高速工况下H型桁架定位平台的建模与同步控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型桁架定位平台机械结构简单、运动稳定性高,在精密测量、数控加工和半导体封装设备中的应用愈来愈广泛。采用直线电机双边驱动后,克服了传统旋转电机和滚珠丝杠驱动方式传动环节多、响应滞后大以及存在非线性摩擦等缺点,可获得更高的速度、加速度和定位精度,适合于半导体芯片封装中的频繁“拾/放”操作和快速点点精密定位。随着运动速度和加速度的增加,桁架系统动力学特性已成为影响系统定位精度和同步性能的重要因素,在控制设计中必须加以考虑。为此,本论文对高速工况下双边驱动H型桁架定位平台的系统动力学建模与同步控制等方面开展研究。主要研究工作如下:
     (1)基于Euler-Lagrange方程,建立了H型桁架系统的耦合动力学模型。研究了关节刚度对系统频率特性的影响,分析了移动头快速加减速运动引起的扭转冲击对横梁两端同步性能的影响,仿真结果表明通过提高关节的刚度有利于提高系统的振动频率。移动头高加速度快速移动时,将会对横梁产生扭转运动,并诱导结构振荡。
     (2)双边驱动H型桁架定位平台是典型的多输入多输出(MIMO)耦合系统,在快速定位或跟踪过程中要求最小化同步误差。通过建立包含同步误差及其变化率的线性二次性能指标,将此类耦合系统的同步控制问题转化为线性二次型最优控制问题。通过建立黎卡提等式和李雅普洛夫等式,计算出包含有交叉耦合补偿的控制律。研究了同步误差及同步误差变化率加权系数α、β值对同步性能的影响,仿真结果表明增大加权系数α、β值有利于改善系统的同步性能,同步误差对权系数β值的取值更为敏感。
     (3)针对H型桁架定位平台采用线性二次最优同步控制当出现扰动时鲁棒性变差的问题,结合滑模变结构控制和线性二次优化控制各自优点,设计了滑模变结构最优同步控制器。滑模变结构控制抑制外部干扰的影响,增强系统的鲁棒性,线性二次最优控制用于改善系统的动、静态性能。设计了简单的扰动估计器,通过自适应律对扰动上界进行预估,实现了在未知扰动上界的情况下仍能保证控制系统的鲁棒性。
     (4)结合双边驱动H型桁架定位平台在RFID电子标签贴装设备中的工程应用,进行了同步控制系统的设计,包括具有同步误差补偿功能的同步控制设计、同步误差保护和同步轴回原点等内容,给出了具体实现方法和实验结果。最后对本文提出的理论成果进行了实验验证。
H-type gantry stages, well characterized by the simple structure and high stability, have been widely adopted in precision metrology, NC machining, and semiconductor packaging equipments. The bilateral linear motor driving is superior to the traditional ballscrew driving by conquering its drawbacks which is characterized by lots of transition elements, the sluggish response and nonlinear friction, etc. Thus, higher acceleration/deceleration, accuracy can be easely obtained, which adapts to frequent pick-and-place operations and fast precise point-to-point (PTP) motions in the semiconductor packaging industry. However, with the increase of speeds and accelerations, the dynamic characteristic of the gantry turns out to be the significant impacts on the system positioning accuracy and synchronous performance. Therefore, this paper investigates the dynamic modeling and synchronous control of a bilateral drive gantry stages under the condition of high speed. The major work herein is as follows:
     (1) Based on the Euler-Lagrange equation, this paper builds up the coupling dynamic model of the H-type gantry stage. Furthermore, two problems are theoretically investigated in detail. First, the effect of the joint rigidity on systematic frequency characteristics; second, the effect of the torsion impact on the synchronous performance of the gantry which is induced by the moving head's rapid acceleration and deceleration motions. Simulations indicate that the systematic bandwidth could be enlarged by enhancing the joint rigidity. When the moving head performs high acceleration motions, torsion impact would be notably present which may induce structural vibration. Therefore, advanced control algorithms should be developed to suppress the aforementioned negative effects.
