新型烷基苯磺酸盐和烷基硫酸盐Gemini表面活性剂的合成、性质及其与牛血清蛋白相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Gemini表面活性剂是一类新型的表面活性剂,可看做是传统的单亲水头基单疏水尾链表面活性剂的二聚体或寡聚体。与传统的表面活性剂相比,Gemini表面活性剂具有更高的表面活性以及更丰富的自组织行为,其分子结构也具有更大的可调控性。Gemini表面活性剂的优良性质使得它在近二十年来成为胶体界面领域内的研究热点。阴离子表面活性剂,尤其是烷基苯磺酸盐和烷基硫酸盐类表面活性剂,在工农业生产以及科研领域有着极为广泛的应用。设计和合成新型的烷基苯磺酸盐和烷基硫酸盐类阴离子Gemini表面活性剂,研究其结构与性能的关系,已成为表面活性剂科学一个重要的方向。
     在实际应用时,表面活性剂经常要和高分子一起使用。蛋白质是一类重要的生物大分子,蛋白质-表面活性剂复配体系在洗涤剂、化妆品、生物、医药和食品等诸多领域有着广泛的应用。因此,研究表面活性剂和蛋白质的相互作用具有重要的理论意义和实用价值。本文合成了一类烷基苯磺酸盐以及一类烷基硫酸盐类的阴离子表面活性剂,并研究了它们的表面活性以及与牛血清蛋白(BSA)的相互作用。论文主要研究内容和结果如下:
     1.对Gemini表面活性剂,尤其是阴离子型Gemini表面活性剂的合成、性质以及与BSA的相互作用进行了系统的文献综述。
     2.以长链烷基羧酸、苯胺以及1,6-己二异氰酸酯等为原料合成了四种疏水尾链长度不同的烷基苯磺酸盐Gemini表面活性剂,产物的结构用红外(FT-IR)核磁共振氢谱(1H NMR)和电喷雾电离质谱(ESI-MS)进行了表征。
     3.以溴癸烷、丙二酸二乙酯以及二溴代烷烃等为原料合成了四种连接基团长度不同的烷基硫酸盐Gemini表面活性剂,产物的结构用FT-IR、1H NMR和ESI-MS进行了表征。
     4.用表面张力法、电导法以及稳态荧光法研究了烷基苯磺酸盐Gemini表面活性剂的表面活性和胶束化性质。此类Gemini表面活性剂的临界胶束浓度(cmc)比相应的单链表面活性剂低1~2个数量级,随着疏水尾链长度的增加,四种Gemini表面活性剂的cmc先减小后增大,摩尔电导率实验证实了GeminiⅣ溶液中存在预胶束。芘荧光探针实验表明,烷基苯磺酸盐Gemini表面活性剂胶束的微极性随疏水尾链长度的增加变化不大。此类表面活性剂的发泡性和泡沫稳定性以及润湿性较差,但具有优良的钙皂分散性,其乳化力也优于十二烷基苯磺酸钠。
     5.用表面张力法、电导法以及稳态荧光法研究了烷基硫酸盐Gemini表面活性剂的表面活性和胶束化性质。由电导法测得的cmc比表面张力法测得的cmc要高很多,而和荧光探针法估算得到的cmc比较接近。摩尔电导实验揭示了此类表面活性剂溶液中存在预胶团现象。预胶团的存在是导致不同方法测得的cmc产生差异的原因,在这种情况下,传统的cmc是指由电导法测得的结果。四种表面活性剂的cmc随着连接基团疏水碳原子数的增加有下降的趋势。四种Gemini的发泡性和润湿性比十二烷基硫酸钠(SDS)差,且发泡性随着连接基团疏水碳原子数的增加而降低,但是泡沫稳定性比SDS要高很多,乳化力和钙皂分散性都优于SDS。
     6.采用荧光光谱法、紫外光谱法和圆二色谱法研究了烷基苯磺酸盐Gemini表面活性剂与BSA的相互作用。芘荧光探针实验表明,四种Gemini表面活性剂与BSA形成的复合物的微极性相差不大,而且在高浓度时与不加BSA的表面活性剂自由胶束的微极性相近。同步荧光结果证实,Gemini主要和BSA上的色氨酸残基发生相互作用。BSA内源荧光光谱变化表明,Gemini的加入导致BSA荧光的猝灭,猝灭过程同时包含了静态猝灭和动态猝灭。在低浓度时,四种Gemini使BSA荧光猝灭的速率随疏水尾链长度先增强后减弱,这是由两种相反的因素造成的:疏水尾链短的Gemini更容易接近BSA的疏水空穴与其中的色氨酸残基作用,而疏水尾链长的Gemini更容易和BSA发生疏水相互作用。圆二色谱结果表明,表面活性剂加入后导致BSA的二级结构发生变化,a-螺旋含量降低,p-折叠含量增加。
     7.采用荧光光谱法、圆二色谱法以及动态光散射法研究了烷基硫酸盐Gemini表面活性剂与BSA的相互作用。芘荧光探针实验表明,Gemini表面活性剂与BSA形成的复合物的微极性随着连接基团疏水链长的增加而降低,并且比相应的表面活性剂自由胶束的微极性要低。BSA内源荧光和同步荧光分析结果表明,BSA在变性过程经历了一个中间态,中间态相对于BSA以及部分变性的BSA具有更强的形成聚集体的倾向。圆二色谱实验表明,烷基硫酸盐Gemini表面活性剂对BSA的二级结构起两种相反的作用:在浓度较低时,表面活性剂对BSA的二级结构起稳定作用,在高表面活性剂浓度时,以变性作用为主。动态光散射实验表明,Gemini表面活性剂与BSA的复合物在饱和结合时的流体力学半径随着连接基团碳原子数的增加而减小。
     本论文的主要创新点如下:
     1.合成了四种疏水尾链长度不同的烷基苯磺酸盐Gemini表面活性剂,并研究了它们的表面活性和应用性能,为此类表面活性剂的理论研究以及应用开发提供重要的基础数据。
     2.合成了四种连接基团长度不同的烷基硫酸盐Gemini表面活性剂,并研究了它们的表面活性和应用性能,丰富了阴离子Gemini表面活性剂结构-性能关系的研究内容,为其应用奠定基础。
     3.首次研究了硫酸盐类Gemini表面活性剂与BSA的相互作用,探讨了连接基团长度对它们的相互作用的影响。通过多种实验方法分析测试和相互验证,提出了可能的作用机理。
Gemini surfactants are a novel class of surfactants, which could be considered as dimers or oligomers of conventional surfactants with single headgroup and single hydrophobic tail. Compared with conventional surfactants, Gemini surfactants show better surface activity and richer aggregation behaviors, and the structures of Gemini surfactants are also more adjustable than conventional surfactants. Owing to their excellent properties, Gemini surfactants have attracted worldwide attention in the field of colloid and surface science over the past decades. Anionic surfactants, especially alkylbenzene sulfonate and alkyl sulfate surfactants, have been widely used in the fields of industrial production and academic research. Design and synthesis of new types of alkylbenzene sulfonate and alkyl sulfate Gemini surfactants and study of the structure-performance relationship of these surfactants, have become an important part in the field of surfactant science.
