室温磁致冷GdSiGe系合金的磁热效应、磁相变及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在阅读了国内外大量文献的基础上,本文详细综述了磁致冷材料特别是近室温磁致冷材料的发展现状及趋势。针对近年来国际上取得突破性进展的GdSiGe系合金,首先以国产2N级和3N级金属Gd为原料,对Gd_5Si_2Ge_2合金的一级磁相变和巨磁热效应的重现性进行了研究;研究了非化学计量比GdSiGe合金的磁热性能;然后研究了国产2N级Gd为原料的低成本GxiSiC~系合金;研究了合金化对GdSiGe合金磁热性能的影响;采用同步辐射XPS对GdSiGe系合金费米面附近的电子能带结构进行了分析;最后建立了一级晶体磁相变的数学物理模型,并对其相变机制进行了探索。本研究达到了预期目标,取得了如下创新性研究成果和新的研究进展:
     1.采用国产2N级和3N级金属Gd为原料,对Gd_5Si_2Ge_2合金的磁热性能进行了研究。研究发现:1)以国产2N级Gd原料时,Gd_5Si_2Ge_2合金未能重现一级磁相变和巨磁热效应;2)以国产3N级Gd为原料时,在2*10~(-5)乇的真空系统中,在高纯(5N)氩气的保护下熔炼出的Gd_5Si_2Ge_2合金,在一级磁相变及巨磁热效应两方面都基本上重现了AmesLab.采用4N高纯Gd原料的Gd_5Si_2Ge_2合金的研究结果。国产3N级Gd原料的成本较AmesLab.的4N级Gd原料降低50多倍。Cd_5Si_2Ge_2合金磁热性能重现的成功,对于原材料国产化、降低合金成本具有较大的工程意义。
     2.首次研究了非化学计量比GdSiGe合金的磁热性能。研究发现:1)适量的非化学计量比(如Gd_5Si_2Ge_2合金)不仅重现了一级磁相变,而且增强了合金的磁热效应,且能使居里点得到一定提高;2)过量的非化学计量比(如Gd_(52)Si_2Ge_2合金),则导致了合金一级磁相变的破坏以及磁热效应的大幅度降低。
    
     四川 大学博士学位论文
     3.以国产价格低廉的ZN级Gd为原料,通过调整臼:Ge比研究了低成本的
    Gd(SlyGel、h系合金。研究发现:l)当把a:Ge比从 2:2调整到 1.9:2.!、1.刀:228
    时,合金在居里点附近的等温磁化曲线从完全不表现出一级磁相变,过渡到不充分
    的一级磁相变,再到比较充分的一级磁相变;2)Gdsil.才抒地合金表现出比较充
    分的一级磁相变并获得了巨磁热效应。相对于3N级Gd原料而言,国产ZN级Gd
    的成本较 3N Gd再阐610倍左右。这对开发廉价、高性能的 Gdsthe系合金具有 %
    重要的工程意义;同时对该系合牟的一级磁相变及巨磁热效应产生鹏的研究也具
    有理论和实践意义。
     一,首次建立了ggff4+描述一级晶体磁相变(一级磁相变)过程的数学物理模
    型一磁场诱发相变的滞后元模型并对该相变的机帘隧行了分析:1)合金被视为是
    由多种临界诱发磁场强度不同的滞后元组成;2)磁场诱发相变是逐步进行的,相
    变过程中铁磁相、JI3iffi+g两相是共存的:3)在居里点以上,在磁场诱发相变中出
    现的铁磁相是亚稳态的,只有在磁场强度大于相应的临界相变磁场下才会存在,退
    磁后又发生可逆相变;4)预测 GdsiGe合金的一级磁相变属于一种新型的切变型相
    变,即磁场诱发马氏体相变;5)提出的切变相变机制能较好得解释杂质元素、替
    代元素及组织诚份均匀性、单相性等对一级磁相变进而对磁热效应的影响。
     5.采用同步辐射XPS对GdsiGe k电子能带结构分析后,发现:l)合金化
    对GdsiGe系合金中Gd4f峰及附近低结合能端的复合能带峰、Ge-3d峰等在峰型、
    峰位、峰宽及相对强度等方面产生了明显的影响,并且这些影响随合金成份的变化
    出现了不同步变化,这表明GdSDe系合金随成份的变化,在磁相变、磁热性能等
    方面应该有较大的差异;2)鞭、氧陪因素使 Gd4与 Geod区间的髓峰半
    高宽减小、光滑性变差及出现小的锯齿峰,同时使oesd峰的相对强度减弱;这表
    明:杂质本身及因杂质而出现的窄带效应,明显影响了合金中电子的关联耦合,特
    别是对决定磁性能的4f电子的关联影响,从而对磁性能、磁相变可能产生重要影
    响,导致一级磁相变的破坏及磁热效应的大幅度下降。
In this thesis, magnetic refrigerants, especially room temperature magnetic refrigerants, are comprehensively reviewed. Firstly, native 2N and 3N Gd are used to try to repeat the magnetocaloric properties of GdsSi2Ge2 alloy reported by scientists of Ames Lab (AL). Secondly, the magnetocaloric properties of non-stoichiometric GdSiGe alloys are studied and the cheaper GdSiGe alloys are made. Thirdly, the effect of alloying on the magnetocaloric effect of GdSiGe alloy is investigated. Then, the structure of electronic energy band for GdSiGe alloys is studied by Synchrotron Radiation X-Ray Photoemission Spectroscopy (XPS). Finally, the mathematic and physical model for FOCMPT is presented to describe the phase hysteresis. On the basis of the model, the mechanism of the magnetocaloric effect (MCE) and magnetic phase transition has been analyzed. The main creative results and new progresses in this thesis are presented as follows:
