L左右。休哈达假丝酵母(Candida shehatae 1766)半纤维素酸解液发酵结果表明,该菌株在较低的pH下具有较好发酵性能;对没有经过脱毒处理的半纤维素水解液也具有较好的发酵性能,发酵72 h乙醇浓度达到13.7 g/L。
Cellulose biomass, the widely distributed inexpensive renewable resource, can be used for production of the large volumes of bio-ethanol. The use of the bio-ethanol will not only reduce the consumption of fossil fuel, but also reduce the harmful component from the automobile exhaust. Then the use of large quantity straw cellulose biomass for bio-ethanol production will greatly reduce the release of greenhouse gases by avoiding directly burning the straw in the farmland, In this dissertation, the pretreatment technique for rice straw with chemical, ILs and hydroxyl radical approaches were studied, meanwhile the simultaneous saccharification and fermentation technique for pretreated rice straw at high dry matter content and fermentation technique for rice straw hemicellulose hydrolysate were also investigated. This research has theoretical and practical significance in both the energy crisis and the environmental pollution.
     Rice straw was pretreated with acid, lime and sodium hydroxide, respectively. It was found that pretreatment with 2%NaOH at 121℃for 1 h can remove 88.9%lignin and 38.7% hemicellulose. The residues could be degraded by cellulase complex to a rate of 96.1%. The alkaline liquor separated from the reaction mixture could be recycled for 2-3 times in repeated pretreatment batches.
     The kinetics of cellulase hydrolysis of NaOH-pretreated rice straw and its mechanism were thoroughly investigated, meanwile, the hydrolysis conditions were optimized. It was found that lignin removal play a big role in enhancing enzymatic digestibility of rice straw. The composition of cellulase complex has an important influence on the enzymatic hydrolysis of rice straw. Supplementing cellobiase greatly reduced the feedback inhibition caused by cellobiose due to lack of cellobiase in the cellulase complex. The optimal condition for enzymatic hydrolysis of rice straw was substrate concentration 80 g/L, cellulase 20 FPU/g substrate, cellobiase 12 CBIU/g substrate. The hydrolysis yield under such condition was 86.7%at 48 h in lab scale and 89.3%at 48 h in a 3 L reactor.
     Based on the sugar producing rate combined with the change of crystallinity indexes of untreated and treated rice straw assayed by infrared method, the IL 1-ethyl-3-methylimid-azolium acetate ([Emim]OAc) was selected from five ionic liquid candidates for pretreating rice straw. Rice straw has a good solubility in [Emim]Oac, which mainly due to the structure transformation of cellulose I into amorphous or cellulose II. The regenerated rice straw properties showed that it was easier to form an enzyme-substrate complex. The combination of enzyme with substrate was so close which could play a role of protective cellulose on resistant to higher temperature, and then could enhance enzymatic hydrolysis. [EMIM]OAc was also found to be toxic on cellulase, and there were almost no sugar in the hydrolysate at 3 M [EMIM]OAc. Meanwhile the results showed that enzymatic hydrolysis of rice straw had some correspondence between lignin removal and crystallinity of cellulose in a certain degree. The removal of lignin and the cellulose crystallinity showed a fitted linear relationship. The chemical structure and crystalline form of rice straw before and after dissolution analysed by FTIR, XRD and SEM showed that the crystalline form of rice straw was partly transformed from cellulose I to cellulose II after [Emim]OAc pretreatment.
     After rice straw was treated with Ox-B, and the Ox-B concentration, temperature and liquid to solid ratio were optimized, respectively. According to the Box-Benhnken central composite design principles and the experimental design and data fitting by using Design-Expert 7.0 software, the optimal results were the Ox-B concentration 21 g/L, treating temperature 57.2℃, liquid to solid ratio 40:1. The reducing sugar yield was 94.5%by Model Validation Experiments, close to the predicted value. The results showed no significant difference between Experimental result and predicted result. The effect with Ox-B treatment rice straw was pronounced, however rice straw weight loss is relatively large.
     The cellulose and lignin content were attained to 88.5%and 4.5%respectively when rice straw pretreated by a sequence of dilute acid and dilute alkali. Ethanol concentration of 58.7g/L in fermentation broth was obtained by SSF at substrate concentration 160g/L which were gotten from rice straw pretreated by a sequence of dilute acid and dilute alkali. The requirement for ethanol concentration above 50.0 g/L in the fermentation mixture was fitted, which reducing the energy consumption in cellulosic ethanol distillation. By matter equilibrium SSF of rice straw pretreated by a sequence of dilute acid and dilute alkali by commercial ethanol instant active dry yeast (S. cerevisiae), combined with 0.05 kg of ethanol from the fermentation of hemicellulose hydrolysates, we were able to achieve 0.175 kg ethanol/kg untreated rice straw.
