重载大惯性液压驱动系统的神经网络近似内模控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压驱动系统由于具有强非线性,参数不确定性等特点而很难对其进行精确运行控制,其中主要的难点是建立系统的精确数学模型。本文以250T锻造操作机夹钳旋转机构液压驱动系统为对象,研究了神经网络近似内模控制在重载大惯性液压驱动系统控制中的应用。
     采用神经网络非线性辨识的方法对重载大惯性液压驱动系统进行辨识,建立了系统的神经网络模型,避免复杂非线性不确定性液压系统难以建立精确数学解析模型的问题。
     考虑系统的强非线性,模型不确定性和工作点的变化,将神经网络近似内模控制应用于重载大惯性液压驱动系统。该控制器中,系统的神经网络逆控制器可以直接由辨识得到的系统神经网络模型导出,不需要训练第二个神经网络。仿真结果表明,与PID控制器相比,神经网络近似内模控制器能较好地抑制系统模型不确定性和工作点变化的影响。
     考虑液压马达内部动态摩擦特性对液压驱动系统动态性能的影响,研究了基于LuGre模型的重载大惯性液压驱动系统的摩擦补偿控制,其中LuGre模型中的各参数通过转速——摩擦力矩实验辨识估计得到。
     由于重载情况下可能需要多马达共同驱动并且存在同步误差,分别研究了基于速度反馈和压差反馈的交叉耦合同步误差补偿控制,仿真结果表明,基于压差反馈的交叉耦合同步误差补偿控制不仅能实现马达输出转速的同步,同时也能使马达输出口压力值保持一致,实现负载均衡。
Due to high nonlinearity and parameter uncertainties, the precious motion control of hydraulic systems is not easy。One of the difficulties is to build their exact mathematical model. This thesis focuses on the application of approximate internal model-based neural control (AIMNC) strategy in heavy-load large-inertia hydraulic systems for the grippers of 250 Ton forging manipulators.
     A heavy-load large-inertia hydraulic system is identified using nonlinear identification method based on neural networks and the neural network model of the system is thus built, which solves the problem of building an exact mathematical model of complex, uncertain and nonlinear hydraulic systems.
     In view of the high nonlinearity, model uncertainties and variation of operation points of the system, the application of a novel AIMNC strategy in heavy-load large-inertia hydraulic systems is studied. The neural inverse control law can be derived directly from the identified neural network model without further training and only one neural network needs to be trained. Simulation studies demonstrate that the AIMNC strategy exhibits better control performance and robustness to model uncertainties and variation of operation points than the PID controller.
     In view of the influence of internal dynamic friction on hydraulic systems, the friction compensation control of heavy-load large-inertia hydraulic systems based on LuGre model is studied. The parameters in the LuGre model are estimated through a velocity—torque experiment.
     As two hydraulic motors are needed to drive heavy-load large-inertia hydraulic systems and the synchronization error among hydraulic motors, a cross-coupled controller for synchronization error compensation based on feedback of velocity and pressure is studied for two hydraulic motor driving systems. Simulation studies demonstrate that the cross-coupled controller based on pressure feedback can achieve better velocity synchronization and load balance.
引文
[1]张金.国内锻造设备的现状与需求分析[J].机械工人(热加工),2003(4):39-40
    [2]底学晋.我国大锻件生产方向的探讨[J].重型机械,1990,170,(4):2-9
    [3]Wang Wu-rong, Zhao Kai, Lin Zhong-qin et al. Evaluating interactions between the heavy forging process and the assisting manipulator combining FEM simulation and kinematics analysis [J].Int J Adv Manuf Technol,2009,9:1-11
    [4]余发国,高峰,郭为忠,等.锻造操作机的回顾与展望[C]//.中国机构与机器科学应用国际会议论文集.2007,12-15
    [5]王喜凤.大锻件生产行业与锻造技术发展[J].锻压机械,2002,4:3-6
    [6]李估.锻造操作机的发展近况[J].锻压装备与制造技术,1978,3:17-22
    [7]王喜凤.大锻件生产与锻造技术发[J].重型机械科技,1999,3:8~11
    [8]王凤喜.锻造操作机技术近期的发展[J].重型机械,1994,6:12-17.
