代谢工程改善工业酒精酵母发酵性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石化燃料的日益减少,酒精作为一种清洁可再生的新型能源成为当前各国研究的热点。利用基因工程及代谢工程技术对工业酒精酵母进行改造,可提高菌种的发酵性能,降低酒精的生产成本。本论文以此为出发点,将Cre/loxp重组酶系统与rDNA位点同源重组相结合应用于工业酒精酵母,从以下三个方面对工业酒精酵母进行改造,并在此基础上建立适用于工业酒精酵母的多基因改造策略。
     首先,在酿酒酵母(Saccharomyces cerevisiae)发酵生产乙醇的过程中,甘油是一种主要的副产物。减少甘油产量可提高乙醇产率和原料利用率。本研究中通过实验设计出最佳的甘油途径改造策略,在敲除工业酒精酵母甘油合成途径关键基因GPD1的同时表达来源于蜡状芽孢杆菌的以NADP+为辅酶的非磷酸化3-磷酸甘油醛脱氢酶(GAPN),随后应用Cre/loxp重组酶系统剔除了构建重组菌时引入的抗性标记基因,接着通过rDNA位点同源重组在该重组菌中过量表达了海藻糖合成酶(TPS)及海藻糖磷酸化酶(TPS),获得了重组工业酒精酵母AG1A1 (gpd1△: :P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2),实现了工业酒精酵母的多基因改造。在葡萄糖浓度为25%的底物发酵中,重组菌AG1A1的甘油得率下降了76.0±0.2%,酒精产量从113.3 g/L提高到123.4 g/L,糖醇转化率提高8.9±0.1%。更为重要的是重组菌AG1A1的最大比生长速率和葡萄糖消耗速率与出发株工业酒精酵母相比基本不变,且该重组菌表现出了更好的耐高糖,耐酒精能力。
     其次,作为目前生产酒精的主要原料,淀粉质原料如玉米,饲用大麦等含有较高浓度的蛋白质(玉米: 10-13%;饲用大麦: 15-18%)。而酿酒酵母无外分泌蛋白酶,不能利用原料中的可溶性蛋白。为提高酒精产率和原料利用率,在本实验中,通过酿酒酵母表面工程技术在工业酒精酵母细胞表面分别呈现表达了其自身以及来源于粗糙脉孢霉(Neuospora crassa)的酸性蛋白酶基因,获得重组菌APB2 (P_(PGK1)-PEP4-AG1)和SA3 (P_(PGK1)-Asp-AG1)。在以玉米淀粉为基质的酒精发酵实验中,重组菌APB2和SA3生长速率和酒精发酵速率均高于原始酒精酵母,酒精得率分别提高了6.5±0.2%和5.7±0.1%。发酵结束时,重组菌APB2及AS3的酒精产量分别达到126.0 g/L和125.0 g/L,而出发株工业酒精酵母仅为118.2 g/L。由于酵母来源的酸性蛋白酶更适合于目前的同步糖化发酵工艺,因此选择该蛋白酶并继续应用Cre/loxp系统与rDNA位点同源重组在重菌株AG1A1 (gpd1△: :P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2)细胞表面进行表达,获得重组菌AGS1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1)。
     另一方面,酒精发酵的糟液中含有一定量的纤维二糖未能被酿酒酵母有效利用。在工业酿酒酵母中引入纤维二糖代谢途径,提高原料利用率的同时也为以后的纤维素酒精发酵打下基础。本研究中,分别在工业酒精酵母的细胞内,胞外和细胞表面表达了来源于扣囊复膜孢酵母(Saccharomycopsis fibuligera)的?-葡萄糖苷酶BGL1基因,并对所得的重组菌SBA1 (P_(PGK1)-BGL1),SBB1 (P_(PGK1)-αF-BGL1),SBC2 (P_(PGK1)-αF-BGL1-AG1)进行了有氧条件下的纤维二糖发酵实验,初步说明工业酒精酵母不具有转运纤维二糖的能力。而同时表达纤维二糖透过性酶和β-葡萄糖苷酶的重组菌BPS3 (P_(PGK1)-BGL1-bglP)不仅具有较好的转运纤维二糖的能力,且该菌株对纤维二糖的利用效率有了明显的提高,在96 h内几乎用尽了10 g/L的纤维二糖并产生4.4 g/L的酒精。因此应用Cre/loxp系统和rDNA位点同源重组,在AGS1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1)中同时表达纤维二糖透过性酶和β-葡萄糖苷酶,赋予该重组酵母利用纤维二糖的能力,最终获得重组菌AGPB3 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1-bglP-BGL1),构建了具有多方面优良性能的新型工业酒精酵母。在以木薯粉为基质的酒精发酵实验中,对重组菌AGPB3以及工业酒精酵母进行发酵性能的比较,结果表明重组菌AGPB3不仅能够利用纤维二糖,且表现出较快的生长速率,耗糖速率和产酒精速率,甘油得率降低了76.8%,酒精产量从118.5 g/L提高到129.3 g/L,酒精得率提高7.5%,达到理论产率的97%。
As the reserves of petroleum decrease, ethanol, which is renewable, has become the focus of many countries as an alternative liquid fuels to gasoline. Improvement of the fermentation competence of yeast strain by gene engineering and metabolic engineering will decrease the costs of ethanol production. In the present study, combined Cre/loxp system with rDNA site homologous recombination, we have conducted research on industrial ethanol-producing yeast from three respects to establish the multi-gene modification strategy suitable used in industrial ethanol-producing yeast.