    1. The result shows that the GdsSi2Gc2 alloy using 2N Gd does not demonstrate first order crystallographic-magnetic phase transition (FOCMPT) and giant magnetocaloric effect (GMCE). However, when 3N Gd as the starting material, the expected FOCMPT and GMCE of GdjSi2Ge2 alloy appear and is basically the same with the results using 4N high pure Gd in AL. The cost of native 3N Gd drops to 1/57 compared with that of AL 4N grade high pure Gd, which is important in engineering.
    2. For the first time, the magnetocaloric properties of non-stoichiometric GdSiGe alloys are studied. The results show that slight non-stoichiometric GdSiGe alloy, such as Gd5.jSi2Ge2, can not only posses the FOCMPT, but also enhance the magnetocaloric effect (MCE) and raise the Curie temperature. However, excessive non-stoichiometric GdSiGe alloy, such as Gds.2Si2Ge2, can not only destroy the FOCMPT, but also decrease the MCE seriously.
    3. By mean of adjusting the Si:Ge ratio, native 2N Gd has been used to develop cheaper GdSiGe alloys. When the Si:Ge ratio is 2:2, the alloy using 2N Gd material does not show FOCMPT. However, when the Si:Ge ratio changing from 1.9:2.1 to 1.72:2.28, the GdSiGe alloy demonstrates partial and almost complete FOCMPT. The GdjSii -266228 using 2N? Gd material gains GMCE. However, the cosf of 2N Gd drops to 1/10 compared with that of 3N Gd, which has both engineering significance
    
    
    
    to develop cheap and high property GdSiGe alloys, and practical and theoretical significance to explore the mechanism of FOCMPT and GMCE.
    4. A mathematical and physical model, hysteresis element model of magnetic induced phase transition, is presented for the first time and the phase transition mechanism is discussed. The main ideas of the model are as follows: 1) The GdSiGe alloy is thought as composed of many hysteresis elements with various critical induce magnetic field; 2) The magnetic induced phase transition occurs step by step and the paramagnetic phase and ferromagnetic phase coexist during the phase transition process; 3) The ferromagnetic phase induced by magnetic field is metastable and can only exist when the magnetic field is higher than the critical magnetic field of the reverse phase transition. The nature of FOCMPT induced by magnetic field can be predicted as a new type shear movement phase transition, magnetic-induced martensitic transformation. With the help of shear movement mechanism, some facts can be explained about the effect of the impurities, the substitute elements and the homogeneity of constitution and phase on magnetic phase transition and MCE.