     Surfactants and polymers are often used together in practical applications. Proteins are an important kind of biomacromolecules. Protein-surfactant systems are widely used in the fields of detergents industry, cosmetics, bioscience, pharmaceutics and food. Thus studies on interactions of proteins and surfactants become very important. In this paper, two types of anionic Gemini surfactants, i.e. the alkylbenzene sulfonate type and the alkyl sulfate type, have been synthesized, and their aurface active properties and the interactions with bovine serum albumin (BSA) have been studied. The main contents of the thesis are as follows:
     1. The synthesis and properties of Gemini surfactants and their interactions with BSA were briefly reviewed.
     2. Four alkylbenzene sulfonate gemini surfactants with different alkyl tail length were synthesized based on long chain alkyl carboxylic acid, aniline and1,6-hexamethylene diisocyanate. The structures of the products were confirmed by FT-IR,1H NMR and ESI-MS.
     3. Four alkyl sulfate Gemini surfactants with different spacer length were synthesized based on1-bromodecane, diethyl malonate and dibromoalkane. The structures of the products were confirmed by FT-IR,1H NMR and ESI-MS.
     4. The surface active and micellization properties of the alkylbenzene sulfonate Gemini surfactants were investigated by means of surface tension, electrical conductivity and fluorescence measurements. The results showed that the cmc of these compounds were one or two orders of magnitude lower than the corresponding monomeric surfactant. There was an initial decrease and then an increase in cmc with the increase of hydrophobic alkyl tail. Molar conductivity measurement revealed the existence of premicellar aggregates in solutions of Gemini IV. Fluorescence probing studies showed that the micropolarities of these Gemini micelles varied little with the increase in alkyl tail length. Performance properties of these surfactants were also studied; low foamability, foam stability and wetting ability but good lime soap dispersing ability were observed for these compounds, the emulsifying power of the Geminis was also better than that of sodium dodecylbenzene sulfonate.
     5. The surface active and micellization properties of the alkyl sulfate Gemini surfactants were investigated by means of surface tension, electrical conductivity and fluorescence measurements. The cmc values obtained by the conductivity method were considerably higher than those obtained by the surface tension method, and comparable with those obtained by the fluorescence probing method. Molar conductivity measurement revealed the existence of premicellar aggregates for these surfactants, the formation of premicellar aggregates may account for the discrepancy between the cmc obtained by these different methods. In these cases, the traditional cmc refer to the values obtained by the conductivity method. The cmc values of these Gemini surfactants decreased monotonously with the increase of spacer chain length from3to10. The foamability and wetting ability of alkyl sulfate Geminis were lower than those of SDS, but the foam stability, emulsifying power and lime soap dispersing ability were better than those of SDS.
     6. The interactions of alkylbenzene sulfonate Gemini surfactants with BSA were studied by means of fluorescence, UV-Vis absorption spectroscopy and circular dichroism (CD). Fluorescence probing studies revealed that the micropolarities of Gemini-BSA complexes showed little difference with the variation of alkyl tail length. The micropolarities of gemin-BSA complexes at high surfactant concentration range were close to those of free Gemini micelles. Synchronous fluorescence spectra displayed that Geminis mainly interacted with the tryptophan residues of BSA. BSA intrinsic fluorescence spectra illustrated that the addition of Gemini surfactants to BSA solution resulted in quenching of BSA fluorescence intensity. The quenching process contained a mixture of dynamic and static quenching. At low concentration range, the quenching constant demonstrated an initial increase and then a decrease with the increase in alky tail length, this is the result of two opposite factors, on the one hand, geminis with a shorter alkyl tail may be easier to approach the cavity and interact with the tryptophan residue in the cavity, on the other hand, geminis with a longer alkyl tail may interact stronger with BSA through hydrophobic interaction. CD experiment showed that changes in secondary structures occurred when Gemini surfactants were added to BSA, the a-helix content decreased and β-sheet content increased.
     7. The interactions of alkyl sulfate Gemini surfactants with BSA were studied by means of fluorescence, CD and dynamic light scattering (DLS). Fluorescence probing studies displayed that the micropolarities of Gemini-BSA complexes decreased with the increase of spacer carbon number n, and they were lower than those of the corresponding free Gemini micelles. BSA intrinsic and synchronous fluorescence spectra demonstrated that BSA probably went through an intermediate state upon denaturation by the addition of Gemini surfactant, and the intermediate has a stronger tendency to aggregate than native and partly denatured BSA. CD experiment showed that the alkyl sulfate Gemini surfactants played two opposite roles when interacted with BSA. At low Gemini/BSA molar ratios, Gemini surfactants could stabilize the secondary structure of BSA, while at higher molar ratios, Gemini mainly acted as denaturants. DLS experiment illustrated that the size of gemini-BSA complexes decreased with the increase in spacer chain length.
     The innovations of this work are as follows:
     1. Four alkylbenzene sulfonate Gemini surfactants with different alkyl tail length were synthesized. Their surface active and performance properties were investigated. This provides basic scientific data for theoretical research and application studies.
     2. Four alkyl sulfate Gemini surfactants with different spacer length were synthesized. Their surface active and performance properties were investigated. This research enriches the studies about the structure-performance relationships of Gemini surfactants and lays the foundations for practical applications.
     3. The interactions of alkyl sulfate Gemini surfactants with BSA were first studied. The influence of spacer length on the interactions was discussed. The possible mechanism of interaction was proposed based on multi-technique experimental results.
引文
[1]Zana R, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review. Advances in Colloid and Interface Science,2002,97,205-253.
    [2]Camesano T A, Nagarajan R, Micelle formation and CMC of Gemini surfactants: a thermodynamic model. Colloid and Surfaces A:Physicochemical and Engineering Aspects,2000,167,165-177.
    [3]Zana R, Talmon Y, Dependence of aggregate morphology on structure of dimeric surfactants. Nature,1993,362,228-230.
    [4]Danino D, Talmon Y, Levy H, Beinert G, Zana R, Branched threadlike micelles in an aqueous solution of a trimeric surfactant. Science,1995,269,1420-1421.
    [5]Du X G, Li L, Lu Y, Yang Z Y, Unusual viscosity behavior of a kind of anionic gemini surfactant. Colloids and Surface A:Physicochemical and Engineering Aspects,2007,308,147-149.
    [6]Bunton C A, Robinson L, Schaak J, Stam M F, Catalysis of nucleophilic substitutions by micelles of dicationic detergents. The Journal of Organic Chemistry, 1971,36,2346-2350.
    [7]Menger F M, Littau C A, Gemini surfactants:synthesis and properties. Journal of the American Chemical Society,1991,113,1451-1452.
    [8]Zana R, Benrraou M, Rueff R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir,1991,7,1072-1075.
    [9]Alami E, Levy H, Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants.2. Structure of the lyotropic mesophases in the presence of water. Langmuir,1993,9,940-944.
    [10]Alami E, Beinert G, Marie P, Zana R, Alkanediyl-a, co-bis (dimethylalkylammonium bromide) surfactants.3. Behavior at the air-water interface. Langmuir,1993,9,1465-1467.
    [11]Frindi M, Michels B, Levy H, Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants.4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solutions. Langmuir,1994,10,1140-1145.
    [12]Danino D, Talmon Y, Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants (dimeric surfactants).5. Aggregation and microstructure in aqueous solutions. Langmuir,1995,11,1448-1456.
    [13]Zana R, Levy H, Alkanediyl-a,ω-bis (dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis (dimethylalkylammonium bromide) series. Colloid and Surfaces A:Physicochemical and Engineering Aspects,1997,127,229-232.
    [14]Zana R, Ln M, Levy H, Alkanediyl-a, co-bis (dimethylalkylammonium bromide). 7. Fluorescence probing studies of micelle micropolarity and microviscosity. Langmuir,1997,13,5552-5557.