     First, since glycerol is a main by-product consuming up to 4%~10% of the carbon source in industrial ethanol fermentation, to reduce the production of glycerol and lead carbon source flux towards the synthesis of ethanol is an important way to improve the ethanol yield. Thus, the GPD1 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol producing strain of Saccharomyces cerevisiae, was deleted. Simultaneously, a non-phosphorylating NADP+-dependent glyceraldehydes-3-phosphate dehydrogenase (GAPN) from Bacillus cereus was expressed in the obtained GPD1 deleted mutant. And then, trehalose was over-synthesized in above recombinant strain by expression of trehalose synthesis genes TPS1 and TPS2 by using the Cre/loxp system. The resultant recombinant strain AG1A1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2) exhibited a 76.0±0.2% (relative to the amount of substrate consumed) decrease in glycerol production and a 8.9±0.1% (relative to the amount of substrate consumed) increase in ethanol yield compared with the parent strain. Besides, the maximum specific growth rate (μmax) and fermentation ability of this yeast recombinant strain were indistinguishable as compared to parent strain in anaerobic batch fermentations.
     Second, although the materials used for ethanol production contain relatively high protein content (corn: 10-13%; feeding barley: 15-18%), the yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. To improve the substrate utilization and ethanol yield, the gene PEP4, encoding a vacuolar aspartyl protease in S. cerevisiae, and the gene Asp, encoding aspartic protease in Neurospora crassa, was cloned and expressed in industrial ethanol yeast, respectively. The obtained two recombinant strains APB2 (P_(PGK1)-PEP4-AG1), SA3 (P_(PGK1)-Asp-AG1) were studied under ethanol fermentation conditions in corn mash fermentations. The ethanol yields of APB2 and SA3 increased by 6.5±0.2% and 5.7±0.1% (relative to the amount of substrate consumed) compared with parent strain. The recombinant strains APB2 and AS3 produced 126.0 g/L and 125.0 g/L ethanol, while the parent strain produced 118.2 g/L ethanol at the end of fermentation. Since the optimal reactive temperature and pH value of PEP4 was coincided with that of SSF (Simultaneous Saccharification and Fermentation), it was chosen and expressed in the recombinant strain AG1A1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2) whose G418 resistance gene was deleted by Cre/loxp system. The resultant strain was named AGS1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1).
