大鼠海马CA1区神经活动对体感刺激响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感觉信号的处理一直是神经科学领域研究的热点,体感感觉因其遍布全身的感受器以及在触摸技术领域的广泛应用越来越受到重视。海马作为学习和记忆的中枢结构,从内嗅皮质接收有关外界体感刺激的信号,并将其按某种模式编码,以便信息在大脑中的传播和储存。早先的研究发现体感刺激可以使海马CA1区的多单元放电活动(multiple unit activity, MUA)发生变化,但其对CA1区具体的作用效果和机制并不明确。由于对体感信息的处理与动物的生存和活动息息相关,因此研究体感信息在海马区中的信号响应和处理机制具有重要意义。
     本文通过对麻醉大鼠施加夹尾刺激,利用记录位点高密度分布的微电极阵列,记录海马CA1区的各种神经活动信号。主要研究了场电位、锋电位以及正向诱发电位对体感刺激的响应,考察了刺激对海马CA1区的作用效果;并且建立了包含体感输入和局部抑制回路的CA1区神经网络模型,利用计算机仿真验证了动物实验结果的产生机制;最后对海马中体感信息的处理与编码进行了探讨。
     本文的主要研究结果如下:
     (1)体感刺激对大鼠海马CA1区的主神经元活动具有抑制作用
     在夹尾的体感刺激作用下,CA1区的场电位变成以θ节律为主要功率成分,同时伴随有不一致的MUA响应(发放减少或者不变);其中,锥体细胞的锋电位发放频率减小,中间神经元的发放频率增加;锥体细胞爆发式发放频率减小,每个爆发式发放所包含的锋电位数量无明显变化;Schaffer侧支上施加正向脉冲刺激所诱发的CA1区群峰电位的幅值显著减小;CA1区的MUA、锥体细胞的发放对重复体感刺激产生了适应性现象(adaptation)。这些结果表明体感刺激对海马CA1区,尤其是锥体细胞兴奋性有明显的抑制作用。
     (2)数学模型的仿真结果表明体感刺激可以增强海马CA1区局部抑制性回路的作用
     利用NEURON软件建立CA1区神经网络模型,以研究海马对体感刺激响应的机制。模型的仿真结果与动物实验的结果一致,证明了体感刺激后CA1区锥体细胞兴奋性降低是中间神经元通过局部抑制回路作用的结果,其中前馈抑制回路和反馈抑制回路共同发挥作用,但以前馈抑制回路的作用为主导。为了进一步考察这种抑制作用是否能够用于控制异常的神经活动,我们还仿真了体感刺激对于过度兴奋状态下(癫痫发作时)锥体细胞兴奋性的影响,结果表明体感刺激可以减弱单侧颞叶癫痫活动,但无法减弱双侧颞叶癫痫活动。
     (3)锋电位与场电位之间的相位锁定可能是CA1区编码体感信息的方式
     本文利用Rayleigh检验分析了神经元锋电位与场电位θ节律之间的时间相关性,揭示了一种可能的CA1区对体感信息编码的方式。研究结果表明:夹尾刺激前,少部分神经元(3/22)展现出与0节律周期相位锁定的特性;夹尾刺激作用下,呈现相位锁定特性的神经元数量显著增加(10/22),其锋电位发放集中在0节律周期的负相位附近。
     总之,本文结合了大鼠在体实验记录和建模仿真两种研究方法,考察了海马CA1区神经活动对体感刺激的响应,证明了体感刺激的抑制性作用,并且表明这种作用的内在机制是中间神经元通过局部抑制回路降低了锥体细胞的兴奋性。本文为海马是如何处理体感信息的研究提供了实验和理论依据,对海马的学习功能和神经编码的研究具有重要意义。
Processing of somatosensory signal has always been a hot spot in neuroscience. It receives more attention due to the numerous receptors spreading all over the body and the ever-growing applications in haptic technology. However, the basic mechanism of this process is largely undiscovered. As a well-known structure for learning and memory, hippocampus receives somatosensory input from entorhinal cortex, and encodes them to certain pattern for communication and storage within the brain. Previous studies found multiple unit activity (MUA) of the hippocampal CA1region responded to somatosensory stimuli, yet the explicit effect of the stimulation as well as the mechanism is not clear. Since the somatosensory system is crucial for animal's survival and daily life, it is of great significance to study the hippocampal response to somatosensory stimulation and the underlying mechanism.