     (2) Bilateral drive H-type gantry stages, a kind of typical coupling MIMO system, require to minimize the synchronous error during the trajectory tracking and positioning. Through establishing the linear quadratic performance specifications containing synchronous error and its differential, the synchronous problem of coupling MIMO system can be transferred to a linear quadratic optimal control problem. And control laws satisfying performance specifications are calculated through the Raccati equation and Lyapunov equation. The effects of weight coefficients a andβon the synchronous performance are analyzed, which revise the synchronous error and its differential, respectively. Simulations indicate that higher a andβcan add to the systematic synchronous performance, and the synchronous error is more susceptible to the value ofβ.
     (3) As the systematic robustness deteriorates in case of disturbance in the linear quadratic optimal synchronous control, a sliding structure optimal synchronous controller is proposed, which integrates the sliding-mode variable structure control and the linear quadratic optimal control. The former is intended for suppressing the surrounding disturbance, while the latter for reshaping the dynamic and static performance of the system. Also, a simple disturbance observer is designed to estimate the upper bound of disturbance through an adaptive law, which implements the systematic robustness under the condition of unknown upper disturbance bounds.
     (4) A dual-axies synchronous control system is developed. Synchronization controller with the synchronization error compensation is designed, and synchronous error protection and homing of the dual-axies are implemented. It has been applied to the RFID tag assembly of equipment, experiment and application results show that the effectiveness of control method.
引文
[1]丁汉,朱利民,林忠钦.面向芯片封装的高加速度运动系统的精确定位和操作[J].自然科学进展.2003(06):10-16.
    [2]吴建华.高加速度直线伺服系统的快速高精度定位控制[D].上海:上海交通大学,2007.
    [3]李运堂.面向芯片封装的高加速度高精度气浮定位平台的研究[D].上海:上海交通大学,2007.
    [4]雷源忠,雒建斌,丁汉,等.先进电子制造中的重要科学问题[J].中国科学基金.2002(04):14-19.
    [5]李刚.百格拉机器人在汽车生产线上的应用[J].机械工人.冷加工.2003(7):66-66,80.
    [6]侯奎孝,易平.龙门式机器人的研制[J].组合机床与自动化加工技术.1999(2):42-45.
    [7]桥型移动龙门式仿形喷涂生产线[J].机电产品开发与创新.2001(3):35.
    [8]赵全锦.龙门式数控机床的多轴同步驱动(西门子840D/810D GANTRY功能的应用)[J].制造技术与机床.2002(5):43-45.
    [9]刘伟.直线电机在微电子领域中的应用[J].光学精密工程.2001(04):311-314.
    [10]郝晓红,梅雪松,张东升,等.新型磁悬浮精密定位平台的研究[J].西安交通大学学报.2005(09):937-940.
    [11]张从鹏,刘强.直线电机气浮精密定位平台设计与控制[J].北京航空航天大学学报.2008(02):224-228.
    [12]郭庆鼎.直线交流伺服系统的精密控制技术[M].北京:机械工业出版社,2000.
    [13]http://www.etel.ch/motion_systems[Z].
    [14]http://www.europlacer.com/[Z].
    [15]Xuedong Y, Taylor D G. Hinfin control design for positioning performance of gantry robots[C].2000.
    [16]吴金波.柔性驱动拱架机器人的建模与控制[D].华中科技大学,2007.
    [17]Hsieh M, Yao W, Chiang C. Modeling and synchronous control of a single-axis stage driven by dual mechanically-coupled parallel ball screws[J].2007,34:933-943.
    [18]Teo C S, Tan K K, Lim S Y, et al. Dynamic modeling and adaptive control of a H-type gantry stage[J].2007,17(7):361-367.
    [19]Gomand J, Bearee R, Kestelyn X, et al. Physical dynamic modelling and systematic control structure design of a double linear drive moving gantry stage industrial robot[C]. 2007.
    [20]Park H K, Kim S S, Park J M, et al. Dynamics of dual-drive servo mechanism[C]. Pusan, Korea, Republic of:Institute of Electrical and Electronics Engineers Inc.,2001.
    [21]Lorenz R D, Schmidt P B. Synchronized motion control for process automation[C].1989.
    [22]Tan K K, Lim S Y, Huang S, et al. Coordinated motion control of moving gantry stages for precision applications based on an observer-augmented composite controller[J]. 2004,12(6):984-991.