     Candida shehatae CICC 1766 was used for xylose fermentation. In a defined xylose and xylose/glucose medium, the results showed that the glucose was consumed prior to xylose for cell growth during early stages of the defined xylose/glucose mixture fermentation. The final ethanol concentration, yield and productivity were almost same 16g/L in the xylose medium and glucose/xylose medium at 72h of the fermentation. Fermentation of rice straw hemicellulose hydrolysate showed that Candida shehatae CICC 1766 had good fermentability at lower pH. We found C. shehatae CICC 1766 could directly ferment acid hemicellulose hydrolysate without detoxification and ethanol concentration was 13.7 g/L at 72 h.
引文
1. Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks.Bioresour Technol,2008(99):5270-5295.
    2.曹湘洪.我国生物能源产业健康发展的对策思考[J].化工进展,2007,26(7):905-913.
    3. Arthur J R, Charlotte K W, Brian H D, et al. The path forward for biofuels and biomaterials Science,2006(311):484-489.
    4. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol,2001(56): 17-34.
    5.申渝.酵母细胞超高浓度乙醇连续发酵震荡行为的研究[D]:[博士学位论文].大连:大连理工大学,2009.
    6.宋安东,裴广庆,王凤芹等.中国燃料乙醇生产用原料的多元化探索[J].农业工程学报,2008,24(3):302-307.
    7. Saha B.C. Hemicellulose bioconversion. J. Industrial Microbiol Biotechnol.2003, 30:279-291.
    8.黄素逸.能源科学导论[M].北京:中国电力出版,1999.
    9. Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci,2008, 34(5):551-573.
    10. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bioethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol.2006,24(12):549-256.
    11. Renewable Fuels Association (RFA), Ethanol industry statistics, Washington, DC, USA, 2007. [cited; available from:/www.ethanolrfa.orgS].
    12.中国生物质产业网(www.cbmi.org.cn).
    13. Reshamwala S, Shawky B T, Dale B E. Ethanol production from enzymatic hydrolysate of AFEX-treated coastal Bermuda grass and switchgrass. Appl Biochem Biotechnol,1995,51 /52:43-55.
    14. Cheung SW, Anderson BC. Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol,1997,59:81-96.
    15. Boopathy R. Biological treatment of swine waste using anaerobic baffled reactors. Biore-sour Technol,1998,64:1-6.
    16. Dewes T, H€unsche E. Composition and Microbial degradability in the soil of farmyard manure from ecologically-managed farms. Biol Agric Hortic,1998,16:251-268.
    17.计红果,庞洁,张容丽等.本质素纤维素的预处理及酶解[J].化学通报,2008,5:329- 334.
    18. Nishiyama Y, Sugiyama J, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose la from synchrotron X-ray and neutron fiber diffraction. J Am Che Soc,2003, 125(47):14300-14306.
    19. Nishiyama Y, Langan P, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose Iβfrom synchrotron X-ray and neutron fiber diffraction. J Am Che Soc,2002,124 (31):9074-9082.
    20. Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol,2005,96:673-686.
    21. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresour Technol,2002,83:1-11.
    22.罗鹏,刘忠.用纤维素生物质生产乙醇的预处理工艺[J].酿酒科技,2005,134:42-47
    23. Ghosh P, Ghose T K. Bioethanol in India:recent past and emerging future. Adv Biochem Eng/Biotechnol,2003,85:1-27.
    24. Allen S G, Kam L C, Zemann A J, et al. Fractionation of Sugar Cane with Hot, Compressed Liquid Water. Ind Eng Chem Res,1996,35:2709-2715.
    25. Liu C, Wyman C E. Impact of fluid velocity on hot water only pretreatment of corn stover in a flowthrough reactor. Appl Biochem Biotechnol,2004,113-116:977-987.
    26. Karr W E, Holtzapple M T. The multiple benefits of adding non-ionic surfactant during the enzymatic hydrolysis of corn stover. Biotechnol Bioeng,1998,59:419-427.
    27. Vlasenko E Y, Ding H, Labavitch J M, Shoemaker S P. Enzymatic hydrolysis of pretreated rice straw. Bioresour Technol,1997,59,109-119.