     In this dissertation, we investigated the hippocampal response to somatosensory input by applying tail-clamping on anesthetized rats and recorded the neural signals in CA1region with a microelectrode array. We analyzed the local field potential (LFP), unit spike, as well as the orthodromic population spike (OPS) evoked by Schaffer Collateral stimulation. Besides, a computer model with somatosensory input and local inhibitory circuits was built to explain the result in in-vivo experiment and the possible mechanism behind the observation. Lastly, we studied the mechanism of processing and encoding somatosensory information in the hippocampus.
     The major findings are:
     (1) Somatosensory stimulation could suppress the pricipal neurons' activities in hippocampal CA1region
     We recorded hippocampal CA1neural activity before and during somatosensory stimulation, analyzing the response of LFP, unit spike and OPS. Results showed that during somatosensory stimulation:θ rhythm became the major power component of LFP, and mixed MUA responses (suppression or no change) appeared in CA1region; CA1pyramidal neurons showed firing decrease, while the interneurons showed firing increase; number of the burst of the pyramidal neurons decreased while the number of spikes within each burst did not show obvious change; the amplitude of OPS decreased significantly; the firing of MUA and pyramidal cells exhibited adaptation to the repetitive stimulation. These results demonstrated a strong suppressive effect on the hippocampal CA1neuronal activity, especially the excitability of pyramidal cells by somatosensory stimulation.
     (2) Computer model showed the somatosensory stimulation could enhance the effect of local inhibitory circuits in hippocampal CA1region
     We developed a NEURON model with somatosensory input and local inhibitory circuits, and the simulation result was in accordance to the experimental observation. Therefore it successfully demonstrated that the interneurons in the local circuits were responsible for the decreasing excitability of the pyramidal cells, and the suppressive effect by the somatosensory stimulation relied on both the feed-forward inhibitory circuit and the feedback inhibitory circuit, and the feed-forward inhibitory circuit plays a major role. Besides, we used an epileptic model to study the effect of somatosensory stimulation on over-excited neurons. Results showed that somatosensory stimulation could alleviate unilateral seizure-like activity, but not bilateral seizure-like activity.
     (3) Somatosensory information could be encoded by the phase-locking relationship between spikes and LFP in the hippocampal CA1region
     We analyzed the phasic relationship between unit spike and the θ cycles with Rayleigh test, showing that:a few neurons (3/22) exhibited phase-locking characteristic during spontaneous activity; tail-clamping stimulation increased the number of the phase-locking neurons significantly (10/22), and the spikes concentrated on the negative phase of the0cycle. These results suggested a possible mechanism of processing and encoding somatosensory information in the hippocampal CA1region.
     In brief, this dissertation combined in-vivo experiment and computer modeling to study the neural response to the somatosensory stimulation in hippocampal CA1region. It demonstrated the suppressive effect of the somatosensory stimuli, and revealed the underlying mechanism. This study was significant for studying the processing of somatosensory information, it also help understand the neural encoding and learning function in the hippocampus.
引文
[1]Adrian ED, Zotterman Y. The impulses produced by sensory nerve-endings:Part II. The response of a Single End-Organ [J]. The Journal of physiology,1926, 61(2):151-171.
    [2]Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis [J]. The Behavioral and brain sciences,1999, 22(3):425-444; discussion 444-489.
    [3]Ahmed B, Anderson JC, Douglas RJ, et al. Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex [J]. Cerebral cortex,1998,8(5):462-476.
    [4]Ahmed OJ, Mehta MR. The hippocampal rate code:anatomy, physiology and theory [J]. Trends in neurosciences,2009,32(6):329-338.
    [5]Alger BE, Nicoll RA. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro [J]. The Journal of physiology,1982,328: 105-123.
    [6]Alonso A, Kohler C. Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain [J]. Neuroscience letters,1982,31(3):209-214.
    [7]Andersen P, Bliss TV, Lomo T, et al. Lamellar organization of hippocampal excitatory pathways [J]. Acta physiologica Scandinavica,1969,76(1):4A-5A.
    [8]Andersen P, Morris R, Amaral D, et al. The hippocampus book [M]. Oxford, Oxford University Press,2007.
    [9]Artemenko DP. Participation of hippocampal neurons in the generation of theta waves [J]. Neurophysiology,1972(5),4:531-539.