    [9]万胜狄,王运赣,沈元彬,等.锻造机械化与自动化[M].北京:机械工业出版社,1983
    [10]杨文玉,杨楠.重载操作机夹持装置性能分析[J].锻压装备与制造技术,2004,43(2):44-47
    [11]崔怀旭,密建军,梁冰.800kN.m自由锻造操作机技术研究[J].机械设计,2006,8:147-149
    [12]陈锦江,鹿玲,刘坤涛.一种锻造操作机的钳头夹紧旋转机构[J].机械工程师,1997,5:20
    [13]张学凤.进口200t·m操作机钳杆旋转主泵伺服控制系统的故障分析与排除[J].一重技术,1994,04:80~91
    [14]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003
    [15]Lu H, Lin W. Robust controller with disturbance rejection for hydraulic servo systems[J]. IEEE Trans. Indust. Elec.,1993,40:157-162
    [16]Tsao T C, Tomizuka M. Robust adaptive and repetitive digital control and application to hydraulic servo for noncircular machining[J]. ASME J. Dynam. Syst., Meas., Contr.,1994,116(l):24-32,.
    [17]Plummer A R, Vaughan N D. Robust adaptive control for hydrau-lic servosystems[J]. ASME J. Dynam. Syst., Meas., Contr.,1996,118(2): 237-244.
    [18]Bobrow J E, Lum K. Adaptive, high bandwidth control of a hydraulic actuator [J]. Trans. ASME J. Dynam. Syst., Measure. Contr.,1996,118(4):714-720.
    [19]Fung R F, Yang R T. Application of VSC in position control of a nonlinear electrohydraulic servo system [J]. Computers & Structures,1998,66(4):365-372
    [20]Namvar M, Aghili F. A combined scheme for identification and robust torque control of hydraulic actuators [J]. Journal of dynamic systems, measurement, and control,2003,125:595-606
    [21]Yao B, Bu F, Reedy J, et al. Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators:Theory and Experiments [J]. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91.
    [21]Vossoughi G, Donath M. Dynamic feedback linearization for electro-hydraulically actuated control systems [J]. ASME Journal of Dynamic Systems, Measurement, and Control,1995,117(4):468-477.
    [22]Chiriboga J, Thein M-WL, Misawa E A. Input-output feedback linearization control of a load-sensing hydraulic servo system[C]//Proceedings of the 4th IEEE Conference on Control Applications. Albany, NY,1995:910-915
    [23]Jaho Seoa, Ravinder Venugopala, Jean-Pierre Kenne. Feedback linearization based control of a rotational hydraulic drive [J]. Control Engineering Practice, 2007,15(12):1495-1507
    [24]Kwon Jung-ho, Kim Tae-hyeong, Jang Ji-Seong, et al. Feedback Linearization Control of a Hydraulic Servo System[C]//SICE-ICASE International Joint Conference. Bexco, Busan, Korea,2006:455-460
    [25]Nascutiu L. Feedback Linearization of the Double-and Single-Rod Hydraulic Servo Actuators [C]//IEEE International Conference on Automation, Quality and Testing, Robotics. Cluj-Napoca,2006,1:149-154
    [26]Bonchis A, Corke P I, Rye DC, et al. Variable structure methods in servo system control [J]. Automatica,2001,37(4):589-595.