     Third, cellobiose is one of the sugars that cannot be effectively used by S. cerevisiae in the distillate of ethanol fermentation. To engineer the yeast with the ability of assimilation of cellobiose will improve the substrate utilization efficiency and promote the development of cellulose-ethanol fermentation. In our study, the BGL1 gene, encodingβ-glucosidase in Saccharomycopsis fibuligera, was expressed in industrial ethanol-producing strain of S. cerevisiae in three different patterns—in vivo, in vitro and on cell surface. The obtained recombinant strains SBA1 (P_(PGK1)-BGL1) expression of intracellularβ-glucosidase, SBB1 (P_(PGK1)-αF-BGL1) expression of extracellularβ-glucosidase and SBC2 (P_(PGK1)-αF-BGL1-AG1) expression of cell-wall anchoredβ-glucosidase were studied under aerobic and anaerobic conditions in medium supplemented with cellobiose. The results indicated that the parent S. cerevisiae used in industrial ethanol production is likely deficient in cellobiose transporter. However, when theβ-glucoside permease andβ-glucosidase were co-expressed in this strain, it began to uptake cellobiose and the overall performance of this strain in cellobiose-fermentation was improved. The recombinant strain consumed 10 g/L cellobiose and produced 4.4 g/L ethanol in 96 h. After the G418 resistance gene of the recombinant strain AGS1 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1) was deleted by Cre/loxp system, theβ-glucoside permease andβ-glucosidase were co-expressed in this strain and the resultant strain AGPB3 (gpd1△::P_(PGK1)-gapN, P_(PGK1)-TPS1-TPS2-PEP4-AG1-bglP-BGL1) was studied in cassava mash fermentations. Not only the recombinant strain AGPB3 can use cellobiose to produce ethanol, but also this strain showed fast growth rate and glucose consumption rate, as well as ethanol production rate. Finally, the recombinant strain AGPB3 exhibited a 76.8% (relative to the amount of substrate consumed) decrease in glycerol production. The ethanol yield was increased from 118.5 g/L to 129.3 g/L, corresponding to 97% of theoretical yield and a 7.5% (relative to the amount of substrate consumed) increase in ethanol yield was achieved compared with the parent strain.
引文
1.廖兴华,夏延斌,周传云.燃料酒精的发展现状和研究趋势[J].酿酒, 2007, 05: 18- 20
    2.张绪霞,懂海洲,侯汉学,等.燃料酒精制备及其开发前景[J].粮食与油脂, 2006, 05: 7-9
    3.江宁.生物液体燃料—燃料酒精[J].自然杂志, 2007, 29(1): 30-33
    4.王丽,陈卫平.纤维质原料制燃料酒精的研究进展[J].酿酒科技, 2005, 3: 57-60
    5.翟永辉.试论我国发展燃料酒精的可行性[J].淀粉与淀粉糖, 2001, 1: 19-20
    6. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration[J]. Appl Microbiol Biotechnol, 2001, 56: 17-34
    7. Bj?rkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1997, 63: 128-132
    8. Nissen TL, Kielland-Brandt MC, Nielsen J, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation[J]. Metab Eng, 2000, 2: 69-77
    9. Nissen TL, Schulze U, Nielsen J, et al. Flux distributions in anaerobic, glucose-limited continuous cultivations of Saccharomyces cerevisiae[J]. Microbiol, 1997, 143(1): 203-218
    10. Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3- phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Mol Cell Biol, 1994, 14(6): 4135-4144
    11. Eriksson P, Andre AL, Ansell R, et al. Cloning and characterisation of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison to GPD1[J]. Mol Microbiol, 1995, 17(1): 95-107
    13. AndréL, Hemming A, Adler L. Osmoregulation in Saccharomyces cerevisiae Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+)[J]. FEBS Lett, 1991, 286(2): 13-17
    13. Albers E, Larsson C, Lidén G, et al. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation[J]. Appl Environ Microbiol, 1996, 62(9): 3187-3195
    14. Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependentglycerol–3–phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. EMBO J, 1997, 16(9): 2179-2187
    15. Valadi H, Larsson C, Gustafsson L, et al. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 1998, 50(4): 434-439
    16. Michnick S, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase[J]. Yeast, 1997, 13: 783-793
    17. Nissen TL, Kielland-Brandt MC, Nielsen J, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisia mutants impaired in glycerol synthesis[J]. Yeast, 2000, 16(5): 463-474
    18. Anderlund M, Nissen TL, Nielsen J, et al. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation[J]. Appl Environ Microbiol, 1999, 65(6): 2333-2340
    19. Kong QX, Zhang AL, Cao LM, et al. Over-expressing GLT1 in a gpd1Δmutant of Saccharomyces cerevisiae to improve ethanol production[J]. Appl Microbiol Biotechnol, 2007, 73: 1382-1386
    20. Kong QX, Zhang AL, Cao LM, et al. Over-expressing GLT1 in a gpd2Δmutant of Saccharomyces cerevisiae to improve ethanol production[J]. Appl Microbiol Biotechnol, 2007, 75: 1361-1366.