    [23]Chiou Y J, Lee Y M, Tsay R J. Mixed mode fracture propagation by manifold method[J]. Acta Seismologica Sinica.2002,114(4):327-347.
    [24]Caijun X, Zhicai L, Qi W. Prospect on present-day crustal kinematics and dynamics research in Sichuan-Yunnan area with geodetic data[J]. Applied Mathematics and Mechanics.2005,8(1):1-7.
    [25]Hsieh M, Tung C, Yao W, et al. Servo design of a vertical axis drive using dual linear motors for high speed electric discharge machining[J].2007,47(3-4):546-554.
    [26]Tomizuka M, Hu J, Chiu T, et al. Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control[J]. Journal of Dynamic Systems, Measurement, and Control.1992,114(2):196-203.
    [27]Koren Y. Cross-coupled biaxial computer control for manufacturing systems[J].1980, 102(4):265-272.
    [28]Kazanzides P, Bradley N S, Wolovich W A. Dual-drive force/velocity control: implementation and experimental results[C]. Washington, DC, USA:IEEE Comput. Soc. Press,1989.
    [29]Yeh Z M, Tarng Y S, Lin Y S. Cross-coupled fuzzy logic control for biaxial servomechanisms[C]. New Orleans, LA, USA:IEEE,1996.
    [30]Srinivasan K, Kulkarni P K. Cross-coupled control of biaxial feed drive servomechanisms[J].1990,112(2):225-232.
    [31]Sun D, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks[J].2002,18(4):498-510.
    [32]Sun D. Position synchronization of multiple motion axes with adaptive coupling control[J].2003,39(6):997-1005.
    [33]Sun D, Feng G. A synchronization approach to the mutual error control of a mobile manipulator[C]. Taipei, Taiwan:Institute of Electrical and Electronics Engineers Inc., 2003.
    [34]Xiao Y, Zhu K Y. Optimal Synchronization Control of High-Precision Motion Systems[J].2006,53(4):1160-1169.
    [35]Xiao Y, Zhu K Y. A cross-coupling reference model control algorithm[J]. International Journal of Adaptive Control and Signal Processing.2005,19(8):623-638.
    [36]Xiao Y, Zhu K, Choo Liaw H. Generalized synchronization control of multi-axis motion systems[J].2005,13(7):809-819.
    [37]Zhu K, Chen B. Cross-coupling design of generalized predictive control with reference models[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering.2001,215(4):375-384.
    [38]Yong X, Kuanyi Z. Stability Analysis of GPC for Multi-axis Coordinated Motion Systems[C].2003.
    [39]Luo S, Zhang X, Cai Y. The Variational Principle and Application of Numerical Manifold Method[J]. Applied Mathematics and Mechanics.2001,22(6):658-663.
    [40]shao-Ming L, Xiang-Wei Z, Yong-Chang C. The variational principles and application of nonlinear numerical manifold method[J].2000,21(12):1401-1406.
    [41]Xiao Y, Zhu K Y. Cross-coupling generalized predictive control for motion systems: Proceedings of the third international conference on control and automation[Z]. Xiamen, China.
    [42]Chu B, Kim S, Hong D, et al. Optimal Cross-Coupled Synchronizing Control of Dual-Drive Gantry System for a SMD Assembly Machine; [J].2004,47(3):939-945.
    [43]Giam T S, Tan K K, Huang S. Precision coordinated control of multi-axis gantry stages[J].2007,46(3):399-409.
    [44]Dongmei Y, Qingding G, Qing H, et al. Position synchronized control of dual lin motors servo system using fuzzy logic[C]. Dalian, China:Institute of Electrical and Electronics Engineers Inc.,2006.
    [45]柴天佑著.多变量自适应解耦控制及应用[M].北京:科学出版社,2001.
    [46]郭洪澈,郭庆鼎.双直线电机同步运动的自适应解耦控制器设计[J].沈阳工业大学学报.2001(06):508-511.
    [47]郭庆鼎,唐光谱.基于解耦控制的同步传动技术的应用研究[J].控制与决策.2001(01):72-75.
    [48]唐元钢,郭庆鼎.反馈解耦在双直线电机同步进给中的应用[J].沈阳工业大学学报.2001(04):301-304.