    28. McMillan J D. Pretreatment of lignocellulosic biomass. In:Himmel M E, Baker J O, Overend R P. Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC,1994, pp.292-324.
    29. Aden A, Ruth M, Ibsen K, et al.2002. Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report NREL/TP-510-32438. Golden, CO (USA), National Renewable Energy Laboratory.2002:143 p.
    30. Zhang Y H P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems. Biotechnol Bioeng,2004,88:797-824.
    31. Yu J, Zhang J B, He J, et al. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol,2009,100 (2):903-908
    32. Guay D, Cole B W, Fort J, et al. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. I.S.W.P.C.,1999.
    33. Gierer J, Jansbo K, Reitberger T. A study on the selectivity of bleaching with oxygen-containing species. Holzforschung.1989,43(6):391-396.
    34. Yang B, Wyman C E. Pretreatment:The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref,2008,2,26-40.
    35.武进,张昊,张军等.纤维素在离子液体中的均相乙酰化及其选择性[J].高等学校化学学报,2006,27(3):592-594.
    36.罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究[J].高分子材料科学与工程,2005,21(2):233-235.
    37. Dadi A P, Varanasi S, Schall C A, Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng,2006,95:904-910.
    38. Reichert W M, Visser A E, Swatloski R P, et al. Derivatization of chitin in room temperat-ure ionic liquids. Abstracts of Papers,222nd ACS National Meeting, Chicago, IL, United States, August 26-30,2001, IEC-025 (2001).
    39. Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol,2009,100:2580-2587.
    40. Warren RAJ. Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 1996,50:183-212
    41. Singh A, Hayashi K. Micobial cellulases:protein architecture, molecular properties and biosynthesis. Biotechnol bioeng,1992,40(4):663-671
    42. Lynd L R, Weimer P J, Zyl W H, et al. Microbial Cellulase Utilization:Fundamentals and Biotechnology. Microbial mol biol rev,2002,66:506-577
    43. Kim E, Irwin D C, Walker L P, et al. Factorial optimization of a six-cellulase mixture. Biotechnol bioeng,2000,58(5),494-501.
    44.陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究[J].工业徽生物,2000,30(4):23-26.
    45. Reese E T, Siu G H, Levinson H S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol,1950, 59:485-497.
    46. Wood T M, McCrae S I. Synergism between enzymes involved in the solubilisation of native cellulose. Adv Chem Ser,1979,181:181-209.
    47. Barr B K, Hsieh Y L, Ganem B, et al. Identification of Two Functionally Different Classes of Exocellulases. Biochem,1996,35:586-592.
    48. Kristensen J B, Borjesson J, Maria H B, et al. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol,2007,40(5):888-895.
    49. Gregg D J, Saddler J N. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng,1996,51:375-383.
    50. Holtzapple M T, Caram H S, Humphrey A E. Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis. Biotechnol Bioeng,1984,26:753-757.
    51. Kraulis P J, Clore G M, Nilges M, et al. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochem,1989,28:7241-7257.
    52. Mooney C A, Mansfield S D, Beatson R P, et al. The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microbial Technol, 1999,25:644-650.
    53. Klyosov A A, Sinitsyn A P, Rabinowitch M L. Enzyme Engineering, New York:Plenum Press,1980,5:153-165.
    54. Chen N, Fan J B, Xiang J, et al. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. Biochim Biophys Acta,2006,1764:1029-1035.
    55. Yang B, and Wyman C. E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng,2006,94(4),611-617.
    56. Kim M H, Lee S B, Ryu DY, et al. Surface deactivation of cellulase and its prevention. Enzyme Microbial Technol,1982,4:99-103.
    57. Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol,2000,84-6:5-37.
    58. Zhu L, O'Dwyer J P, Chang V S, et al. Structural features affecting biomass enzymatic digestibility. Bioresour Technol,2008,99 (9):3817-3828.
    59.张木明,徐振林,张兴秀等.预处理对稻草秸秆纤维素酶解产糖及纤维素木质素含量的影响[J].农产品加工,2006,58(3):4-6.
    60. Yang X X, Chen H Z, Gao H L, et al. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour Technol,2001,78, (3),277-280.
    61.刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工,2005,25(3):19-22
    62.陈洪章.纤维素生物技术.北京:化学工业出版社,2005.1-2
    63. LinY, Tanaka S. Ethanol fermentation from biomass resources:current state and prospects. Appl Microbiol Biotechnol,2006,69(6):627-642
    64. Hahn-Hagerdal B, Karhumaa K, Fonseca C, et al. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol,2007,74:937-953.