    21. Bro C, Regenberg B, Forster J, et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production[J]. Metab Eng, 2006, 8: 102-111
    22.赵华,赵树欣,张维,等.酒精发酵中应用酸性蛋白酶的研究[J].食品与发酵工业, 1997, 23(2): 26-28
    23.李永泉.羊毛生物整理复合酶高产菌的激光选育[J].菌物系统, 2001, 20(2): 196-200
    24.周恒刚.酸性蛋白酶在酿酒上的功用[J].酿酒科技, 1998, 6: 15
    25.李永泉.真菌酸性蛋白酶软化绵羊皮的研究[J].中国皮革, 1998, 27(8): 16-17
    26.王岩,王傲宇.添加酸性蛋自酶生产玉米酒精新技术[J].实用技术, 2003, 6: 15
    27.姜锡瑞,段钢.新编酶制剂实用技术手册[M].北京,中国轻工业出版社, 2002
    28.吕伟民,赵云财,夏海华,等.酒用酸性蛋白酶在酒精发酵中的应用[J].酿酒, 2003, 3: 33-34
    29.肖冬光,赵华,赵树欣,等.酒用酸性蛋白酶在酒精生产中应用的研究[J].酿酒, 1999, 3: 42-45
    30.段钢,许宏贤,钱莹,等.酸性蛋白酶在玉米酒精浓醪发酵上的应用研究[J].食品与发酵工业, 2005, 8: 34-38
    31. Ingledew WM. Alcohol Production by Saccharomyces Cerevisiae: A yeast Primer. The Alcohol Text Book[M]. UK: Nottingham Universtiy Press, 1995
    32. Kondo A, Ueda M. Yeast cell-surface display-applications of molecular display[J]. Appl Microbiol Biotechnol, 2004, 64(1): 28-40
    33. Cappellaro C, Hauser K, Mrsa V, et al. Saccharomyces cerevisiae a-andα-agglutinin: characterization of their molecular interaction[J]. EMBO J, 1991, 10: 4081-4088
    34. Roy A, Lu CF, Marykwas DL, et al. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoproteinα-agglutinin[J]. Mol Cell Biol, 1991, 11: 4196-4206
    35. Lu CF, Kurjan J, Lipke PN. A pathway for cell anchorage of Saccharomyces cerevisiaeα-agglutinin[J]. Mol Cell Biol, 1994, 14: 4825-4833
    36. Watari J, Takata Y, Ogawa M, et al. Molecular cloning and analysis of the yeast flocculation gene FLO1[J]. Yeast, 1994, (10): 211-225
    37. Matsumoto T, Fukuda H, Ueda M, et al. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain[J]. Appl Environ Microbiol, 2002, 68: 4517-4522
    38. Sato N, Matsumoto T, Ueda M, et al. Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates[J]. Appl Microbiol Biotechnol, 2002, 60: 469-474
    39. Fujita Y, Ito J. Synergistic Saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellu-lolytic enzyme[J]. Appl Environ Microbiol, 2004, 21: 1207 -1212
    40.侯进,沈煜,鲍晓明.木糖异构酶在酿酒酵母表面表达及对木糖代谢影响的研究[J].生物加工过程, 2006, 4: 30-34
    41.戴斐,张雍容,江正兵,等.酿酒酵母表面展示脂肪酶LipB52的酶学性质[J].华东理工大学学报, 2007, 2: 177-181
    42.陈新爱,夏黎明,岑沛霖.里氏木霉纤维二糖酶bglⅡ基因的cDNA克隆及其在大肠杆菌中的表达[J].菌物系统, 2002, 21(2): 223-227
    43.曾黎辉,吕柳新. Pichia pastoris表达β-葡萄糖苷酶基因研究[J].福建农林大学学报(自然科学版), 2003, 32(3): 331-335
    44. Shen Y, Zhang Y, Ma T, et al. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressingβ-glucosidase[J]. Bioresource Technol, 2008, 99: 5099-5103
    45.张梁,石贵阳,王正祥,等.酿酒酵母GPD1中整合表达纤维二糖酶基因用于纤维素酒精发酵的研究[J].西北农林科技大学学报, 2006, 34(10): 164-170
    46.石贵阳,张梁,章克昌,等.在GPD1中整合表达蜜二糖酶基因改善酒精发酵水平[J].微生物学通报, 2005, 32(6): 100-104
    47.周衍,张梁,石贵阳,等.扣囊复膜孢酵母β-葡萄糖苷酶基因在工业酿酒酵母中的表达[J].中国生物工程杂志, 2007, 27(2): 64-69
    48. Penttila ME, Helena KM, Nevalainen HKM, et al. Cloning of Aspergillus niger genes in yeast. Expression of the gene coding Aspergillusβ-glucosidase[J]. Mol Gen Genet, 1984, 194: 494-499