    [49]Yu D, Guo Q, Hu Q. Study on synchronous drive technique of biaxial linear servo motor based on decoupling control and internal model control with two-degree-of-freedom[C]. 2003.
    [50]Yu D, Guo Q, Hu Q. Study on synchronous drive technique of biaxial linear servo motor based on decoupling control and internal model control with two-degree-of-freedom[C]. Beijing, China:International Academic Publishers,2003.
    [51]Hu J, Bohn C, Wu H R. Systematic H[infinity] weighting function selection and its application to the real-time control of a vertical take-off aircraft[J]. Control Engineering Practice.2000,8(3):241-252.
    [52]Beaven R W, Wright M T, Seaward D R. Weighting function selection in the H[infinity] design process[J]. Control Engineering Practice.1996,4(5):625-633.
    [53]van de Wal M, van Baars G, Sperling F, et al. Multivariable feedback control design for high-precision wafer stage motion[J]. Control Engineering Practice.2002,10(7): 739-755.
    [54]赵希梅,郭庆鼎,孙宜标.双直线电机伺服系统动态同步进给的鲁棒H_∞控制[J].组合机床与自动化加工技术.2005(07):55-57.
    [55]蓝益鹏.双位置环直线伺服同步系统鲁棒控制[D].沈阳工业大学,2003.
    [56]郭庆鼎,蓝益鹏.双直线电机驱动的龙门移动式加工中心H_∞鲁棒自适应控制[J].中国机械工程.2003(22):84-87.
    [57]Kok-Kiong T, Tong-Heng L, Ser-Yong L, et al. Robust coordinated control of multi-axis gantry stages[C]. Piscataway, NJ, USA:IEEE,2004.
    [58]Guiqiu L, Qingding G. Research on H robust controller of dual linear motors in gantry-moving milling machine based on velocity compensation[C]. Piscataway, NJ, USA: IEEE,2005.
    [59]Dongmei Y, Qingding G, Qing H. Synchronized control of dual linear motors position servo system based on fuzzy self-learning compensation[C]. Los Alamitos, CA, USA: IEEE Comput. Soc,2006.
    [60]郭庆鼎,赵希梅,翁秀华.基于干扰观测器的龙门移动式镗铣加工中心同步控制[J].电工技术学报.2005(09):88-91.
    [61]翁秀华,郭庆鼎,刘德君.基于模糊自适应PID的双直线电机同步驱动系统控制[J].组合机床与自动化加工技术.2004(09):31-32.
    [62]赵希梅,郭庆鼎.龙门移动式镗铣加工中心的同步控制[J].伺服控制.2006(01):49-51.
    [63]陈静,刘强,齐畅.基于自适应和模糊控制的新型XY平台同步控制研究[J].系统仿真学报.2008(12):3212-3215.
    [64]刘强,张从鹏.直线电机驱动的H型气浮导轨运动平台[J].光学精密工程.2007(10):1540-1546.
    [65]Armstrong-H B, Louvry, Dupont P, et al. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica.1994, 30(7):1083-1138.
    [66]Chen J S, Chen K C, Lai Z C, et al. Friction characterization and compensation of a linear-motor rolling-guide stage[J].2003,43(9):905-915.
    [67]Canudas De Wit C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J].1995,40(3):419-425.
    [68]Armstrong-Helouvry B. Stick-slip arising from Stribeck friction[C].1990.
    [69]Lee T H, Tan K K, Huang S N, et al. Intelligent control of precision linear actuators[J]. 2000,13(6):671-684.
    [70]刘军,孟祥忠编著.电力拖动运动控制系统[M].北京:机械工业出版社,2007:176.
    [71]刘豹,唐万生主编.现代控制理论[M].北京:机械工业出版社,2006.
    [72]Vadim Utkin J G J S. Sliding mode control in electromechanical systems[Z]. London: Taylor & Frances,1999.
    [73]Slotine J J E, Li W. Applied nonlinear control[M]. Englewood Cliffs, NJ, USA:Prentice Hall,1991:459.
    [74]Slotine J J E, Coetsee J A. Adaptive sliding controller synthesis for non-linear systems[J]. International Journal of Control.1986,43(6):1631-1651.
    [75]Slotine J J E. Sliding controller design for non-linear systems[J]. International Journal of Control.1984,40(2):343-421.