    [10]Axmacher N, Mormann F, Fernandez G, et al. Memory formation by neuronal synchronization [J]. Brain research reviews,2006,52(1):170-182.
    [11]Bartho P, Hirase H, Monconduit L, et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features [J]. Journal of neurophysiology,2004,92(1):600-608.
    [12]Bellistri E, Aguilar J, Brotons-Mas JR, et al. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat [J]. The Journal of physiology,2013,591(Pt 10):2667-2686.
    [13]Benda J, Herz AV. A universal model for spike-frequency adaptation [J]. Neural computation,2003,15(11):2523-2564.
    [14]Berens P. CircStat:A MATLAB Toolbox for Circular Statistics. [J] Journal of Statistical Software,2009,31(10):1-21.
    [15]Bienvenu TC, Busti D, Magill PJ, et al. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo [J]. Neuron,2012,74(6):1059-1074.
    [16]Borghi T, Gusmeroli R, Spinelli AS, et al. A simple method for efficient spike detection in multiunit recordings [J]. Journal of neuroscience methods,2007, 163(1):176-180.
    [17]Bose A, Recce M. Phase precession and phase-locking of hippocampal pyramidal cells [J]. Hippocampus,2001,11(3):204-215.
    [18]Bouton ME. Learning and behavior:A contemporary synthesis [M]. Sinauer Associates,2007.
    [19]Brankack J, Buzsaki G. Hippocampal responses evoked by tooth pulp and acoustic stimulation:depth profiles and effect of behavior [J]. Brain research, 1986,378(2):303-314.
    [20]Burgess N, Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory [J]. Neuron,2002,35(4):625-641.
    [21]Burwell RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat [J]. The Journal of comparative neurology,1998, 398(2):179-205.
    [22]Buzsaki G. Theta oscillations in the hippocampus [J]. Neuron,2002,33(3): 325-340.
    [23]Buzsaki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles:a role for interneuronal networks [J]. Current opinion in neurobiology,1995,5(4):504-510.
    [24]Buzsaki G, Czopf J, Kondakor I, et al. Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat:current-source density analysis, effects of urethane and atropine [J]. Brain research,1986,365(1): 125-137.
    [25]Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks [J]. Science, 2004,304(5679):1926-1929.
    [26]Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat [J]. Brain research,1983,287(2):139-171.
    [27]Carnevale NT, Hines ML. The NEURON book [M]. Cambridge University-Press,2006.
    [28]Christof K. Biophysics of Computation-Information Processing in Single Neuron [M]. Oxford:Oxford University Press,1999.
    [29]Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons [J]. Trends in neurosciences,1990,13(3):99-104.
    [30]Corkin S. Acquisition of motor skill after bilateral medial temporal-lobe excision [J]. Neuropsychologia,1968,6(3):255-265.
    [31]Csicsvari J, Hirase H, Czurko A, et al. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus:an ensemble approach in the behaving rat [J]. Neuron,1998,21(1):179-189.
    [32]Csicsvari J, Hirase H, Czurko A, et al. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat [J]. The Journal of Neuroscience:the official journal of the Society for Neuroscience,1999,19(1): 274-287.
    [33]Csicsvari J, Jamieson B, Wise KD, et al. Mechanisms of gamma oscillations in the hippocampus of the behaving rat [J]. Neuron,2003,37(2):311-322.:
    [34]Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in a model of the hippocampal CA1 microcircuit [J]. Hippocampus,2010,20(3):423-446.
    [35]Daselaar SM, Fleck MS, Cabeza R. Triple dissociation in the medial temporal lobes:recollection, familiarity, and novelty [J]. Journal of neurophysiology, 2006,96(4):1902-1911.
    [36]David ST, Anatomay of the Hippocampus,2009.
    [37]Day an P, Abbott LF. Theoretical neuroscience:computational and mathematical modeling of neural systems [J]. Journal of Cognitive Neuroscience,2003,15(1): 154-155.
    [38]Deadwyler SA, Foster TC, Hampson RE. Processing of sensory information in the hippocampus [J]. CRC critical reviews in clinical neurobiology,1987,2(4): 335-355.
    [39]Deadwyler SA, West MO, Robinson JH. Evoked potentials from the dentate gyrus during auditory stimulus generalization in the rat [J]. Experimental neurology,1981,71(3):615-624.
    [40]Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism [J]. Journal of computational neuroscience,1994,1(3): 195-230.