    5. Synchrotron Radiation X-Ray Photoemission Spectroscopy is used to study the electronic energy band/gap structure of GdSiGe alloys. The results show as follows: 1) There are some obvious changes on me shape, position, FWHW and intensity of Gd-4f peak, Ge-3d peak and the complex peak nearby the Gd-4f because of alloying effect, but these changes are not synchronous with the change of the alloy constituent, which suggests that the magnetic phase transition and magnetocaloric property of GdSiGe alloys should be great dif
引文
1. Gschneidner K A Jr., Pecharsky V K, etal. Materials science forum 315, Tras Tech Publ. 1999:69~76
    2.陈国邦等著.最新低温制冷技术.北京:机械工业出版社,1994年:27
    3. Kuz'min M D, Tishin A M. Cryogenics, 1992, 32(6): 545
    4.李卓棠等.稀土材料的磁热效应及其应用.化学进展,1995,7(2):140~150
    5.陈远富,滕保华等.低温工程.2001(1)52~61
    6.郭君平,陈子辰等.机电工程1992(4):45~47
    7.龙毅,叶士禄等.低温工程.1991,63(5):5~11
    8.陈国邦等著.最新低温制冷技术 北京:机械工业出版社,1994年:53~57
    9. Zimm C., Sternberg A., etal. to be presented at Appliance Manufacturer Conference & Expo., Oct. 12-14,1998
    10. Gschneidner K A Jr., Pecharsky V K. Rare Earths: Science, Technology and Applications Ⅲ, edited by Bautista R G, et al. The minerals, metals and materials society, 1997:209
    11. de Gennes P G. Compt. Rend.,1958(247):1386
    12. Pecharsky V K, Gschneidner K A Jr. Adv. Cryog Eng., 1996,(42):423
    13. Takeya H, et al. ApplPhys. Lett., 1994,64(20):2739~2741
    14. Titshin A M. J. Appl.Phys, 1990, 68(12): 6480
    15.滕云,李碚.磁致冷材料的发展与研究概况.功能材料,1994,25(2):111
    16. Warburg E. Ann Phys., 1881,(13): 141~164
    17. Langevin P. Magnétisme er théorie des électrons.Ann Chim Phys., 1905,(5):70~127
    18. Weiss P and Piccard A. Compt Rend, 1918, (166): 325~354
    19. Debye P. Ann phys., 1926, (81): 1154~1160
    20. Giauque W F. J. Amer Chem. Soc.,1927,(49):1864
    21.韩鸿兴,寿卫东.低温工程,1991,(2):16
    22. Brown G V. J. Appl. Phys.. 1976(47): 3673
    23. McMichael R.D, Ritter JJ, etal. J. Appl. Phys., 1993(73):6946
    24. Levitin R.Z.,Snegirev V.V., etal. J M M M 1997(170):223
    25. Giauque W F and McDougall D P. Phys. Rev., 1933, 43:768
    26. Shull R. D., McMichael R.D., etal. Nanostructure Mater. 1993(2):205
    
    
    27. Shull R.D. IEEE Trans. Magn 1993(29) :2614
    28. Pecharsky V K. Gschneidner K A Jr. J M M M 1999(200) :44-56
    29. Craig RS.SankarSG. J. Phys. Chem. Solids 1972(33) 2267
    30. Andres K, Schmidit P H, et al. AIP Conf. Proc., 1975(24) :238
    31. Andres K, SprengerWP, Osheroff DD. in : M. Krusius, M. Vuorio(Eds.), Proceedings of the 14th International Conference on Low Temperature Physics, Vol. 4, NorthHolland, Amsterdam, Netheriands, 1975, P1.
    32. Andres K,Darack S, etal. Physica 86-88 B+C, 1977:1071
    33. Buchal C, Fischer KJ, etal. J.Phys.Lett, 1978(39) :L457
    34. HunikR,Bongers E,etal. J. Phys. Colloq., 1978(2) : 1155
    35. Mueller RM,Buchal C, etal. Phys. Lett. A, 1980(75A):164
    36. Hisrumoto,Nishida N,etal. Low Temp. Phys., 1984(55) : 17
    37. Skrabek L,Stehno J.etal. Cesk.Cas.Fyz. 1986(36) :479
    38. Burkhanov GS,Chistyakov OD,etal. Vysokochisr Veshchestva, 1990(1) 204
    39. von RankePJ, Pecharsky VK, etal. Phys. Rev. B. 1998 (58) : 14436
    40. Cooke A H,Duffus H J,et al. Philos. Mag. 1953(44) :623