    [27]Sha D, Bajic V B, Yang H. New model and sliding mode control of hydraulic elevator velocity tracking system [J]. Simulation Practice and Theory,2002,9: 365-385
    [28]王秀君,裘丽华.电液伺服系统的变结构控制研究[J].机床与液压,2003,5:125-295
    [29]张细政,王耀南.电液伺服系统参数自校正滑模变结构控制[J].中国机械工程,2009,20(11):1285-1289
    [30]刘云峰,缪栋.电液伺服系统的模糊变结构跟踪控制研究[J].液压与气动,2005,11,18-21
    [31]李文磊,蒋刚毅.不确定电液位置伺服系统的动态面跟踪控制[J].光电工程,2007,34(2):55-64
    [32]管成,潘双夏.电液伺服系统的非线性鲁棒自适应控制[J].中国电机工程学报,2007,27,(24):107-112
    [33]Sirouspour M R, Salcudean S E. On the nonlinear control of hydraulic servo-systems [C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, CA,2000:1276-1282
    [34]Sirouspour M R. Salcudean S E. Nonlinear Control of Hydraulic Robots [J]. IEEE Transactions On Robotics And Automation,2001,17(2):173-182
    [35]Jovanovic M. Nonlinear control of an electrohydraulic velocity servosystem [C]// Proceedings of the American Control Conference. Anchorage, AK,2002:588-593
    [36]管成,朱善安.电液伺服系统的逆向递推鲁棒自适应控制[J].光电工程,2004,31(12):20-26
    [37]韩永成,方一鸣,赵琳琳等.电液伺服系统自适应逆向递推控制器设计[J].自动化仪表,2008,29(11):54-57
    [39]Lee Y H, Koop R. Application of fuzzy control for a hydraulic forging machine [J]. Fuzzy Sets and Systems,2001,118:99-108
    [40]Zhao Tienan, Virvalo Tapio. Development of fuzzy state controller and its application to a hydraulic position servo [J]. Fuzzy Sets and Systems, 1995,70:213 221
    [41]Lee S Y, Cho H S. A fuzzy controller for an electro-hydraulic fin actuator using phase plane method[J]. Control Engineering Practice,2003,11:697-70
    [42]Garagic D, Srinivasan K. Application of Nonlinear Adaptive Control Techniques to an Electrohydraulic Velocity Servomechanism[J]. IEEE Transactions on Control Systems Technology,2004,12(2):303-314
    [43]Mete Kalyoncu, Mustafa Haydim. Mathematical modelling and fuzzy logic based position control of an electrohydraulic servosystem with internal leakage[J]. Mechatronics,2009,19:847-858
    [44]Shao Junpeng, Chen Lihua, Ji Yajuan et al. The application of fuzzy control strategy in electro-hydraulic servo system[C]//Proceedings of ISCIT, 2005,4:159~164
    [45]Knohl T, Unbehauen H. Adaptive position control of electrohydraulic servo systems using ANN [J]. Mechatronics,2000,10(1-2):127-143
    [46]Azimian H, Adlgostar R, Teshnehlab M. Velocity control of an electro hydraulic servomotor by neural networks [C]//Proceedings International Conference on Physics and Control.2005:677-682
    [47]Narendra K S, Mukhopadhyay S. Adaptive control using neural networks and approximate models[J]. IEEE Trans. Neural Netw.,1997,8(3):475-485
    [48]ZHANG You-wang, GUI Wei-hua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control [J]. Journal of Central South University of Technology,2008,15:256-263
    [49]张友旺,钟向明,黄元峰.电液位置伺服系统的自适应模糊神经网络控制[J].中国机械工程,2004,15(8):681-686.
    [50]Mohseni S A, Aliyari M. Teshnehlab M. EHSS velocity control by fuzzy neural networks[C]//Annual Meeting of the North American Fuzzy Information Processing Society. San Diego, CA,2007:13-18
    [51]Shoorehdeli M A, Teshnehlab H, Shoorehdeli H A. Velocity control of an electro hydraulic servosystem[C]//IEEE International Conference on Systems, Man and Cybernetics. Montreal, Que,2007:1536-1539
    [52]党开放,赵弘,林廷圻.电液伺服系统的模糊径向基函数网络监督控制[J].系统仿真学报,2004,16(3):593-596.
    [53]Koren Y. Cross-coupled biaxial computer controls for manufacturing system[J]. ASME J. Dyn. Syst., Meas., Control,1980,102(4):265-272
    [54]Kulkarni P K, Srinivasan K. Cross-coupled control of biaxial feed drive servomechanisms[J]. ASME J. Dyn. Syst., Meas., Control,1990,112(2):225-232
    [55]Koren Y, Lo C C. Variable-gain cross-coupling controller for contouring[J]. Annals of the CIRP,1991,104,371-374.
    [56]Tomizuka M, Hu J S, Chiu T C. Synchronization of two motion control axes under adaptive feedforward control[J]. ASME J. Dyn. Syst., Meas., Control, 1992,114(6):196-203.