    [41]Fernandes de Lima VM, Pijn JP, Nunes Filipe C, et al. The role of hippocampal commissures in the interhemispheric transfer of epileptiform afterdischarges in the rat:a study using linear and non-linear regression analysis [J]. Electroencephalography and clinical neurophysiology,1990,76(6):520-539.
    [42]Fernandez FR, Broicher T, Truong A, et al. Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state [J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2011,31(10):3880-3893.
    [43]Forster FM, Penfield W, Jasper H, et al. Focal epilepsy, sensory perception and evoked potentials [J]. Electroencephalography and Clinical Neurophysiology, 1949,1:349-356.
    [44]Fries P, Nikolic D, Singer W. The gamma cycle [J]. Trends in neurosciences, 2007,30(7):309-316.
    [45]Fritz JB, Elhilali M, David SV, et al. Auditory attention--focusing the searchlight on sound [J]. Current opinion in neurobiology,2007,17(4):437-455.
    [46]Gabrieli JD, Cohen NJ, Corkin S. The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection [J]. Brain and cognition, 1988,7(2):157-177.
    [47]Garrido JA, Ros E, D'Angelo E. Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage:a simulation study [J]. Frontiers in computational neuroscience,2013,7:64.
    [48]George P, Charles W. The Rat Brain in Stereotaxic Coordinates [M]. Academic Press, UK,2007.
    [49]Gerstner W, Kistler WM. Spiking neuron models:Single neurons, populations, plasticity [M]. Cambridge university press,2002.
    [50]Gold C, Henze DA, Koch C, et al. On the origin of the extracellular action potential waveform:A modeling study [J]. Journal of neurophysiology,2006, 95(5):3113-3128.
    [51]Gomez-Pinilla F, Ying Z, Agoncillo T, et al. The influence of naturalistic experience on plasticity markers in somatosensory cortex and hippocampus: effects of whisker use [J]. Brain research,2011,1388:39-47.
    [52]Harris KD, Henze DA, Csicsvari J, et al. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements [J]. Journal of Neurophysiology,2000,84(1):401-414.
    [53]Hasselmo ME. What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data [J]. Hippocampus,2005,15(7):936-949.
    [54]Herreras O, Solis JM, Lerma J. Abolition of CA1 population spike by sensory stimulation [J]. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale,1986,61(3):654-657.
    [55]Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. The Journal of physiology, 1952,117(4):500-544.
    [56]Horch KW, Dhillon GS. Neuroprosthetics:theory and practice [M]. World Scientific,2004.
    [57]Isaacson RL, Pribram KH. The hippocampus [M]. Plenum Press,1986.
    [58]Itskov PM, Vinnik E, Diamond ME. Hippocampal representation of touch-guided behavior in rats:persistent and independent traces of stimulus and reward location [J]. PloS one,2011,6(1):e16462.
    [59]Izhikevich EM. Neural excitability, spiking and bursting [J]. International Journal of Bifurcation and Chaos,2000,10(06):1171-1266.
    [60]Jacobs J, Kahana MJ, Ekstrom AD, et al. Brain oscillations control timing of single-neuron activity in humans [J]. The Journal of Neuroscience:the official journal of the Society for Neuroscience,2007,27(14):3839-3844.
    [61]Jallon P. Epilepsy in developing countries [J]. Epilepsia,1997,38(10): 1143-1151.
    [62]Jefferys JG. Hippocampal sclerosis and temporal lobe epilepsy:cause or consequence? [J]. Brain:a journal of neurology,1999,122 (Pt 6):1007-1008.
    [63]Jensen O, Lisman JE. Novel lists of 7+/-2 known items can be reliably stored in an oscillatory short-term memory network:interaction with long-term memory [J]. Learning & Memory,1996,3(2-3):257-263.
    [64]Jorg J, Gerhard H. Somatosensory, motor and special visual evoked potentials to single and double stimulation in "Parkinson's disease" an early diagnostic test? [J]. Journal of neural transmission. Supplementum,1987,25:81-88.
    [65]Kamondi A, Acsady L, Wang XJ, et al. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo:activity-dependent phase-precession of action potentials [J]. Hippocampus,1998,8(3):244-261.
    [66]Kandel E, Schwartz J, Jessel TM. Principles of neural science [M]. New York, McGraw-Hill,2000.
    [67]Khalilov I, Holmes GL, Ben-Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures [J]. Nature neuroscience,2003,6(10):1079-1085.