    [15]Ulbricht W, Zana R, Alkanediyl-a, co-bis (dimethylalkylammonium bromide) surfactants Part 8. Pressure-jump study of the kinetics micellar equilibria in aqueous solutions of alkanediyl-a, co-bis (dimethylalkylammonium bromide) surfactants. Colloid and Surfaces A:Physicochemical and Engineering Aspects,2001,183-185, 487-494.
    [16]Grosmaire L, Chorro M, Chorro C, Partyka S, Zana R, Alkanediyl-a, co-bis (dimethylalkylammonium bromide) surfactants.9. Effect of the spacer carbon number and temperature on the enthalpy of micellization. Journal of Colloid and Interface Science,2002,246,175-181.
    [17]Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants.10. Behavior in aqueous solution at concentrations below the critical micelle concentration:an electrical conductivity study. Journal of Colloid and Interface Science,2002,246,182-190.
    [18]Zhu Y P, Masuyama A, Okahara M, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of the American Oil Chemists'Society,1990,67,459-463.
    [19]Zhu Y P, Masuyama A, Okahara M, Preparation and surface active properties of new amphipathic compounds with two phosphate groups and two long-chain alkyl groups. Journal of the American Oil Chemists'Society,1991,68,268-271.
    [20]Zhu Y P, Masuyama A, Kirito Y I, Okahara M, Rosen M J, Preparation and properties of glycerol-based double-or triple-chain surfactants with two hydrophilic ionic groups. Journal of the American Oil Chemists'Society,1992,69,626-632.
    [21]ZhuYP, Masuyama A, Kirito Y I, Okahara M, Preparation and properties of double-or triple-chain surfactants with two sulfonate groups derived from N-acyldiethanolamines. Journal of the American Oil Chemists'Society,1991,68, 539-543.
    [22]Zhu Y P, Masuyama A, Kobata Y, Nakatsuji Y, Okahara M, Rosen M J, Double-chain surfactants with two carboxylate groups and their relation to similar double-chain compunds. Journal of Colloid and Interface Science,1993,158,40-45.
    [23]Okahara M, Masuyama A, Sumida Y, Zhu Y P, Surface active properties of new types of amphipathic compounds with two hydrophilic ionic groups and two lipophilic alkyl chains. Journal of Japan Oil Chemists'Society,1988,37,746-748.
    [24]Zhu Y P, Masuyama A, Nagata T, Okahara M, Preparation and properties of double-chain surfactants bearing two sulfonate groups. Journal of Japan Oil Chemists'Society,1991,40,473-477.
    [25]Zhu Y P, Masuyama A, Nakatsuji Y, Okahara M, Synthesis and properties of bis (sulfonate) types of double-chain surfactants bearing a sulfur atom in the connecting part. Journal of Japan Oil Chemists'Society,1993,42,86-94.
    [26]Masuyama A, Hirono T, Zhu Y P, Okahara M, Rosen M J, Synthesis and properties of bis (taurine) types of double-chain surfactants. Journal of Japan Oil Chemists'Society,1992,41,301-305.
    [27]Rosen M J, Mathias J H, Davenport L, Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir,1999,15,7340-7346.
    [28]Rosen M J, Liu L, Surface activity and premicellar aggregation of some novel diquaternary Gemini surfactants. Journal of the American Oil Chemists'Society, 1996,73,885-890.
    [29]Song L D, Rosen M J, Surface properties, micellization and premicellar aggregation of gemini surfactants with rigid and flexible spacer. Langmuir,1996,12, 1149-1153.
    [30]Rosen M J, Gao T, Nakatsuji Y, Masuyama A, Synergism in binary mixtures of surfactants 12. Mixtures containing surfactants with two hydrophilic and two or three hydrophobic groups. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,1994,88,1-11.
    [31]赵剑曦,新一代表面活性剂:Geminis.化学进展,1999,11,348-357.
    [32]赵秋伶,高志农,双季铵盐-硫酸酯盐两性Gemini表面活性剂的合成及其表面活性.武汉大学学报(理学版),2005,51,709-712.
    [33]高志农,吕波,魏俊超,含酯基季铵盐Gemini表面活性剂的合成及表面活性..武次大学学报(理学版),2006,52,159-162.
    [34]Zhang Q, Gao Z N, Xu F, Tai S X, Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants:An electrical conductivity study. Journal of Colloid and Interface Science,2012,371,73-81.
    [35]Zhang Q, Gao Z N, Xu F, Tai S X, Liu X G, Mo S B, Niu F, Surface tension and aggregation properties of novel cationic gemini surfactants with diethyl ammonium headgroups and a diamido spacer. Langmuir,2012,28,11979-11987.
    [36]刘平.阴离子型孪连表面活性剂的合成与性能研究.中国石油大学(华东)博士论文.2009.
    [37]Kirby A J, Camilleri P, Engberts J B F N, et al. Gemini surfactants:new synthetic vectors for gene transfection. Angewandte Chemie International Edition,2003,42, 1448-1457.
    [38]Liu Q, Guo M L, Nie Z, Yuan J B, Tan J, Yao S Z, Spacer-mediated synthesis of size-controlled gold nanoparticles using gemini as ligands. Langmuir,2008,24, 1595-1599.
    [39]Zhang Q, Gao Z N, Xu F, Zou X, Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide) on aluminium in hydrochloric acid solution. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2011,380,191-200.
    [40]Wu T, Yan X Y, Cai X, Tan S Z, Li H Y, Liu J S, Yang W D, Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Applied Clay Science,2010,50,604-607.
    [41]Menger F M, Keiper J S, Gemini surfactantas. Angewandte Chemie International Edition,2000,39,1906-1920.
    [42]Zana R, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review. Advances in Colloid and Interface Science,2002,97, 205-253.
    [43]Shukla D, Tyagi V K, Anionic gemini surfactants:a distinct class of surfactants. Journal of Oleo Science,2006,55,215-226.
    [44]Shukla D, Tyagi V K, Cationic gemini surfactants:a review. Journal of Oleo Science,2006,55,381-390.
    [45]Zana R, Xia J D, Gemini surfactants:Synthesis, Interfacial and Solution-Phase Behavior, and Applications, Marcel Dekker, New York (USA),2004.
    [46]Kim T S, Hirao T, Ikeda I, Prepatation of bis-quaternary ammonium salts from epichlorohydrin. Journal of the American Oil Chemists'Society,1996,73,667-71.
    [47]Dreja M, Gramberg S, Tieke B, Cationic amphitropic Gemini surfactants with hydrophilic oligo (oxyethylene) spacer chains. Chemical Communications,1998, 1371-1372.
    [48]De S, Aswal V K, Goyal P S, Bhattacharya S, Novel gemini micelles from dimeric surfactants with oxyethylene spacer chain. Small angle neutron scattering and fluorescence studies. The Journal of Physical Chemistry B,1998,102,6152-6160.
    [49]Menger F M, Littau C A, Gemini surfactants:a new class of assembling molecules. Journal of the American Chemical Society,1993,115,10083-10090.
    [50]Hattori N, Yoshino A, Okabayashi H, O'Connor C J, Conformational analysis of (phenylenedimethylene) bis(n-octylammonium) dibromide in aqueous solution. Comformational change upon micellization. The Journal of Physical Chemistry B, 1998,102,8965-8973.
    [51]Tatsumi T, Zhang W, Nakatsuji Y, Miyake K, Matsushima K, Tanaka M, Furuta T, Ikeda I. Preparation, surface-active properties, and antimicrobial activities of bis(alkylammonium) dichloride having a butenylene or a butynylene spacer. Journal of Surfactants and Detergents,2001,4,271-277.