    [76]Zeinali M, Notash L. Adaptive sliding mode control with uncertainty estimator for robot manipulators[J]. Mechanism and Machine Theory.2010,45(1):80-90.
    [77]Xu J, Lee T, Pan Y. On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics[J]. Mechatronics.2003,13(7):755-770.
    [78]孟祥萍.滑模变结构控制及其在自动发电控制中的应用研究[D].东北大学,2000.
    [79]Chen J, Gu W, Pan C. Design of a TF Controller for Aerodynamic Missile Using Dynamic Inversion Sliding Mode Theory[C].2006.
    [80]张克勤,苏宏业,庄开宇等.三级倒立摆系统基于滑模的鲁棒控制[J].浙江大学学报(工学版).2002,36(4).
    [81]Han D, Jianhua W. Point-to-Point Motion Control for a High-Acceleration Positioning Table via Cascaded Learning Schemes[J].2007,54(5):2735-2744.
    [82]Wang Y, Xiong Z, Ding H. Fast response and robust controller based on continuous eigenvalue configurations and time delay control[J]. Robotics and Computer-Integrated Manufacturing.2007,23(1):152-157.
    [83]Altintas Y, Erkorkmaz K, Zhu W H. Sliding Mode Controller Design for High Speed Feed Drives[J]. CIRP Annals-Manufacturing Technology.2000,49(1):265-270.
    [84]张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表.2006(02):1-8.
    [85]张承慧,孙晓明,刘睿,et al.基于LQR的磁悬浮系统的变结构控制:第26届中国控制会议[z].湖南张家界:2007.
    [86]王茂,黄雁南.测试转台的状态反馈变结构控制[J].仪器仪表学报.2001,22(6).
    [87]Gwo-Ruey Y, Ming-Hung T, Yuan-Kai L. Optimal positioning control of a DC servo motor using sliding mode[C].2004.
    [88]Etxebarria V, Lizarraga I, Sanz A. Combining sliding-mode and optimal methods for experiments on controlling a single-link flexible arm[C].2004.
    [89]Hai P P, Gong Y T. Global robust optimal sliding mode control for a class of uncertain linear systems [C].2008.
    [90]Faa-Jeng L, Sheng-Lyin C, Kuo-Kai S. Novel sliding mode controller for synchronous motor drive[J]. IEEE Transactions on Aerospace and Electronic Systems.1998,34(2): 532-542.
    [91]Young K D, Utkin V I, Ozguner U. A control engineer's guide to sliding mode control[J]. Control Systems Technology, IEEE Transactions on.1999,7(3):328-342.
    [92]Ching-Yei Chung S, Chun-Liang L. A transformed Lure problem for sliding mode control and chattering reduction[J]. Automatic Control, IEEE Transactions on.1999, 44(3):563-568.
    [93]Dong S Y, Myung J C. A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties[J]. IEEE Transactions on Automatic Control. 1992,37(6):860-865.
    [94]Sato T. Sliding mode control with proportional-integral compensation and application to an inverted pendulum system[J]. International Journal of Innovative Computing, Information and Control.2010,6(2):519-528.
    [95]Fei J, Batur C. A class of adaptive sliding mode controller with proportional-integral sliding surface[J]. Proceedings of the Institution of Mechanical Engineers, Part I (Journal of Systems and Control Engineering).2009,223(17):989-999.
    [96]Fei J, Batur C. A class of adaptive sliding mode controller with proportional-integral sliding surface[J]. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering.2009,223(7):989-999.
    [97]Juntao F, Batur C. A novel adaptive sliding mode control with application to MEMS gyroscopes[J]. ISA Transactions.2009,48(1):73-78.
    [98]Delta Tau Data System.The Turbo PMAC Software Reference Manual[M]. USA:Delta Tau Data System,2004.
    [99]Delta Tau Data System Inc.,Turbo PMAC User Manual[M]. USA:Delta Tau Data System Inc.,2006.
    [100]牛志刚,张建民.Turbo PMAC面向复杂运动数控系统的开放特性研究[J].现代制造工程.2005(5):35-36.
    [101]牛志刚,张建民.基于Turbo PMAC的数控系统自定义伺服算法的嵌入和实现[J].新技术新工艺.2005(7):11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700