    [56]Feng L, Koren Y, Borenstein J. Corss-coupling motion controller for mobile Robots[J]. IEEE Control Systems,1993,11:35-43.
    [58]Xiao Y, Zhu K, Choo Liaw H. Generalized synchronization control of multi-axis motion systems[J]. Control Engineering Practice,2005,13:809-819
    [59]Xiao Y, Zhu KY. Optimal Synchronization Control of High-Precision Motion Systems[J]. IEEE Transactions on Industrial Electronics,2006,53(4):1160-1169
    [60]Sun D. Position synchronization of multiple motion axes with adaptive coupling control[J]. Automatica,2003,39:997-100
    [61]Sun D, Shao X, Feng G. A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motions Theory and Experiments [J].IEEE Transactions on control systems technology,2005,15(2):306-314
    [62]Liu H T, Sun D. Uniform synchronization in multi-axis motion control[C]// American Control Conference. Portland, OR, USA,2005:4537-4542
    [63]Su Y, Sun D, Ren L, et al. Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators[J]. IEEE Transactions on robotics, 2006,22(1):202-207
    [64]Moore P R, Chen C M. Fuzzy logic coupling and synchronised control of multiple independent servo-drives[J]. Control Eng. Practice,1995,3 (12):1697-1708
    [65]Lee H C, Jeon G J. A neuro-controller for synchronization of two motion axes[J]. International Journal of Intelligent Systems,1998,13:571-586
    [66]Tsai M C, Hsieh M F, Yao W S. Synchronous Control of Linear Servo Systems for CNC Machine Tools[C]//Proceedings of the 2003 European Control Conference. Cambridge,2003,
    [67]Zhou Di. H ∞synchronization control of linear systems and its application to wafer-retical stage[J]. Chinese Journal of Mechanical Engineering,2005, 18(2):174-178
    [68]He F, Tong W M, Wang Q. Synchronization control strategy of multi-motor system based on Profibus network [C]//Proceedings of the IEEE International Conference on Automation and Logistics. Jinan, China,2007:18-21
    [69]Chuang C W, Haung C L, Lee C D et al. Synchronization and tension control of dual motor systems via MIMO discrete pseudo model following integral variable structure control[J]. Mechanism and Machine Theory,2009,44(2):499-510
    [70]Sun Hong, Chiu George T.-C. Motion synchronization for multi-cylinder electro-hydraulic system[C]//In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics. Como,2001,1:636-641
    [71]Sun Hong, Chiu George T.-C. Motion synchronization for dual-cylinder electrohydraulic lift systems[J]. IEEE/ASME transactions on mechatronics, 2002,7(2):171-181
    [72]Li Ke, Mannan M A, Xu Mingqian, et al. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators[J]. Control Engineering Practice 2001,9: 367-373
    [73]Li C, Li Y, Yang L. Study of Motion Synchronization for Dual-path Electro-hydraulic Control Systems Based on Computer Visual Feedback [C]// IEEE Conference on Robotics, Automation and Mechatronics. Bangkok,2006: 1-6
    [74]Liu X, Li C, Zhou X. Synchronization Control Study for Two Cylinders Electro-hydraulic Grasping System[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation. Harbin, China,2007:5-8
    [75]Chen C Y, Liu L Q, Cheng C C et al. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J]. Control Engineering Practice,2008,16:658-673
    [76]Chen C-Y, Liao P-S, Cheng Hung-Ming. Fuzzy Controller Design for Positioning and Synchronization of Electrohydraulic System[C]//Second IEEE Conference on Industrial Electronics and Applications. Harbin,2007:971-976
    [77]Garcia C E, Morari M. Internal Model Control. A unifying review and some new results[J]. Ind. Eng. Chem. Process Des. Dev.,1982,21 (2):308-323
    [78]Carlos E Garcia, Manfred Morari. Internal model control.2. Design procedure for multivariable systems[J]. Ind. Eng. Chem. Process Des. Dev.,1985,24 (2), 472-484
    [79]Economou C G, Morari M, Palsson B O. Internal model control.5. Extension to nonlinear systems[J]. Ind. Eng. Chem. Process Des. Dev.,1986,25:403-411
    [80]Evanghelos Zafiriou; Manfred Morari. Internal model control:robust digital controller synthesis for multivariable open-loop stable or unstable processes [J]. International Journal of Control,1991,54(3):665-704
    [81]赵志诚,.刘志远,张井岗.电液伺服系统内模控制[J].光电工程,2008,35(4):1-5
    [82]张乃尧阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,2000
    [83]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neuralnetworks [J]. IEEE transactlons on neural networks.1990,1(1):4-27
    [84]Hunt K J, Sbarbaro D, Zbikowski R et al. Neural networks for control systems:A survey[J]. Automatica,1992,28:1083-1112
    [85]Adetona O, Garcia E, Keel L H. A new method for the control of discrete nonlinear dynamic systems using neural networks[J]. IEEE Trans. Neural Networks,2000,1(11):102-112.