    [68]Klausberger T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus [J]. The European journal of neuroscience, 2009,30(6):947-957.
    [69]Klausberger T, Marton LF, Baude A, et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo [J]. Nature neuroscience,2004,7(1):41-47.
    [70]Kloosterman F, Peloquin P, Leung LS. Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation [J]. Journal of neurophysiology,2001,86(5):2435-2444.
    [71]Kostal L, Lansky P, Rospars JP. Neuronal coding and spiking randomness [J]. The European journal of neuroscience,2007,26(10):2693-2701.
    [72]Krahe R, Gabbiani F. Burst firing in sensory systems [J]. Nature reviews. Neuroscience,2004,5(1):13-23.
    [73]Kurthen M, Trautner P, Rosburg T, et al. Towards a functional topography of sensory gating areas:invasive P50 recording and electrical stimulation mapping in epilepsy surgery candidates [J]. Psychiatry research,2007,155(2):121-133.
    [74]La Camera G, Rauch A, Thurbon D, et al. Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons [J]. Journal of neurophysiology,2006,96(6):3448-3464.
    [75]Lancaster B, Nicoll RA. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones [J]. The Journal of physiology,1987,389:187-203.
    [76]Lee I, Yoganarasimha D, Rao G, et al. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 [J]. Nature,2004,430(6998): 456-459.
    [77]Lerma J, Herreras O, Munoz D, et al. Interactions between hippocampal penicillin spikes and theta rhythm [J]. Electroencephalography and clinical neurophysiology,1984,57(6):532-540.
    [78]Leung LS, Peloquin P, Canning KJ. Paired-pulse depression of excitatory postsynaptic current sinks in hippocampal CA1 in vivo [J]. Hippocampus,2008, 18(10):1008-1020.
    [79]Leung LS, Yim CY. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat [J]. Brain research,1986,367(1):323-327.
    [80]Lewicki MS. A review of methods for spike sorting:the detection and classification of neural action potentials [J]. Network (Bristol. England),1998. 9(4):R53-78.
    [81]Lisman JE. Bursts as a unit of neural information:making unreliable synapses reliable [J]. Trends in neurosciences,1997,20(1):38-43.
    [82]Lisman JE, Idiart MA. Storage of 7+/- 2 short-term memories in oscillatory subcycles [J]. Science,1995,267(5203):1512-1515.
    [83]Litaudon P, Garcia S, Buonviso N. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex [J]. Neuroscience,2008, 156(3):781-787.
    [84]Liu YH, Wang XJ. Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron [J]. Journal of computational neuroscience, 2001,10(1):25-45.
    [85]Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro [J]. The Journal of physiology,1984,354(1): 319-331.
    [86]Maguire EA, Woollett K, Spiers HJ. London taxi drivers and bus drivers:a structural MRI and neuropsychological analysis [J]. Hippocampus,2006,16(12): 1091-1101.
    [87]Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro [J]. The Journal of Physiology,1984,354(1): 319-331.
    [88]Margineanu DG, Wulfert E. Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area [J]. Brain research bulletin,2000, 51(1):69-74.
    [89]Masquelier T, Hugues E, Deco G, et al. Oscillations, phase-of-firing coding, and spike timing-dependent plasticity:an efficient learning scheme [J]. The Journal of Neuroscience:the official journal of the Society for Neuroscience,2009, 29(43):13484-13493.
    [90]McMahon DB, Olson CR. Repetition suppression in monkey inferotemporal cortex:relation to behavioral priming [J]. Journal of neurophysiology,2007, 97(5):3532-3543.
    [91]Melzer P, Champney GC, Maguire MJ, et al. Rate code and temporal code for frequency of whisker stimulation in rat primary and secondary somatic sensory cortex [J]. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale,2006,172(3):370-386.
    [92]Miller SW, Groves PM. Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei [J]. Physiology & behavior, 1977,18(1):141-146.
    [93]Montemurro MA, Rasch MJ, Murayama Y, et al. Phase-of-firing coding of natural visual stimuli in primary visual cortex [J]. Current biology:CB,2008, 18(5):375-380.
    [94]Moser MB, Moser El. Functional differentiation in the hippocampus [J]. Hippocampus,1998,8(6):608-619.
    [95]Muller JR, Metha AB, Krauskopf J, et al. Rapid adaptation in visual cortex to the structure of images [J]. Science,1999,285(5432):1405-1408.