    [52]Menger F M, Keiper J S, Azov V, Gemini surfactants with acetylenic spacers. Langmuir,2000,16,2062-2067.
    [53]Lu T, Han F, Mao G R, Lin G F, Huang J B, Huang X, Wang Y L, Fu H L, Effect of hydrocarbon parts of the polar headgroup on surfactant aggregates in gemini and bola surfactant solutions. Langmuir,2007,23,2932-2936.
    [54]Lu T, LanYR, Liu C J, Huang J B, Wang Y L, Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups. Journal of Colloid and Interface Science,2012,377, 222-230.
    [55]Borse M S, Sharma V, Aswal V K, Pokhariyal N K, Joshi J V, Goyal P S, Devi S, Small angle neutron scattering and viscosity studies of micellar solutions of bis-cationic surfactants containing hydroxyethyl methyl quaternary ammonium headgroups. Physical Chemistry Chemical Physics,2004,6,3508-3514.
    [56]Borse M S, Devi S, Dependence of aggregation behavior and physicochemical properties of bis-cationic surfactants on the polarity of surfactant headgroups. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2004,245,1-8.
    [57]Sharma V, Borse M S, Aswal V K, Pokhariyal N K, Joshi J V, Goyal P S, Devi S, Synthesis, characterization, and SANS studies of novel alkanediyl-α,co-bis (hydroethylmethylhexadecylammonium bromide) cationic gemini surfactants. Journal of Colloid and Interface Science,2004,277,450-455.
    [58]Borse M S, Sharma V, Aswal V K, Goyal P S, Devi S, Effect of head group polarity and spacer chain length on the aggregation properties of gemini surfactants in an aquatic environment. Journal of Colloid and Interface Science,2005,284, 282-288.
    [59]Huang X, Han Y C, Wang Y X, CaoMW, Wang Y L, Aggregation properties of cationic gemini surfactants with dihydroxyethylamino headgroups in aqueous solution. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2008, 325,26-32.
    [60]Buwalda R T, Engberts J B F N, Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir,2001,17,1054-1059.
    [61]Ao M Q, Xu G Y, Zhu Y Y, Bai Y, Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. Journal of Colloid and Interface Science,2008, 326,490-495.
    [62]Ao M Q, Xu G Y, Pang J Y, Zhao T T, Comparision of aggregation behaviors between ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2 and its monomer [C]2mim]Br on silicon wafer. Langmuir,2009,25,9721-9727.
    [63]Perez L, Torres J L, Manresa A, Solans C, Infante M R, Synthesis, aggregation, and biological properties of a new class of gemini cationic amphiphilic compounds from arginine, bis(Args). Langmuir,1996,12,5296-5301.
    [64]Weihs D, Danino D, Pinazo A, Perez L, Franses E I, Talmon Y, Self-aggregation in dimeric arginine-based cationic surfactants solutions. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2005,255,73-78.
    [65]Perez L, Pinazo A, Rosen M J, Infante M R, Surface activity properties at equilibrium of novel gemini cationic amphiphilic compounds from arginine, bis(Args). Langmuir,1998,14,2307-2315.
    [66]Pinazo A, Wen X Y, Perez L, Infante M R, Franses E I, Aggregation behavior in water of monomeric anf gemini surfactants derived from arginine. Langmuir, 1999,15,3134-3142.
    [67]Tsubone K, Arakawa Y, Rosen M J, Structural effects on surface and micellar peoperties of alkanediyl-a,ω-bis (sodium N-acyl-β-alaninate) gemini surfactants. Journal of Colloid and Interface Science,2003,262,516-524.
    [68]Huang X, Cao M W, Wang J B, Wang Y L, Controllable organization of a carboxylic acid type gemini surfactant at different pH values by adding copper(II) ions. The Journal of Physical Chemistry B,2006,110,19479-19486.
    [69]Fan H M, Han F, Liu Z, Qin L, LiZC, Liang D H, KeFY, Huang J B, Fu H L, Active control of surface properties and aggregation behavior in amino acid-based gemini surfactant systems. Journal of Colloid and Interface Science, 2008,321,227-234.
    [70]Jaeger D A, Brown E L G, Double-chain surfactants with two carboxylate headgroups that form vesicles. Langmuir,1996,12,1976-1980.
    [71]Ono D, Tanaka T, Masuyama A, Nakatsuji Y, Okahara M, Preparation and properties of bis (sodium carboxylate) types of cleavable surfactants derived from diethyl tartrate and fatty carbonyl compounds. Journal of Japan Oil Chemists' Society,1991,42,10-16.
    [72]Jiang R, Huang Y X, Zhao J X, Huang C C, Transformation of vesicles in aqueous two phase system of an anionic gemini surfactant and a cationic conventional surfactant mixture. Chinese Jo urnal of Chemistry,2008,26,635-639.
    [73]Yoshimura T, Esumi K, Synthesis and surface properties of anionic gemini surfactants with amide groups. Journal of Colloid and Interface Science,2004,276, 231-238.
    [74]Shukla D, Tyagi V K, Synthesis and properties of geminis with two alkyl and two phosphate headgroups. European Journal of Lipid Science and Technology, 2008,110,576-580.
    [75]Duivenvoorde F L, Feiters M C, Gaast S J, Engberts J B F N, Synthesis and properties of di-n-dodecyl a,ω-alkyl bisphosphate surfactants. Langmuir,1997,13, 3737-3743.
    [76]Tyagi P, Tyagi R, Synthesis and physico-chemical properties of novel dialkyl diphosphate gemini surfactants based on octadecanol. European Journal of Lipid Science and Technology,2011,113,848-855.
    [77]Alargova R G, Kochijashky I I, Sierra M L, Kwetkat K, Zana R, Mixed micellization of dimeric (gemini) surfactants and conventional surfactants. Journal of Colloid and Interface Science,2001,235,119-129.
    [78]Okano T, Egawa N, Fujiwara M, Fukuda M, a-Sulfonated fatty acid esters:Ⅱ. Solution behavior of a-sulfonated fatty acid polyethylene glycol esters. Journal of the American Oil Chemists'Society,1996,73,31-37.
    [79]Renouf P, Hebrault D, Desmurs J R, Mercier J M, Mioskowski C, Lebeau L, Synthesis and surface-active properties of a series of new anionic gemini compounds. Chemistry and Physics of Lipids,1999,99,21-32.
    [80]Wang Y X, Han Y C, Huang X, CaoMW, Wang Y L, Aggregation behavior of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant. Journal of Colloid and Interface Science,2008,319,534-541.
    [81]Rosen M J, Zhu Z H, Hua X Y, Relationship of structure to properties of surfactants.16. Linear decyldiphenylether sulfonates. Journal of the American Oil Chemists'Society,1992,69,30-33.
    [82]Du X G, Lu Y, Li L, Wang J B, Yang Z Y, Synthesis and unusual properties of novel alkylbenzene sulfonate gemini surfactants. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2006,290,132-137.
    [83]Zhu S, Cheng F, Wang J, YuJG, Anionic gemini surfactants:synthesis and aggregation properties in aqueous solutions. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2006,281,35-39.
    [84]Liu X P, Feng J, Zhang L, Gong Q T, Zhao S, Yu J Y, Synthesis and properties of a novel class of anionic gemini surfactants with polyoxyethylene spacer. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2010,362,39-46.
    [85]Zhang Q, Tian M Z, Han Y C, Wu C X, Li Z B, Wang Y L, Synthesis, aggregation behavior and interfacial activity of branched alkylbenzenesulfonate gemini surfactants. Journal of Colloid and Interface Science,2011,362,406-414.