    [86]Deng Hua, Li Han-Xiong. On the new method for the control of discrete nonlinear dynamic systems using neural networks[J]. IEEE Transactions on Neural Networks,2006,17(2):526-529
    [87]Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE transactions on neural networks,2004,15(3):674-692
    [88]DENG Hua, LI Han-xiong. A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems[J]. IEEE Transactions on Systems, Man, and Cybernetics—part B:Cybernetics,2005,35(1):115-123
    [89]Hornik K, Stinchombe M, White H. Multilayer feedforward networks are universal approximators [J]. Neural Networks,1989,2:359-366
    [90]Hornik K, Stinchombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [J]. Neural Networks,1990,3,551-560
    [91]Bhat N, Mcavoy T J. Use of neural nets for dynamical modelling and control of chemical process systems [J]. Comput. Chem.1990,14(4-5):573-583
    [92]Hunt K J, Sbarbaro D. Neural networks for nonlinear internal model control [J]. IEEE Proceedings D, Control Theory and Applications,1991,138(5):431-438
    [93]Pottmann M, Jorgl H Peter. Radial basis function networks for internal model control [J]. Applied Mathematics and Computation,1995,70,283-298
    [94]Zhang ZhiJun. Wang XueMiao. Internal Model Control Based on Dynamic Fuzzy Neural Network[C]//Third International Conference on Natural Computation. Haikou,2007:24-27
    [95]Xie W F, Rad A B. Fuzzy adaptive internal model control [J]. IEEE Transactions on Industrial Electronics,2000,47, no.1, pp.193-202
    [96]Wen Xin-Yu, Zhang Jing-Gang, Zhao Zhi-Cheng. Fuzzy neural network internal model control [C]//International Conference on Machine Learning and Cybernetics.2003,2:661-665
    [97]周涌,陈庆伟,吴晓蓓等.一类非线性系统的模糊神经网络内模控制[J].东南大学学报(自然科学版)2003,33:41-45
    [98]周涌,陈庆伟,吴晓蓓等.基于动态神经网络的非线性内模控制[J].控制与决策,2003,18(05)::623~626
    [99]Ho D W C, Ma Z. Multivariable internal model adaptive decoupling controller with neural network for nonlinear plants[C]//Proceedings of the 1998 American Control Conference. Philadelphia, PA,1998,1:532-536.
    [100]Zhao Zhicheng Liu Zhiyuan,Wen Xinyu, et al. A New Multi-model Internal Model Control Scheme Based on Neural Network [C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008:471-472
    [101]Li M, Zhou Z, Shi L. The neural network decoupling control based on the internal model control [C]//The Fifth World Congress on Intelligent Control and Automation.2004,3:2643-2646.
    [102]Li Han-Xiong, Deng Hua. An Approximate Internal Model-Based Neural Control for Unknown Nonlinear Discrete Processes[J]. IEEE transactions on Neural Networks,2006 17(3):659-670
    [103]Deng Hua, Xu Zhen, Li Han-Xiong. A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes [J]. Journal of Process Control,2009,19(8):1392-1400
    [104]Personnaz Rivals. Nonlinear internal model control using neural networks: application to processes with delay and design issues[J]. IEEE Transaction on Neural Networks,2000,11(1):80-90.