    [96]Murty VP, Ballard IC, Macduffie KE, et al. Hippocampal networks habituate as novelty accumulates [J]. Learning & Memory,2013,20(4):229-235.
    [97]O'Keefe J, Nadel L. The hippocampus as a cognitive map [M]. Oxford: Clarendon Press,1978.
    [98]O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm [J]. Hippocampus,1993,3(3):317-330.
    [99]Papatheodoropoulos C, Kostopoulos G. Development of a transient increase in recurrent inhibition and paired-pulse facilitation in hippocampal CA1 region [J]. Brain research. Developmental brain research,1998,108(1-2):273-285.
    [100]Pereira A, Ribeiro S, Wiest M, et al. Processing of tactile information by the hippocampus [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(46):18286-18291.
    [101]Pitkanen A, Schwartzkroin PA, Moshe SL. Models of seizures and epilepsy [M]. Academic Press,2005.
    [102]Phoka E, Wildie M, Schultz SR, et al. Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model [J]. Journal of computational neuroscience,2012,33(2):323-339.
    [103]Purves D. Neuroscience [M]. Sunderland MA, Sinauer Associates,2012.
    [104]Rajna P, Lona C. Sensory stimulation for inhibition of epileptic seizures [J]. Epilepsia,1989,30(2):168-174.
    [105]Ranck JB, Jr. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires [J]. Experimental neurology,1973,41(2):461-531.
    [106]Rankin CH, Abrams T, Barry RJ, et al. Habituation revisited:an updated and revised description of the behavioral characteristics of habituation [J]. Neurobiology of learning and memory,2009,92(2):135-138.
    [107]Ray S, Maunsell JH. Differences in gamma frequencies across visual cortex restrict their possible use in computation [J]. Neuron,2010,67(5):885-896.
    [108]Ribacke M, Sundman L. The district medical officer's views on the organization of hypertension care [J]. Lakartidningen,1978,75(46):4259-4260.
    [109]Rutishauser U, Ross IB, Mamelak AN, et al. Human memory strength is predicted by theta-frequency phase-locking of single neurons [J]. Nature,2010, 464(7290):903-907.
    [110]Sainsbury RS, Heynen A, Montoya CP. Behavioral correlates of hippocampal type 2 theta in the rat [J]. Physiology & behavior,1987,39(4):513-519.
    [111]Saladin KS, Miller L. Anatomy & physiology [M]. McGraw Hill,2004.
    [112]Saladin KS. Anatomy and Physiology:The Unity of Form and Function [M]. McGraw Hill.2007.
    [113]Sawczuk A, Powers RK, Binder MD. Spike frequency adaptation studied in hypoglossal motoneurons of the rat [J]. Journal of neurophysiology,1995,73(5): 1799-1810.
    [114]Sceniak MP, Maciver MB. Cellular actions of urethane on rat visual cortical neurons in vitro [J]. Journal of neurophysiology,2006,95(6):3865-3874.
    [115]Sharp PE, Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat [J]. The Journal of Neuroscience:the official journal of the Society for Neuroscience,1994,14(4):2339-2356.
    [116]Sloviter RS. Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation:GABA-mediated mechanisms that regulate excitability In Vivo [J]. Hippocampus,1991,1(1):31-40.
    [117]Soleng AF, Raastad M, Andersen P. Conduction latency along CA3 hippocampal axons from rat [J]. Hippocampus,2003,13(8):953-961.
    [118]Solis JM, Herreras O, Mufioz D, Lerma J. Modulation of perforant path-dentate transmission by sensory stimulation [J]. Neurosci Lett Suppl,1984,18:375.
    [119]Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus [J]. The Journal of physiology,2005, 562(Pt 1):9-26.
    [120]Squire LR. Memory and the hippocampus:a synthesis from findings with rats, monkeys, and humans [J]. Psychological review,1992,99(2):195-231.
    [121]Stein RB, Gossen ER, Jones KE. Neuronal variability:noise or part of the signal? [J]. Nature reviews. Neuroscience,2005,6(5):389-397.
    [122]Tai SK, Ma J, Ossenkopp KP, et al. Activation of immobility-related hippocampal theta by cholinergic septohippocampal neurons during vestibular stimulation [J]. Hippocampus,2012,22(4):914-925.