    65.周德庆.微生物学教程[第二版].北京:高等教育出版社,2002
    66. Eggeman T, Elander R T. Process and economic analysis of pretreatment technolodies. Bioresour Technol.2005,96,2019-2025.
    67. Chandrakant P, Bisaria V B. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl Microbial Biotechnol,2005,53:301-309.
    68. Jeffries T W, Kurtzman C P. Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microbial Technol,1994,16:922-932.
    69. Nigam J N. Develeopment of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. Appl Microbial Biotechnol,2001,90:208-215.
    70.洪解放,张敏华,刘成,邹少兰,吴经才.代谢木糖生产乙醇的基因工程菌研究进展[J].食品与发酵工业,2005,31(1):114-118.
    71.徐勇,范一民,勇强,黄敏仁,余世袁.木糖发酵重组菌研究进展[J].中国生物工程杂,2004,24(6):58-62.
    72. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production form lignocellulose:a challenge for metabolic engineering and process integration. Appl Microbial Biotechnol,2001,56: 17-34.
    73. Wang P Y, shopsis C, Schneider H. Fermentation of a pentose by yeast. Biochem Biophys, 1980,94:248-254.
    74. Jeffries T W. Utilization of xylose by bacteria, yeasts and fungi. Adv biochem,1983,27: 1-12
    75. Marie J, Bjom J, Barbel H H. Reduces oxidative pentose pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. App Environ Microbiol,2002,68:1604-1609.
    76. Lynda S. Effect of growth rate on ethanol production by thermoanaerobacter ethanolicus in glucose and xylose-limited continuous culture. Biotechnol Lett,1988,10(8):603-608.
    77.田沈,蔺增曦,姚滢秋等.嗜鞣管囊酵母(Pachysolen tannophilus 1622)和重组大肠杆菌(E. coli pGM2PA)乙醇发酵特性研究[J].太阳能学报,2008,29(1):95-991.
    78. Ohta K, Beall D S, Mejia J P, et al. Genetic improvement of Escherichia coli for ethanol production:chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase Ⅱ. Appl Environ Microbiol,1991,57(4): 893-900
    79. Kim T H, Taylor F, Hicks K B, et al. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol,2008,99:5694-5702
    80.田沈,姚莹秋,蔺增曦等.木质纤维素稀酸水解糖液乙醇发酵研究进展[J].微生物学通报,2007,34(2):355-358.
    81. Zhang M, Eddy C, Deanda K. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science,1995,267:240-243.
    82. Eliasson A, Christensson C, Wahlbom C F. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol,2000,66(4):3381-3386.
    83. Wahlbom C F, Vanzyl W H, Jonsson L J. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res,2003,3(3):319-326.
    84. Ohgren K, Rudolf A, Galbe M. et al. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy,2006,30 (10):863-869.
    85. Wingren A, Galbe M, Zacchi G. Techno-economic evaluation of producing ethanol from softwood:Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progr 2003,19(4):1109-1117.
    86.赵淑芳,刘宗章,张敏华.节能型乙醇脱水技术研究进展[J].酿酒科技,2006,139(1):110-113.
    87. Guo G L, Chen W H, Chen W H, et al. Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour Technol,2008,99:6046-6053.
    88. Zhao Y L, Wang Y, Zhu J Y, et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng,2008,99(6):1320-1327.
    89. Teymouri F, Laureano-Perez L, Alizadeh H, et al. Ammonia fiber explosion treatment of corn stover. Appl Biochem Biotechnol,2004,113-116:951-963.
    90. Mosier N, Hendrickson R, Ho N, et al. Optimization of pH controlled liquid hot water pre treatment of corn stover. Bioresour Technol, this volume,2005,96(18):1986-1993.
    91. Kim T H, Kim J S, Sunwoo C, et al. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol,2003,90, (1):39-47.
    92.Thygesen A, Thomsen A B, Schmidt A S, et al. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microbial Technol 2003,32:606-615.
    93. Sun J, Chen L, Wang H L. Research progress on the production of fuel ethanol by lingo-cellulose. Renewable Energy,2003(112):5-9.
    94.刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社,2003.
    95. Ghose T K. Measurement of cellulase activities. Pure Applied Chemistry [J].1987,59(2): 257-268.
    96. Zhu S D, Wu Y X, Yu Z N, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem,2005,40(9):3082-3086.
    97. Zhao X. B, Zhang L. H, Liu D H. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresour Technol,2008, 99(9):3729-3736.