    [105]乔俊飞,孙雅明,毛鹏.一种基于神经网络的内模控制方法及其应用[J].天津大学学报(自然科学与工程技术版),2000,33(1):25-28
    [106]张秀玲.液压弯辊系统的优化神经网络内模控制[J].中国机械工程,2007,20.2419-2421
    [107]Yang Ping, Peng Dao-Gang, Yang Yan-Hua, et al. Neural networks internal model control for water level of boiler drum in power station [C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics. 2004,5:3300-3303
    [108]Yu Changjie, Zhu Jihong, Sun Zengqi. Nonlinear Adaptive Internal Model Control Using Neural Networks for Tilt Rotor Aircraft Platform [C]//IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications. Espoo, Finland,2005:12-16
    [109]Awais M M. Application of internal model control methods to industrial combustion[J]. Applied Soft Computing,2005,5:223-233.
    [110]Colin G, Chamaillard Y, Bloch G. et al. Neural control of fast nonlinear systems-application to a turbocharged SI engine with VCT [J]. IEEE Transaction on Neural Networks,2007,18 (4):1101-1114.
    [111]Mujtaba I M, Aziz N, Hussain M.A. Neural network based modeling and control in batch reactor [J]. Chemical Engineering Research and Design,2006,84 (A8):635-644
    [112]Yuan Xiaofang, Wang Yaonan, Wu Lianghong. SVM-Based Approximate Model Control for Electronic Throttle Valve [J]. IEEE Transactions on Vehicular Technology,2008,57(5):2747-2756
    [113]WANGYao-Nan, YUAN Xiao-Fang. SVM Approximate-based Internal Model Control Strategy [J]. Acta Automatica Sinica,2008,34(2):172-179
    [114]Li Hongxing, Zhang Yinong, Wu Xuetao. Nonlinear internal model control using neural networks for gas collectors of coke oven [J]. International Conference on Information and Automation,2009:1177-1182
    [115]孔晓武,魏建华.大流量插装式伺服阀数学模型及试验验证[J].浙江大学学报:工学版,2007,41(10):1759-1762.
    [116]易达云,邓华,夏毅敏et al.高速大流量插装式比例节流阀的建模与验证[J].现代制造工程,2009,6 38-41
    [117]邓华,夏毅敏,李群明等.一种基于压力反馈的液压同步驱动系统[P].中华人民共和国发明专利:CN 101451550A,2009
    [118]Funahashi K. On the approximate realization of continuous mapping by neural network[J]. Neural Netw.,1989,2:183-192,.
    [119]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neuralnetworks [J]. IEEE transactlons on neural networks.1990,1 (I):4-27
    [120]Hagan M T, Menhaj M B. Training Feedforward Networks with the Marquardt Algorithm [J]. IEEE transactions on neural networks,1994,5(6):989-993
    [121]Kermani B G, Schiffman S S, Nagle H T. Performance of the Levenberg-Marquardt neural network training method in electronic nose applications [J]. Sensors and Actuators B,2005,110:13-22
    [122]Narendra K S, Mukhopadhyay S. Adaptive control using neural networks and approximate models[J]. IEEE Trans. Neural Netw.,1997,8(3):475-485,
    [123]Chen S, Billings S A, Grant P M. Non-linear system identification using neural networks [J]. International Journal of Control,1990,51(6):1191-1214
    [124]Narendra K S, Mukhopadhyay S. Adaptive control using neur networks and approximate models [J].IEEE Trans.NeuralNetworks,1997,8:475-485
    [125]Adetona O, Garcia E, Keel L H. A new method for the control of discrete nonlinear dynamic systems using neural networks[J]. IEEE Trans.Neural Networks,2000,11:102-112
    [126]Cheng Chi-Cheng, Chen Cheng-Yi. A PID approach to suppressing stick-slip in the positioning for transmission mechanisms [J]. Contrnol Engineering Practice, 1998,471-479.
    [127]Tafazolit S, Silva C W, Lawrence P D. Friction Estimation in a Planar Electrohydraulic Manipulator [C]. Proceeding of American Control Conference, Seattle, WA,1995,5:3294-3298.
    [128]Ananthakrishnan S, Fullmer R M. Experimental Adaptive Control of a Four-Axis Hydraulically Actuated Robot[J]. Int J. Robot. Automat.,1991,6(4): 210-219.