    49. Machida M, Ohtsuki I, Fukui S, et al. Nucletide sequence of Saccharomycopsis fibuligera genes for extracellularβ-glucosidases as expressed in Saccharomyces cerevisiae[J]. Appl Environ microbiol, 1988, 54(12): 3147-3155
    50. Adam AC, Polaina J. Construction of a Saccharomyces cerevisiae strain able to ferment cellobiose[J]. Gurr Genet, 1991, 20: 5-8
    51. Van Rooyen R, Hahn-H?gerdal B, La Grange DC, et al. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains[J]. J Biotechnol, 2005, 120: 284-295
    52. Den Haana R, Rosea SH, Lyndb LR, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae[J]. Metabolic Engineering, 2007, 9: 87-94
    53.刘向勇,沈煜,郭亭,等. rDNA介导的多拷贝整合表达载体的构建及其在酿酒酵母工业菌株中的应用[J].山东大学学报(理学版), 2005, 40(3): 105-109
    54. Johnston M, Riles L, Albermann K, et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII[J]. Nature, 1997, 387(supp): 87-90
    55. Lopes TS, Klootwijk J, Veenstra A. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression[J]. Gene, 1989, 79: 199-206
    56.洪剑辉,张梁,石贵阳,等.利用纤维二糖的酵母工程菌构建[J].应用与环境生物学报, 2006, 12: 391-394
    57. Klabunde J, Kunze G, Gellissen G, et al. Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targetingelement[J]. FEMS Yeast Res, 2003, 4: 185-193
    58.陈芳,陈策实,李越,等.欧文氏菌2-酮基醛糖还原酶基因敲除的研究[J].微生物学报, 2000, 40: 575-481
    59.陈三凤,刘德虎.现代微生物遗传学[M].北京:化学工业出版社, 2003
    60. Güldener U, Heck S, Fielder T, et al. A new efficient gene disruption cassette for repeated use in budding yeast[J]. Nucleic Acids Res, 1996, 24: 2519-2524
    61.肖冬光,刘青,李静,等.酿酒酵母单倍体制备方法的优化[J].酿酒科技, 2004, 4: 21-22
    62.吴帅,陈叶福,沈楠.高耐性酿酒酵母的杂交育种[J].酿酒科技, 2006, 10: 20-23
    63. Verduyn C, Stouthamer AH, Scheffers WA, et al. A theoretical evaluation of growth yields of yeasts[J]. Antonie Van Leeuwenhoek, 1991, 59: 49-63
    64. Bendixen C, Gangloff S, Rothstein R. A yeast mating-selection scheme for detection of protein-protein interactions[J]. Nucleic Acids Res, 1994, 22: 1778-1779
    65. Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual[M]. 3rd Edtion. NewYork: Cold SpringHabor Laboratory Press. 2001
    66. Crow VL, Wittenberger CL. Separation and properties of NAD+-and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans[J]. J Biol Chem, 1979, 254: 1134-1142
    67. Londesborough J, Vuorio O. Trehalose-6-phosphate synthase/phosphatase complex from bakers’yeast: purification of a proteolytically activated form[J]. J Gen Microbiol, 1991, 137: 323-330
    68. Neves MJ, Terenzi HF, Leone FA, et al. Quantification of trehalose in biological samples with a conidial trehalase from the thermophilic fungus Humicola grisea var. thermoidea[J]. World J Microbiol Biotechnol, 1994, 10: 17-19
    69. F.奥斯伯.精编分子生物学实验指南[M].颜子颖,王海林译.北京:科学出版社, 1998, 322