    41. 龙毅等.仪表材料.1990,21(2) :65-69
    42. Gschneidner K A Jr., Pecharsky V K, et al. Adv. Cryog. Eng. 1996, (42) : 465
    43. Pecharsky V K, Gschneidner K A Jr., et al. Adv. Cryog. Eng. 1996, (42) : 451
    44. Korte, B J, Pecharsky V K, Gschneidne: K A Jr. J. Appl. Phys., 1998,84(10) : 5677
    45. Korte, B J, Pecharsky V K, Gschneidner K A Jr. Adv. Cryog. Eng. 1998, (43) : 1737
    46. Von Ranke PJ, Pecharsky VK, Gschneidner K A Jr. Phys. Rev. B, 1998,58(18) : 12110
    47. Gschneidner K A Jr., Pecharsky VK and Malik SK. Adv. Cryog. Eng. 1996, (42) : 475
    48. Hishimoto T, KuzuharaT K, etal. Adv. Cryog. Eng. 1986, (32) : 279
    49. Hishimoto T, KuzuharaT K, etal. Jpn. J. Appl. Phys. 1987(26) : 1673
    50. Gschneidner K A Jr., Takeya H, etal. Appl. Phys. Lett. 1994(64) 2739
    51. Zimm C B, Ludeman E M, etal. Adv. Cryog. Eng. 1992, (37B): 883
    52. Tomokiyo A, Yayama H, etal. Adv. Cryog. Eng. 1986, (32) : 295
    53. Hashimoto T, etal,. J. Appl. Phys., 1987,62: 3873
    54. Pecharsky VK, Gschneidner K A Jr. Appl. Phys. Lett, 1997,70(24) : 3299-3301
    
    
    55. Hashimoto T, et al. J Appl. Phys. 1987,(62):3873
    56. Hashimoto T, et al. IEEE Trans Mag-23. 1987,(5):2847
    57. Zimm C B, etal. J. Appl. Phys.,1984, 55: 2609
    58. Tishin A M, Gschneidner K A, etal. Phys. ReV. B, 1999(59)503
    59. GreenG, Chafe J, etal. Adv. Cryog, Eng. 1990, (35B): 1165
    60. YuS, Dan'kov etal. Rev. Sci. Instrum. 1997(68):2432
    61. Nikitin S A, Talalaeva E V, etal. Zh. Eksp. Teor. Fiz. 1978(74):205
    62. Ivanova T I, etal. Fiz. Met. Metalloved. 1981(51):892
    63. Benford S M, Brown G V. J. Appl. Phys., 1981(52):2110
    64. Ponomarev B K. J M M M, 1986(61):129
    65. Glorieux C, Caerels J, etal. J. Appl. Phys., 1996(80):3412
    66. Yu S, Dan kov etal. Phys. Rev. B, 1998(57):3478
    67.陈远富,陈云贵等.功能材料,2000,31(2):113~115
    68. Pecharsky V. K. and Gschneidner K A Jr. Phys. Rev. Lett.,1997,78(23): 4494~4497
    69. Guo Z B.Du Y W, etal. Phys. Rev. Lett, 1997,78(6): 1142~1144
    70.龙毅等.科学通报,1993,38(21):1944~1946
    71.邵元智等.中山大学学报(自然科学版),1994,33(1):103~105
    72.邵元智等.中国有色金属学报,1996,6(1):70~73
    73.都有为等.物理学报,1994,43(2):322~325
    74. Gopal B R, Chahine R, etal. Rev. Sci. Instrum. 1995,66(1): 232~238
    75. Herbst J F and Fuerst C D, etal. J. Appl. Phys.,1996, 79(8): 5998~6000
    76.张晓玲,李锋等.金属材料研究,1992,18(3-4):135~137
    77. Pecharsky V K, Gschneidner K A Jr. J. Magn. Magn. Mater. 1997,(167): L179~184
    78. Pecharsky V K, Gschneidner K A Jr. Adv. Cryog. Eng. 1998(43): 1729
    79. Pecharsky V K, Gschneidner K A Jr. J. Alloys Compounds. 1997(260):98
    80.钟伟、陈伟等.功能材料,1998,29(增刊):348~349
    81.钟伟、陈伟等.功能材料,1998,29(增刊):350~351
    82.陈伟、钟伟等.功能材料,1998,29(3):236~239
    83.都有为等.物理,1997.26(7):385~343
    84. Huang H..Guo Z B, et al. J. Magn. Magn. Mater., 1997, (173): 302~304
    
    
    85. Huang He. Guo Zai-bing, etal. Chin. Phys. Lett.,1997,(10):786~788
    86. Guo Z B. Zhang J R, etal. Appl. Phys. Lett.,1997,70(7):904~905
    87. Zhang X X. Tajada J, etal. Appl. Phys. Lett.,1996,69:3596
    88. ZhongW. Chen W, etal. Solid State Commun. 1998(106):55
    89. Chen W, Zhong W, etal. Chinese Phys. Lett.,1998(15):134
    90. Bohigs X, Tajada J, etal. Appl. Phys. Lett.,1998,73:390