    [129]Lischinsky P, Canudas-de-Wit C, Morel G. Friction Compensation for an Industrial Hydraulic Robot[J]. IEEE Control Systems Magazine,1999,19(1): 25-32
    [130]Tafazoli S, Silva C W, Lawrence P D. Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction[J]. IEEE Transactions On Control Systems Technology,1998,6(3):401-411
    [131]Tafazoli S, Silva C W, Lawrence P D. Position and Force Control of an Electrohydraulic Manipulator in the Presence of Friction [C]//IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century. Vancouver, BC,1995,2:1687-1692
    [132]Garett A S, James E B. Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem[J]. IEEE Transactions on Control Systems Technology,1999,7(2):238-247
    [133]Sekhavat P, Wu Q, Sepehri N. Lyapunov-based Friction Compensation for Accurate Positioning of a Hydraulic Actuator [C]//Proceedings of the American Control Conference.2004,1:418-423
    [134]王晓东,焦宗夏,谢劭辰.基于LuGre模型的电液加载系统摩擦补偿[J].北京航空航天大学学报.2008,34(11):1254-1257
    [135]Zeng Hairong, Sepehri Nariman. Tracking. Control of Hydraulic Actuators Using a LuGre Friction Model Compensation [J]. Journal of Dynamic Systems, Measurement, and Control,2008,130(1):1-7
    [136]Armstrong-Helouvry B, Dupont P, Canudas de Wit C. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica,1994,30(7):1083-1138,.
    [137]Canudas de Wit C, Olsson H, Astrom K J et al. A new model for control of systems with friction [J]. IEEE Trans. Automat. Contr:,1995,40(3):419-425,.
    [138]William Scott Owen. An investigation into the reduction of stick—slip friction in hydraulic actuators[D]. A thesis for degree of master of applied science, Toronto, Canada, The University of British Columbia,2001.
    [139]彭熙伟,耿庆波,王晓平.液压马达低速摩擦转矩特性的实验研究[J].北京理工大学学报,2006,26(11):999-1003
    [140]Zhang R, Alleyne A, Prasetiawan E. Modeling and H/H MIMO Control of an Earthmoving Vehicle Powertrain[J]. Journal of Dynamic Systems, Measurement, and Control,2002,124:625~636
    [141]贾社娜.电液伺服马达摩擦特性分析及试验研究[D].哈尔滨工业大学,2007
    [142]曹健,李尚义,赵克定.仿真转台用新型连续回转液压伺服马达摩擦特性研究[J].宇航学报,2003,24(4):374~377
    [143]Shang Yaoxing, Jiao Zongxia, Wang Xiaodong et al. Study on Friction Torque Loading with an Electro-hydraulic [J]. Chinese Journal of Aeronautics,2009,22: 691-699
    [144]Muhammad Babar Nazir, Wang Shaoping. Optimization Based on Convergence Velocity and Reliability for Hydraulic Servo System [J].Chinese Journal of Aeronautics,2009,22(4):407-412
    [145]苗中华,刘成良,王旭永等.大摩擦力矩下电液伺服系统高精度控制与实验分析[J].上海交通大学学报,2008,42(10):1731-1735
    [146]吴盛林,刘春芳.超低速高精度转台中摩擦力矩的动态补偿[J].南京理工大学学报(自然科学版),2002,26(4):393~396
    [147]Watton John, Kwon Ki-Soo. Neural network modelling of fluid power control systems using internal state variables[J]. Mechatronics,1996,6(7):817-827
    [148]Wu H W, Lee C B. Influence of a relief valve on the performance of a pump/inverter controlled hydraulic motor system[J]. Mechatronics,1996,6(1): 1-19
    [149]Prasetiawan E A, Zhang R, Alleyne A G, et al. Modeling and control design of a powertrain simulation testbed for earthmoving vehicles[C]. Proc. ASME IMECE. Orlando, FL, DSC,2000,69:289-296.
    [150]Kim C S, Le e C O. Speed control of an overcentered variable-displacement hydraulic motor with a load-torque observer Control Eng. Practice[J].1996, 4(11):1563-1570
    [151]Pommier V, Sabatier J, Lanusse P et al. Crone control of a nonlinear hydraulic actuator[J]. Control Engineering Practice,2002,10:391-402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700