    70. Gabriel P, Dienstbier M, MatoulkováD, et al. Optimised acidification power test of yeast vitality and its use in brewing practice[J]. J Inst Brew, 2008, 114: 270-276
    71. Wang Y, Shi WL, Liu XY, et al. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae[J]. Biotechnol Lett, 2004, 26: 885-890
    72. Mansure JJ, Panek AD, Crowe LM, et al. Trehalose inhibits ethanol effects on intact yeast cells and liposomes[J]. Biochim Biophys Acta, 1994, 1191: 309-316
    73. Verstrepen KJ, Iserentant D, Malcorps P, et al. Glucose and sucrose: hazardous fast-food for industrial yeasts?[J]. Trends Biotechnol, 2004, 22: 531-537
    74.邱重晏.酸性蛋白酶的克隆及表达[D]: [硕士学位论文].江苏:江南大学, 2005
    75. European Brewery Convention. Free amino nitrogen, Analytica-EBC, fourth ed. Brauerei- und Getr?nke-Rundschau, Zurich, 1987, E141-E142
    76.齐香君,苟金霞,韩戌珺,等. 3, 5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术, 2004, 9: 17-19
    77. Jones MO, Rainbow C. Simple methods of determining major nitrogenous compounds in worts and beers[J]. Am Soc Brew Chem Proc, 1996, 66-70.
    78. Thomas KC, Ingledew WM. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes[J]. Appl Environ Microbiol, 1990, 56: 2046-2050
    79. Gabriel P, Dienstbier M, Matoulkova D, et al. Optimized acidification power test of yeast vitality and its use in brewing practice[J]. J Inst Brew, 2008, 114: 270-276
    80.姚卫蓉,丁霄霖. pNPG法测定纤维素酶系中?-葡萄糖苷酶[J].微生物学通报, 1998, 25(3): 982-983
    81. Schreuder MP, Brekelmans S, Van den dene H, et al. Targeting of a Heterologous Protein to the Cell Wall of Saccharomyces cerevisiae[J]. Yeast, 1993, 9: 399-409
    82. Duerksen JD, Halvorson H. Purification and properties of an inducible ?-glucosidase of yeast[J]. J Biol Chem, 1958, 233: 1113-1120
    83. Raynal A, Guerineau M. Cloning and expression of the structural gene for ?-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae[J]. Mol Gen Genet, 1984, 195: 108-115
    84. Kaplan JG, Tacreiter W. The ?-glucosidase of the yeast cell surface[J]. J Gen Physiol, 1966, 50: 9-24
    85. Raynal A, Guerineau M. Cloning and expression of the structural gene for ?-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae[J]. Mol Gen Genet, 1984, 195: 108-115
    86. van Rooyen R, Hahn-H?gerdal B, La Grange DC, et al. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains[J]. J Biotechnol, 2005, 120: 284-295
    87. Coq DL, Lindner C, Krüger T, et al. New ?-Glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog[J]. J Bacteriol, 1995, 177: 1527-1535
    88. Jeffries TW, Van Vleet JR. Pichia stipitis genomics, transcriptomics, and gene clusters[J]. FEMS Yeast Res, 2009, 9: 793-807
    89. Jeffries TW, Grigoriev IV, Grimwood J, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis[J]. Nat Biotechnol, 2007, 25: 319-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700