    [86]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅰ. Effect of the length of a hydrophobic spacer. Journal of Chromatography A,2007,1157,437-445.
    [87]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅱ. Effect of the length of ahydrophilic spacer. Journal of Chromatography A,2008,1180,171-178.
    [88]Zana R, Levy H, Mixed micellization of cetyltrimethylammonium bromide and an anionic dimeric (gemini) surfactant in aqueous solution. Langmuir,1997,13, 402-408.
    [89]Yoshimura T, Ishihara K, Esumi K, Sugar-based gemini surfactants with peptide bonds-Synthesis, adsorption, micellization, and biodegradability. Langmuir,2005, 21,10409-10415.
    [90]Menger F M, Mbadugha B N A, Gemini surfactants with a disaccharide spacer. Journal of the American Chemical Society,2001,123,875-885.
    [91]Johnsson M, Wagenaar A, Engberts J B F N, Sugar-based Gemini surfactant woth a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. Journal of the American Chemical Society,2003,125,757-760.
    [92]Yang F, Li G, Xu N, Liu R, Zhang S M, Wu Z J, Synthesis and critical micelle concentration of a series of gemini alkylphenol polyoxyethylene nonionic surfactants. Journal of Surfactants and Detergents,2011,14,339-345.
    [93]Fitzgerald P A, Carr M W, Davey T W, Serelis A K, Such C H, Warr G G, Preparation and dilute solution properties of model gemini nonionic surfactants. Journal of Colloid and Interface Science,2004,275,649-658.
    [94]Paddon-Jones G, Regismond S, Kwetkat K, Zana R, Micellization og nonionic surfactant dimers and of the corresponding surfactant monomers in aqueous solution. Journal of Colloid and Interface Science,2001,243,496-502.
    [95]范歆,方云,双亲油基-双亲水基型表面活性剂.日用化学工业,2000,30,20-24.
    [96]Yoshimura T, Ichinokawa T, Kaji M, Esumi K, Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2006,273,208-212.
    [97]Oda R, Huc I, Candau S J, Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chemical Communications,1997,2105-2106.
    [98]Wang X Y, Wang J B, Wang Y L, Ye J P, Yan H K, Thomas R K, Micellization of a series of dissymmetric gemini surfactants in aqueous solution. The Journal of Physical Chemistry B,2003,107,11428-11432.
    [99]Wang C Z, Wettig S D, Foldvari M, Verrall R E, Synthesis, characterization, and use of asymmetric pyrenyl-gemini surfactants as emissive components in DNA-lipoplex systems. Langmuir,2007,23,8995-9001.
    [100]Jaeger D A, Li B, Clark T, Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles. Langmuir,1996,12,4314-4316.
    [101]Peresypkin A V, Menger F M, Zwitterionic geminis. Coacervate formation from a single organic compound. Organic Letters,1999,1,1347-1350.
    [102]Renouf P, Moiskowski C, Lebeau L, Dimeric surfactants:first synthesis of an asymmetrical gemini compound. Tetrahedron Letters,1998,39,1357-1360.
    [103]Alami E, Holmberg K, Heterogemini surfactants based on fatty acid. Synthesis and interfacial properties. Journal of Colloid and Interface Science,2001,239, 230-240.
    [104]Zana R, Xia J D, Gemini surfactants:Synthesis, Interfacial and Solution-Phase Behavior, and Applications, Marcel Dekker, New York (USA),2004, p69-71.
    [105]Zana R, Xia J D, Gemini surfactants:Synthesis, Interfacial and Solution-Phase Behavior, and Applications, Marcel Dekker, New York (USA),2004, p143-147.
    [106]Israelachvili D J, Mitchell D J, Ninham B W, Theory of slef-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1976,1525-1568.
    [107]Zana R, Xia J D, Gemini surfactants:Synthesis, Interfacial and Solution-Phase Behavior, and Applications, Marcel Dekker, New York (USA),2004, p154-161.
    [108]Otzen D, Protein-surfactant interactions:a tale of many states. Biochimica et Biophysica Acta,2011,1814,562-591. [109] Jones M N, Surfactant interactions with biomembranes and proteins. Chemical Society Reviews,1992,21,127-136.
    [110]Mir M A, Gull N, Khan J M, Khan R H, Dar A A, Rather G M, Interaction of bovine serum albumin with cationic single chain+Nonionic and cationic gemini+ nonionic binary surfactant mixtures. The Journal of Physical Chemistry B,2010,114, 3197-3204.
    [111]Ruso J M, Gonzaez-Perez A, Prieto G, Sarmiento F, Study of the interaction between lysozyme and sodium octanoate in aqueous solutions. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2004,249,45-50.
    [112]Valstar A, Almgren M, Brown W, The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir,2000,16,922-927.
    [113]Wang Y S, Guo R, Xi J Q, Comparative studies of interaction of hemoglobin with single chain and with gemini surfactants. Journal of Colloid and Interface Science,2009,331,470-475.
    [114]Deep S, Ahluwalia J C, Interaction of bovine serum albumin with anionic surfactants. Physical Chemistry Chemical Physics,2001,3,4583-4591.
    [115]LuRC, Cao A N, Lai L H, Xiao J X, Effect of anionic surfactant molecular structure on bovine serum albumin (BSA) fluorescence. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2006,278,67-73.
    [116]Wang X Q, Liu J, Sun L M, Yu L, Jiao J J, Wang R, Interactions of bovine serum albumin with ester-functionalized anionic surface-active ionic liquids in aqueous solution:a detailed physicochemical and comformational study. The Journal of Physical Chemistry B,2012,116,12479-12488.
    [117]Patra D, Barakat C, Tafech R M, Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states:A synchronous fluorescence spectroscopic study. Colloids and Surfaces B: Biointerfaces,2012,94,354-361.
    [118]Wu D, Xu G Y, Feng Y J, Wang Y J, Zhu Y Y, Comparative study on interaction of bovine serum albumin with dissymmetric and aymmetric gemini surfactant by spectral method. Colloid and Polymer Science,2009,287,225-230.
    [119]Ge Y S, Tai S X, Xu Z Q, Lai L, Tian F F, Li D W, Jiang F L, Liu Y, Gao Z N, Synthesis of three novel anionic gemini surfactants and comparative studies of their assemble behavior in the presence of bovine serum albumin. Langmuir,2012, 28,5913-5920.
    [120]Wu D, Xu G Y, Sun Y H, Zhang H X, Mao H Z, Feng Y J, Interaction between proteins and cationic gemini surfactant. Biomacromolecules,2007,8,708-712.
    [121]Sabin J, Prieto G, Gonzaez-Perez A, Ruso J M, Sarmiento F, Effects of fluorinated and hydrogenated surfactants on human serum albumin at different pHs. Biomacromolecules,2006,7,176-182.
    [122]Tardioli S, Bonincontro A, Mesa C L, Muzzalupo R, Interaction of bovine serum albumin with gemini surfactants. Journal of Colloid and Interface Science, 2010,347,96-101.
    [123]Gull N, Chodankar S, Aswal V K, Sen P, Khan R H, Din K U, Spectroscopic studies on the interaction of cationic surfactants with bovine serum albumin. Colloids and Surface B:Biointerfaces,2009,69,122-128.
    [124]Andersen K K, Oliveira C L, Larsen K L, Poulsen F M, Callisen T H, Westh P, Pedersen J S, Otzen D, The role of decorated SDS micelles in sub-cmc protein denaturation and association. Journal of Molecular Biology,2009,391,207-226.