    98. Palmqvist E, Hahn-Hagerdal. Fermentation of lignocellulosic hydrolysates.I:inhibitors and detoxification (A). Bioresource Technol,2000,74:17-24.
    99. Saha B. C, Cotta M. A. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy,2008,32(10):971-977.
    100. Teixeira L C, Linden J C, Schroeder H A. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl Biochem Biotechnol,2000, 84:111-127.
    101. Lu Y P, Yang B, Gregg D, et al. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol,2002,98:641-654.
    102. Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng, 2004,86:88-95.
    103.郭勇编著.酶工程[第三版].北京:科学出版社,2009.5-9.
    104.波吉特·卡姆,帕特里克·R·格鲁勃,迈克·卡姆著.生物炼制——工业过程与产品[M]:上卷.马延和等译.北京:科学出版社,2007.
    105. Wyman C E. Ethanol from lignocellulosic biomass:Technology, economics, and opportunities. Bioresource Technol,1994,50:3-15.
    106. Tengborg C, Galbe M, Zacchi G. Influence of Enzyme Loading and Physical Parameters on the Enzymatic Hydrolysis of Steam-Pretreated Softwood. Biotechnol Progr,2001, 7:110-117.
    107. Rudolf A, Alkasrawi M, Zacchi G, et al. A comparison between batch and fed-batch Simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microbial Technol,2005,37:195-204.
    108. Castanon M, Wilke C R. Effects of the surfactant Tween-80 on enzymatic-hydrolysis of newspaper. Biotechnol Bioeng,1981,23(6):1365-1372.
    109. Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol,2002,31(3):353-364.
    110.罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究[J].高分子材料科学与工程,2005,21(2):233-235.
    111. Swatloski R P, Scott S K, et al. Dissolution of cellulose with ionic liquids. J Am Che Soc, 2002,124(18):4974-4975.
    112.任强,武进等.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003,(3):448-451.
    113. Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem,1959,31 (3):426-428.
    114.张磊,何玉财,仝新利等.离子液体的性能及应用[J].生物加工过程,2009,7(2):8-12.
    115. Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem,2009,11:646-655.
    116. Mike J. Cellulose stacks up. Nature,2003,426:611-612.
    117. Remsing R C, Swatloski R P, Rogers R D, et al. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun,2006:1271-1273.
    118. Youngs T G A, Holbrey J D, Deetlefs M, et al. A molecular dynamics study of glucose salvation in the ionic liquid 1,3-dimethylimidazolium chloride. ChemPhysChem 2006,7: 2279-2281.
    119. Youngs T G A, Hardacre C, Holbrey, J D, et al. Glucose solvation by the ionic liquid 1, 3-dimethylimidazolium chloride:a simulation study. J Phys Chem B,2007,111:13765-13774.
    120. Remsing R C, Hernandez G, Swatloski R P, et al. Solvation of carbohydrates in N, N'-dialkylimidazolium ionic liquids:a multinuclear NMR spectroscopy study. J Phys Chem B,2008,112:11071-11078.
    121. Novoselov N P, Sashina E S, Petrenko V E, et al. Study of dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem.2007,39:153-158.
    122. Zhao H, Jones C L, Baker G A, et al. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol,2009,139:47-54.
    123. Lee Y J, Chung C H, Day D F, et al. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide. Bioresour Technol,2009,100:935-941.
    124. Hermanutz F, Gahr F, Uerdingen E, et al. New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp,2008,262:23-27.
    125. Dadi A P, Schall C A, Varanasi S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol,2007,136-140: 407-421.
    126. Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids. J. Am chem Soc,2002,124:4974-4975.
    127. Zhu S D, Wu Y X, Chen Q M, et al. Dissolution of cellulose with ionic liquids and its application:A mini-review. Green Chem,2006,8:325-327.
    128. Turner M B, Spear S K, Huddleston J G, et al. Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem.2003,5:443-447.
    129. Toral A R, de los Rios A P, Hernandez F J, et al. Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol.2007,40:1095-1099.
    130. Chandra R P, Bura R, Mabee W E, et al. Substrate pretreatment:The key to effective enzymatic hydrolysis of lignocellulose. Adv Biochem Eng Biotechnol 2007,108:67-93.
    131. Ooshima H, Sakata M, Harano Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol Bioeng,1986,28:1727-1734.
    132. Nelson M.L, O'Connor R T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses Ⅰ and Ⅱ. Appl Polym Sci,1964 a,8:1325-1341.