    [123]Takahashi S, Anzai Y, Sakurai Y. A new approach to spike sorting for multi-neuronal activities recorded with a tetrode--how ICA can be practical [J]. Neuroscience research,2003,46(3):265-272.
    [124]Takahashi S, Sakurai Y. Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo [J]. Neuroscience,2005,134(1): 301-315.
    [125]Toth K, Borhegyi Z, Freund TF. Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex [J]. The Journal of Neuroscience:the official journal of the Society for Neuroscience,1993,13(9):3712-3724.
    [126]Toth K, Freund TF, Miles R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum [J]. The Journal of physiology,1997,500 (Pt 2):463-474.
    [127]Ulanovsky N, Las L, Farkas D, et al. Multiple time scales of adaptation in auditory cortex neurons [J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2004,24(46):10440-10453.
    [128]Valentine PA, Fremit SL, Teskey GC. Sensory stimulation reduces seizure severity but not afterdischarge duration of partial seizures kindled in the hippocampus at threshold intensities [J]. Neuroscience letters,2005,388(1): 33-38.
    [129]Vanderwolf CH. The hippocampus as an olfacto-motor mechanism:were the classical anatomists right after all? [J]. Behavioural brain research,2001,127(1): 25-47.
    [130]Vinogradova OS. Hippocampus as comparator:role of the two input and two output systems of the hippocampus in selection and registration of information [J]. Hippocampus,2001,11(5):578-598.
    [131]Vinogradova OS, Brazhnik ES, Kitchigina VF, et al. Acetylcholine, theta-rhythm and activity of hippocampal neurons in the rabbit--Ⅳ. Sensory stimulation [J]. Neuroscience,1993,53(4):993-1007.
    [132]Wang GL, Liang PJ. Method for robust spike sorting with overlap decomposition [J]. Conference Proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference,2005,2:2013-2016.
    [133]Wang GL, Zhou Y, Chen AH, et al. A robust method for spike sorting with automatic overlap decomposition [J]. IEEE transactions on bio-medical engineering,2006,53(6):1195-1198.
    [134]Wang XJ. Calcium coding and adaptive temporal computation in cortical pyramidal neurons [J]. Journal of neurophysiology,1998,79(3):1549-1566.
    [135]Wang Y, Toprani S, Tang D, et al. A mechanism to explain zero-delay bilateral seizure synchronization [J]. Conference Proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference,2011:7286-7289.
    [136]Wang Y, Toprani S, Tang Y, et al. Mechanism of highly synchronized bilateral hippocampal activity [J]. Experimental neurology,2014,251:101-111.
    [137]Whishaw IQ, Dyck R. Comparative potency of tactile, auditory, and visual stimulus repetition in eliciting activated forebrain EEG in the rabbit [J]. Behavioral neuroscience,1984,98(2):333-344.
    [138]Whishaw IQ, Vanderwolf CH. Hippocampal EEG and behavior:changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats [J]. Behavioral biology,1973, 8(4):461-484.
    [139]Witter MP, Groenewegen HJ, Lopes da Silva FH, et al. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region [J]. Progress in neurobiology,1989,33(3):161-253.
    [140]Ylinen A, Soltesz I, Bragin A, et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells [J]. Hippocampus,1995,5(1):78-90.
    [141]Zainos A, Merchant H, Hernandez A, et al. Role of primary somatic sensory cortex in the categorization of tactile stimuli:effects of lesions [J]. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale,1997, 115(2):357-360.
    [142]Zhang PM, Wu JY, Zhou Y, et al. Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem [J]. Journal of neuroscience methods,2004,135(1-2):55-65.
    [143]江志裕(译),定量生物电学[M].上海:复旦大学出版社,1992.
    [144]韩春晓,王江,常莉等.外电场作用下改进的Leaky Integrate-And-Fire模型的峰放电频率适应性研究[J].动力学与控制学报,2013,11(1):46-52.
    [145]梁培基,陈爱华.神经元活动的多电极同步记录及神经信息的处理[M].北 京:北京工业大学出版社,2003.
    [146]柳玉倩,赵凌云,洪波.大鼠下丘神经元对重复刺激适应性的时频表征[J].生物物理学报,2009,25(3):209-218.
    [147]王静,封洲燕.多通道神经元锋电位检测和分类的新方法[J].生物化学与生物物理进展,2009,36(5):641-647.
    [148]郑晓静.大鼠海马区电刺激抑制癫痫的作用机制研究[M].浙江大学博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700