    [125]Santos S F, Zanette D, Fischer H, Itri R, A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. Journal of Colloid and Interface Science,2003,262, 400-408.
    [126]Li Y J, Wang X Y, Wang Y L, Comparative studies on interactions of bovine serum albumin with cationic gemini and single chain surfactants. The Journal of Physical Chemistry B,2006,110,8499-8505.
    [127]Pi Y Y, Shang Y Z, Peng C J, Liu H L, Hu Y, Jiang J W, Interactions between bovine serum albumin and gemini surfactant alkanediyl-a,ω-bis (dimethyldodecyl ammonium bromide). Biopolymers,2006,83,243-249.
    [128]Mackie A R, Gunning A P, Wilde P J, Morris V J, Orogenic displacement of protein from the air/water interface by competitive adsorption. Journal of Colloid and Interface Science,1999,210,157-166.
    [129]吴丹.阳离子型Gemini表面活性剂与蛋白质的相互作用.山东大学博士论文.2007.
    [130]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003,p29.
    [131]Linfield W M. Anionic Surfactants, Part I. Marcel Dekker, New York (USA), 1976, p135-208.
    [1]Du X G, Lu Y, Li L, Wang J B, Yang Z Y, Synthesis and unusual properties of novel alkylbenzene sulfonate gemini surfactants. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2006,290,132-137.
    [2]Zhu S, Cheng F, Wang J, Yu J G, Anionic gemini surfactants:synthesis and aggregation properties in aqueous solutions. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2006,281,35-39.
    [3]Cremlyn R J. Chlorosulfonic Acid. A Versatile Reagent. The Royal Society of Chemistry, Cambrdige (UK),2002, p110-113.
    [1]Zhu Y P, Masuyama A, Okahara M, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of the American Oil Chemists'Society,1990,67,459-463.
    [2]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅰ. Effect of the length of a hydrophobic spacer. Journal of Chromatography A,2007,1157,437-445.
    [3]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅱ. Effect of the length of a hydrophilic spacer. Journal of Chromatography A,2008,1180,171-178.
    [4]Zana R, Levy H, Mixed micellization of cetyltrimethylammonium bromide and an anionic dimeric (gemini) surfactant in aqueous solution. Langmuir,1997,13, 402-408.
    [5]王福来.有机化学实验.武汉大学出版社,武汉,2001,p313-316.
    [6]Fitzgerald P A, Carr M W, Davey T W, Serelis A K, Such C H, Warr G G, Preparation and dilute solution properties of model gemini nonionic surfactants. Journal of Colloid and Interface Science,2004,275,649-658.
    [1]Alami E, Beinert G, Marie P, Zana R, Alkanediyl-a,ω-bis (dimethylalkylammonium bromide) surfactants.3. Behavior at the air-water interface. Langmuir,1993,9,1465-1467.
    [2]Zana R, Benrraou M, Rueff R, Alkanediyl-a, co-bis (dimethylalkylammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir,1991,7,1072-1075.
    [3]Zana R, Ln M, Levy H, Alkanediyl-a,ω-bis (dimethylalkylammonium bromide). 7. Fluorescence probing studies of micelle micropolarity and micro viscosity. Langmuir,1997,13,5552-5557.
    [4]Zana R, Talmon Y, Dependence of aggregate morphology on structure of dimeric surfactants. Nature,1993,362,228-230.
    [5]Danino D, Talmon Y, Levy H, Beinert G, Zana R, Branched threadlike micelles in an aqueous solution of a trimeric surfactant. Science,1995,269,1420-1421.
    [6]Cao X L, LiZQ, Song X W, Cui X H, Wei Y P, Cheng F, Wang J, Effects of spacers on surface activities and aggregation properties of anionic Gemini surfactants. Journal of Surfactants and detergents,2009,12,165-172.
    [7]Zhu S, Cheng F, Wang J, Yu J G, Anionic gemini surfactants:synthesis and aggregation properties in aqueous solutions. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2006,281,35-39.
    [8]Zhang Q, Tian M Z, Han Y C, Wu C X, Li Z B, Wang Y L, Synthesis, aggregation behavior and interfacial activity of branched alkylbenzenesulfonate gemini surfactants. Journal of Colloid and Interface Science,2011,362,406-414.
    [9]Liu X P, Feng J, Zhang L, Gong Q T, Zhao S, Yu J Y, Synthesis and properties of a novel class of anionic gemini surfactants with polyoxyethylene spacer. Colloid and Surfaces A:Phisicochemical and Engineering Aspect, 2010,362,39-46.
    [10]Du X G, Lu Y, Li L, Wang J B, Yang Z Y, Synthesis and unusual properties of novel alkylbenzene sulfonate gemini surfactants. Colloid and Surfaces A: Phisicochemical and Engineering Aspect,2006,290,132-137.
    [11]Linfield W M. Anionic Surfactants, Part I. Marcel Dekker, New York (USA), 1976, p136-137.
    [12]Tehrani-Bagha A R, Holmberg K, Cationic ester-containing gemini surfactants: physical-chemical properties. Langmuir,2010,26,9276-9282.
    [13]Borse M S, Devi S, Importance of head group polarity in controlling aggregation properties of cationic gemini surfactants. Advances in Colloid and Interface Science, 2006,123-126,387.
    [14]毛培坤.合成洗涤剂工业分析.中国轻工业出版社,北京,1988,p433.
    [15]Borghetty H C, Bergman C A, Synthetic detergents in the soap industry. Journal of the American Oil Chemists'Society,1950,27,88-90.
    [16]毛培坤.合成洗涤剂工业分析.中国轻工业出版社,北京,1988,p421-24.
    [17]Rosen M J. Surfactants and Interfacial Phenomena,3rd Edition. John Wiley & Sons, Hoboken(USA),2004, p62-64.
    [18]Parreira H C, Lukenbach E R, Lindemann M K O, Physical chemical properties of solutions of bis-quaternary ammonium bromides. Journal of the American Oil Chemists'Society,1979,56,1015-1021.
    [19]Devinsky F, Masarovs L, Lacko I, Surface activity and micelle formation of some new bisquaternary ammonium salts. Journal of Colloid and Interface Science, 1985,105,235-239.
    [20]Devinsky F, Lacko I, Bittererovs F, Tomeckova L, Relationship between structure, surface activity, and micelle formation of some new bisquaternary isosteres of 1,5-pentanediammonium dibromides. Journal of Colloid and Interface Science, 1986,114,314-322.
    [21]Abid S K, Hamid S M, Sherrington D C, Micellization and surface activity of long-chain monoquaternary and diquaternary ammonium salts. Journal of Colloid and Interface Science,1987,120,245-255.
    [22]Menger F M, Wrenn S, Interfacial and Micellar Properties of Bolaform Electrolytes. The Journal of Physical Chemistry,1974,78,1387-1390.
    [23]Zana R, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review. Advances in Colloid and Interface Science,2002,97, 205-253.
    [24]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003,p243.
    [25]Rosen M J. Surfactants and Interfacial Phenomena,3rd Edition. John Wiley & Sons, Hoboken(USA),2004, p69-71.
    [26]Zana R, Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir,1996,12,1208-1211.
    [27]Camesano T A, Nagarajan R, Micelle formation and CMC of Gemini surfactants: a thermodynamic model. Colloid and Surfaces A:Physicochemical and Engineering Aspects,2000,167,165-177.
    [28]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003,p250-251.
    [29]Tsubone K, Arakawa Y, Rosen M J, Structural effects on surface and micellar properties of alkanediyl-a,ω-bis(sodium N-acyl-β-alaninate) gemini surfactants. Journal of Colloid and Interface Science,2003,262,516-524.