    133. O'Connor R T, DuPre E F, Mitcham D. Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Part I:physical and crystalline modifications and oxidation. Textile Res J,1958,28:382-392.
    134. Hurtubise F G, Krassig H. Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique. Anal Chem,1960, 32:177-181.
    135. Mansikkamaki P, Lahtinen M, Rissanen K. Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; Determined by powder X-ray diffraction method. Cellulose,2005,12:233-242.
    136. Singh S, Simmons B A, Vogel K P. Visualization of biomass solubilization and ellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng,2009, 104(1):68-75.
    137. Bezerra R M, Dias A A. Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotech.2004,112:173-184.
    138. Klass L D. Biomass for Renewable Energy, Fuels, and Chemicals. Academic Press, San Diego, California.1998.
    139. Bertran M S, Dale B E. Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 1986,32:4241-4253.
    140. Segal, L. Cellulose and Cellulose Derivatives. Wiley, New York.1971.
    141. Pareek S, Azuma J, Shimizu Y, et al. Hydrolysis of newspaperpolysaccharides under sulfate reducing and methane producing conditions. Biodegradation 2000,11:229-237.
    142. Paster M. Industrial Bioproduct:Today and Tomorrow. US Department of Energy, Office of Energy Efficiency and Renewable Energy. Office of the Biomass Program, Washington, DC.2003.
    143. Day F D. Biocide compositions and related methods. US Patent 6866870.2004.
    144. Gierer J. The interplay between oxygen-derived radical species in the delignification during oxygen and hydrogen peroxide bleaching. In:Scultz, T.P. (Ed.), Lignin, Properties and Materials. American Chemical Society, Washington, DC (Chapter 21).2000.
    145. Gavrilescu D. On the importance of radical formation in pulp bleaching. Cellul Chem Technol,2005,39(5-6):531-549.
    146. Lin X L, Hezari M, Koepp A E, et al. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in pacific yew. Biochem,1996, 35:2968-2977.
    147.Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol,2005,96(18):2026-2032.
    148. Zhao X B, Zhang L H, Liu D H. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresour Technol,2008, 99(9):3729-3736.
    149. Zhao X B, Peng F, Cheng K, et al. Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microbial Technol, 2009,44(1):17-23.
    150. Wingren A, Galbe M, Zacchi, G. Techno-economic evaluation of producing ethanol from softwood:Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progr,2003,19(4):1109-1117.
    151. Nguyen Q A, Saddler J N. An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresour Technol,1991,35: 275-82.
    152. Grohmann K, Himmel M, Rivard C, et al. Chemical-mechanical methods for the enhanced utilization of straw. Biotechnol Bioeng Symp,1984,14:137-157.
    153. Grohmann K, Mitchell D, Himmel M, et al. The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hyrolysis. Appl Biochem Biotechnol,1989, 20/21:45-61.
    154. Knappert D, Grethlein H, Converse A. Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymic hydrolysis. Biotechnol Bioeng,1980,22:1449-1463.
    155. Gharpuray M M, Lee Y H, Fan L T. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng,1983,25:157-172.
    156. Ramos L P, Nazhad M M, Saddler J N. Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme Microbial Technolo,1993,15:821-831.
    157. Linde M, Galbe M, Zacchi, G. Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb Technol,2007,40(5),1100-1107.
    158.杨汝德.现代工业微生物学.广州:华南理工大学出版社,2001:93-96
    159. Krishna S H, Reddy T J, Chowdary G V. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 2001, 77:193-6.
    160. Edgardo A, Carolina P, Manuel R, et al. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production.2008,43(2):120-123.
    161. Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol.2002,59(6):618-628.
    162.诸葛健,李华钟编.微生物学.北京:科学出版社,2004.
    163.俞俊棠,唐孝宣等编著.新编生物工艺学.北京:化学工业出版社,2003.
    164. Agbogbo F K, Coward-Kelly G, Torry-Smith M, et al. Fermentation of glucose/xylose mixtures using Pichiastipitis. Process Biochem,2006,41:2333-2336.
    165.宋向阳,陈牧,毛连山等.戊糖己糖混合糖发酵生产乙醇的主要影响因素[J].南京师范大学校报,2009,32(1):115-119.
    166. Almeida J R M, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol,2007,82(4):340-349.
    167. Huang C F, Lin T H, Guo G L, et al. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol,2009,100(17):3914-3920.
    168. Luo C, Brink D L, Blanch H W. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg,2002,22: 125-138.
    169. Hodge D B, Andersson C, Berglund K A, et al. Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme Microbial Technol,2009,44,309-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700