    [30]Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants 10. Behavior in aqueous solution at concentration below the critical micellization concentration:an electrical conductivity study. Journal of Colloid and Interface Science,2002,246,182-190.
    [31]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003,p135-138.
    [32]Eastoe J.表面活性剂化学.武汉大学出版社,武汉,2005,p13.
    [33]Zana, R, Levy H, Kwetkat K, Mixed micellization of dimeric (Gemini) surfactants and conventional surfactants. I. Mixtures of an anionic dimeric surfactant and of the nonionic surfactants C12E5 and C12E8. Journal of Colloid and Interface Science,1998,197,370-376.
    [34]Bhattacharya S, Haldar J, Thermodynamics of micellization of multiheaded single-chain cationic surfactants. Langmuir,2004,20,7940-7947.
    [35]Tsao H K, Counterion distribution enclosed in a cylinder and a sphere. The Journal of Physical Chemistry B,1998,102,10243-10247.
    [36]Kalyanasundaram K, Thomas J K, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society,1977,99,2039-2044.
    [37]Rosen M J. Surfactants and Interfacial Phenomena,3rd Edition. John Wiley & Sons, Hoboken(USA),2004, p277-298.
    [38]王中才.酯基Gemini型季铵盐表面活性剂的合成、性能及应用研究.江南大学硕士论文.2005.
    [39]李歆.含三嗪环磺酸盐Gemini表面活性剂的合成及性能研究.中北大学硕士论文.2010.
    [40]方云.两性表面活性剂.中国轻工业出版社,北京,2001,p71-73.
    [41]Zhu Y P, Masuyama A, Kirito Y I, Okahara M, Preparation and properties of double-or triple-chain surfactants with two sulfonate groups derived from N-acyldiethanolamines. Journal of the American Oil Chemists'Society,1991,68, 539-543.
    [42]Zhu Y P, Masuyama A, Okahara M, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of the American Oil Chemists'Society,1990,67,459-463.
    [43]Linfield W M. Anionic Surfactants, Part I. Marcel Dekker, New York(USA), 1976, p1-11.
    [44]Rosen M J. Surfactants and Interfacial Phenomena,3rd Edition. John Wiley & Sons, Hoboken(USA),2004, p243-272.
    [45]杜西刚.新型烷基苯磺酸盐Gemini表面活性剂的合成及性能研究.中国科学院理化技术研究所博士论文.2007.
    [46]Masuyama A, Yokota M, Zhu Y P, Kida T, Nakatsuji Y, Unique interfacial properties of a homologous series of novel triple-chain amphiphiles bearing three anionic head groups derived from 1,1,1-tris(hydroxymethyl) ethane. Journal of the Chemical Society, Chemical Communications,1994,1435-1436.
    [1]Linfield W M. Anionic Surfactants, Part Ⅰ. Marcel Dekker, New York (USA), 1976, p135-208.
    [2]Zhu Y P, Masuyama A, Okahara M, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of the American Oil Chemists'Society,1990,67,459-463.
    [3]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅰ. Effect of the length of a hydrophobic spacer. Journal of Chromatography A,2007,1157,437-445.
    [4]Biesen G V, Bottaro C S, Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography Ⅱ. Effect of the length of a hydrophilic spacer. Journal of Chromatography A,2008,1180,171-178.
    [5]Zana R, Levy H, Mixed micellization of cetyltrimethylammonium bromide and an anionic dimeric (gemini) surfactant in aqueous solution. Langmuir,1997,13, 402-408.
    [6]刘平,李阳,安静仪,双烷基双硫酸酯钠表面活性剂的合成.精细化工,2008,25,41-44.
    [7]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003,p81-85.
    [8]杨晓明,郑庆康,李瑞霞,吴大诚,十二烷基硫酸钠的提纯.印染助剂,2002,19,45-47.
    [9]张金花,唐季安,表面活性剂的提纯与鉴定.化学通报,1999,4,7-13.
    [10]Dreger E E, Keim G I, Miles G D, Shedlovsky L, Ross J, Sodium alcohol sulfates. Properties involving surface activity. Industrial and Engineering Chemistry, 1944,36,610-617.
    [11]Vijayan S, Woods D R, Vaya H, Bulk and interfacial physical properties of aqueous solutions of sodium lauryl sulphate and lauryl alcohol with air and benzene system:Part I:Aqueous solutions of sodium lauryl sulphate. The Canadian Journal of Chemical Engineering,1977,55,718-731.
    [12]Rosen M J. Surfactants and Interfacial Phenomena,3rd Edition, John Wiley & Sons, Hoboken, New Jersey,2004, p64-81.
    [13]赵国玺,朱步瑶.表面活性剂作用原理,中国轻工业出版社,北京,2003,p135-138.
    [14]Pinazo A, Wen XY, Perez L, Infante M R, Franses E I, Aggregation behavior in water of monomeric anf gemini surfactants derived from arginine. Langmuir, 1999,15,3134-3142.
    [15]Zana R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants 10. Behavior in aqueous solution at concentration below the critical micellization concentration:an electrical conductivity study. Journal of Colloid and Interface Science,2002,246,182-190.
    [16]Zana R, Benrraou M, Rueff R, Alkanediyl-a, ω-bis (dimethylalkylammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir,1991,7,1072-1075.
    [17]Zhu S, Cheng F, Wang J, Yu J G, Anionic gemini surfactants:synthesis and aggregation properties in aqueous solutions. Colloid and Surfaces A:Phisicochemical and Engineering Aspect,2006,281,35-39.
    [18]Yoshimura T, Ishihara K, Esumi K, Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization and biodegradability. Langmuir,2005, 21,10409-10415.
    [1]Otzen D, Protein-surfactant interactions:a tale of many states. Biochimica et Biophysica Acta,2011,1814,562-591.
    [2]Mehta S K, Bhawna, Bhasin K K, Kumar A, An insight into the micellization of dodycyldimethylethylammonium bromide (DDAB) in the presence of bovine serum albumin (BSA). Journal of Colloid and Interface Science,2008,323,426-434.
    [3]Shi Q, Zhou Y, Sun Y, Influence of pH ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnology Progress, 2005,21,516-523.
    [4]Jones M N, Surfactant interations with biomembranes and proteins. Chemical Society Reviews,1992,21,127-136.
    [5]Turro N J, Lei X G, Spectroscopic probe analysis of protein-surfactant interactions: The BSA/SDS system. Langmuir,1995,11,2525-2533.
    [6]Ghosh S, Banerjee A, A multitechnique approach in protein/surfactant interactions study:physicochemical aspects of sodium dodecyl sulfate in the presence of Trypsin in aqueous medium. Biomacromolecules,2002,3,9-16.
    [7]Valstar A, Almgren M, Brown W, The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir,2000,16,922-927.
    [8]Honda C, Kamizono H, Matsumoto K I, Endo K, Studies on bovine serum albumin-sodium dodecyl sulfate complexes using pyrene fluorescence probe and 5-doxylstearic acid spin probe. Journal of Colloid and Interface Science,2004,278, 310-317.
    [9]Santos S F, Zanette D, Fischer H, Itri R, A systematic study of bovine serum albumin(BSA) and sidium dodecyl sulfate(SDS) interactions by surface tension and X-ray scattering. Journal of Colloid and Interface Science,2003,262,400-408.
    [10]Kelley D, McClements D J, Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids,2003,17,73-85.
    [11]Sukow W W, Sandberg H E, Lewis E A, Eatough D J, Hansen L D, Binding of the Triton X series of nonionic surfactants to bovine serum albumin. Biochemistry, 1980,19,912-917.
    [12]Diaz X, Abuin E, Lissi E, Quenching of BSA intrinsic fluorescence by alkylpyridinium cations its relationship to surfactant-protein association. Journal of Photochemistry and Photobiology A:Chemistry,2003,155,157-162.
    [13]Grigoriev D O, Derkatch S, Kragel J, Miller R, Relationship between structure and rheological properties of mixed BSA/Tween 80 adsorption layers at the air/water interface. Food Hydrocolloids,2007,21,823-830.
    [14]Gelamo E L, Itri R, Alonso A, Silva J V, Tabak M, Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants. Journal of Colloid and Interface Science,2004,277,471-482.
    [15]Tribout M, Paredes S, Gonzalez-Manas J M, Goni F M, Binding of TritonX-100 to bovine serum albumin as studied by surface tension measurements. Journal of Biochemical and Biophysical Methods,1991,22,129-133.
    [16]Liu Y, Guo R, Interaction between casein and sodium dodecyl sulfate. Journal of Colloid and Interface Science,2007,315,685-692.
    [17]Vasilescu M, Angelescu D, Interactions of globular proteins with surfactants studied with fluorescence method. Langmuir,1999,15,2635-2643.
    [18]Wang Y S, Guo R, XiJQ, Comparative studies of interactions of hemoglobin with single-chain and with gemini surfactant. Journal of Colloid and Interface Science,2009,331,470-475.
    [19]Wu D, Xu G Y, Feng Y J, Li Y M, Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. International Journal of Biological Macromolecules,2007,40,345-350.
    [20]Li Y J, Wang X Y, Wang Y L, Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants. The Journal of Physical Chemistry B,2006,110,8499-8505.
    [21]Wu D, Xu G Y, Feng Y J, Wang Y J, Zhu Y Y, Comparative study on interaction of bovine serum albumin with dissymmetric and symmetric gemini surfactant by spectral method. Colloid and Polymer Science,2009,287,225-230.
    [22]Wu D, Xu G Y, Sun Y H, Zhang H X, Mao H Z, Feng Y J, Interaction between proteins and cationic Gemini surfactant. Macromolecules,2007,8,708-712.
    [23]Pi Y Y, Shang Y Z, Peng C J, Liu H L, Hu Y, Jiang J W, Interactions between bovine serum albumin and gemini surfactant alkanediyl-a,ω-bis (dimethyldodecyl ammonium bromide). Biopolymers,2006,8,243-249.
    [24]Gull N, Sen P, Khan R H, Din K, Spectroscopic studies on the comparative interaction of cationic single-chain and gemini surfactants with human serum albumin. Journal of Biochemistry,2009,145,67-77.
    [25]Zana R, In M, Levy H, Alkanediyl-a, ω-bis(dimethylalkylammonium bromide) surfactants.7. Fluorescence probing studies of micelle micropolarity and micro viscosity. Langmuir,1997,13,5552-5557.
    [26]胡晓环.季铵盐阳离子表面活性剂与牛血清蛋白的相互作用.浙江大学硕士论文.2011.
    [27]Geng F, Zheng L Q, Yu L, LiGZ, Tung C H, Interaction of bovine serum albumin and long-chain imidazolium ionic liquid measured by fluorescence spectra and surface tension. Process Biochemistry,2010,45,306-311.
    [28]瞿鹏,吕华,丁晓玉,陶轶,陆祖宏,荧光法研究6-硫鸟嘌呤和牛血清蛋白之间的相互作用.东南大学学报,2008,38,893-897.
    [29]Lakowicz J R. Principles of fluorescence spectroscopy,3rd ed. Springer, Berlin, 2006, p277-327.
    [30]王安萍.几种天然药物黄酮类活性成分与蛋白质相互作用的研究.南昌大学硕士论文.2007.
    [31]李锡勇.白杨素哌嗪磷酸酯衍生物的合成及与牛血清蛋白的相互作用研究.郑州大学硕士论文.2010.
    [32]谢余寰.酚酸类及生物碱类药物小分子和牛血清蛋白相互作用研究.广西师范大学硕士论文.2008.
    [33]Lakowicz J R, Weber G, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry,1973,12,4161-4170.
    [34]郝素贞.杂多酸盐与牛血清蛋白相互作用的光谱法研究.东北师范大学硕士论文.2009.
    [35]沈星灿,梁宏,何锡文,王新省,圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,32,388-394.
    [36]Sreerama N, Woody R W, Estimation of protein secondary structure from circular dichroism spectra:comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry,2000,287, 252-260.
    [1]Santos S F, Zanette D, Fischer H, Itri R, A systematic study of bovine serum albumin(BSA) and sidium dodecyl sulfate(SDS) interactions by surface tension and X-ray scattering. Journal of Colloid and Interface Science,2003,262,400-408.
    [2]Honda C, Kamizono H, Matsumoto K I, Endo K, Studies on bovine serum albumin-sodium dodecyl sulfate complexes using pyrene fluorescence probe and 5-doxylstearic acid spin probe. Journal of Colloid and Interface Science,2004,278, 310-317.
    [3]Valstar A, Almgren M, Brown W, The interaction of bovine serum albumin with Surfactants Studied by Light Scattering. Langmuir,2000,16,922-927.
    [4]Turro N J, Lei X G, Spectroscopic probe analysis of protein-surfactant interactions: the BSA/SDS system. Langmuir,1995,11,2525-2533.
    [5]Lissi E, Abuin E, Lanio M E, Alvarez C, A new and simple procedure for the evaluation of the association of surfactants to proteins. Journal of Biochemical and Biophysical Methods,2002,50,261-268.
    [6]Gelamo E L, Tabak M, Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochimica Acta Part A,2000,56,2255-2271.
    [7]Wu D, Xu G Y, Sun Y H, Zhang H X, Mao H Z, Feng Y J, Interaction between proteins and cationic gemini surfactant. Biomacromolecules,2007,8,708-712.
    [8]庞素珍,陈春章,沈恂,牛血清蛋白水溶液的闪光光解.生物化学与生物物理学报,1984,16,533-539.
    [9]Lakowicz J R. Principles of fluorescence spectroscopy,3rd ed. Springer, Berlin, 2006, p535-545.
    [10]Patra D, Barakat C, Tafech R M, Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states:A synchronous fluorescence spectroscopic study. Colloids and Surfaces B: Biointerfaces,2012,94,354-361.
    [11]Li Y J, Wang X Y, Wang Y L, Comparative studies on interactions of bovine serum albumin with cationic Gemini and single-chain surfactants. The Journal of Physical Chemistry B,2006,110,8499-8505.
    [12]Moriyama Y, Kawasaka Y, Takeda K, Protective effect of small amounts of sodium dodecyl sulfate on the helical structure of bovine serum albumin in thermal denaturation. Journal of Colloid and Interface Science,2003,257,41-46.
    [13]Deep S, Ahluwalia J C, Interaction of bovine serum albumin with anionic surfactants. Physical Chemistry Chemical Physics,2001,3, 4583-4591.
    [14]Takeda K, Shigeta M, Aoki K, Secondary structures of bovine serum albumin in anionic and cationic surfactant solutions. Journal of Colloid and Interface Science, 1987,117,120-126.
    [15]Ruiz C C, Hierrezuelo J M, Aguiar J, Peula-Garcia J M, Physicochemical studies on the interaction between N-decanoyl-N-methylglucamide and bovine serum albumin. Biomacromolecules,2007,8,2497-2503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700