    91. Nikitin S A, Myalikgulev G, etal. Phys. Lett. A, 1990(148):363
    92. Annaorazov M P, Asatryan K A, etal. Cryogenics, 1992,32(10):867
    93. Annaorazov M P, Nikitin S A, etal. J. Appl. Phys.,1996(79):1689
    94. Gschneidner K A Jr., Pecharsky V K. J. Appl. Phys.,1999, 85(8):5365
    95. Belova V M, Nikolaev V I. etal. Prib. Tekh. Eksp., 1974(1):209
    96. Ponomarev B K. Prib. Tekh. Eksp.,1983(3):153
    97. Kato H, Nara K, etal. Cryogenics, 1991(31):425
    98. Otowski W, Glorieus C, etal Therochim. Acta, 1993(218):123
    99. Gopal B R, Chahine R, etal. Rev. Sci. Instrum., 1997(68):1818
    100. Foldeaki M. Chahine R, etak J. Appl. Phys.,1995(77):3528
    101.戴道生,钱昆明.铁磁学,科学出版社,1992:127
    102. Navarathna A, Hegde H., etal. J. Appl. Phys., 1993(73):6242
    103. Wang J L, Zhao R W, etal. J. Appl. Phys., 1994(76):6740
    104. Yang Yingchang, Pan Qi, etal. J. Appl. Phys., 1992(72):2989
    105. Kong Lin-shu, Cao Lei, etal. J.M.M.M., 1993(124):301
    106.潘洪革,R3(Fe,Co)29金属间化合物的成相、结构和内禀磁性研究,浙江大学博士学位论文,1996年6月:50
    107.潘洪革,R3(Fe,Co)29金属间化合物的成相、结构和内禀磁性研究,浙江大学博士学位论文,1996年6月:48
    108.王德芳、叶妙元编 磁测量,机械工业出版社,北京:1990年10月:P86~91
    109.唐统一等编,近代电磁测量,中国计量出版社,北京:1992年8月:P350-358,P394-396
    110. Heiden C, Rogalla H. J M M M, 1980:Vol. 19, P240~242
    111.苏]B.C. 科瓦连科著,李云盛等译.金相显示剂手册,国防工业出版社,1983:120
    112. Roman W. A.. J. Less-common Metals, 1966,V.10, No.2, P150
    
    
    113. Pecharsky V.K. and Gschneidner K.A. Jr., et al. J. Alloys. & Comp., 2000,303-304:214~222
    114.李全安.LPC贮氢合金电极材料的研究与开发,四川大学博士学位论文,2000年11月:65
    115. Yayama H, Hirakawa K, Tomokiyo A. J Appl Phys, 1986,25:739
    116. Buschow K H J and Van Mal H H. J Less-Common Met, 1972, 29:203-210
    117. Tadokoro M, Nogami M, Chikano Y etal. J Alloys Comp, 1993,129:179-181
    118. Notten P H L, Einerhand R E F and Daams J L C. J Alloys Comp, 1994,210:221-232
    119. Gschneidner KA, Pecharsky VK, Pecharsky AO, et al. International Conference on Rare Earths, OCT 25-30, 1998 RARE EARTHS 98, 1999: 69-76
    120. Preisach F. Z. Phys., 1965(94):277
    121. Tanaka K, Nagaki S. Ingenieur-Archiv, 1982(51):287~299
    122. Cory JS, McNichols J L Jr. J. Appl. Phys., 1987(61).972~984
    123. Lubliner J, Aurichio J. International J. Solids Structure, 1996(33):991~1003
    124. Mǖller I., Xu H. Acta Metallurgica, 1991(39): 263~271
    125. Huo Y, Maǖller I. Continuum Mechanics and Therodynamics, 1993(5):163~204
    126. Mǖller I, Seeleck S. Equilibrium thermodynamics ofpseudoelasticity and quasiplastisity, 1996(8):309
    127.陈远富.形状记忆合金相变滞后的实验、模型及数值模拟,四川联合大学硕士学位论文,1998年5月:33
    128. Huo Y, Chen Y et al. Acta Metall. Sin, 1999, 12(3): 205-210
    129. Chen Y, Huo Y, etal. Acta Metall. Sin.(Eng. Lett.),1999, 12(3): 211-215
    130.霍永忠,陈远富等.功能材料,1999(30):71
    131. Choe W, Pecharsky V K, etal. Phys. Rev. Lett.,2000,84(20):4617~4620
    132. Morellon L, Algarabel P A, etal. Phys. Rev. B, 2000,62(2):1022~1026
    133. Morellon L, Algarabel P A, etal. Phys. Rev. B, 1998,58(22):R14721~R14724
    134. Levin E M, Pecharsky V K, etal. J.M.M.M., 2000(210):181-188
    135. Levin E M, Pecharsky V K, etal. Phys. Rev. B, 1999,60(11):7993~7997
    136. Gigure A, Foldeaki M, etal. Phys. Rev. Lett., 1999(83):2262~2265
    137.北京正负电子对撞机国家重点实验室编.北京同步辐射装置年报,1997:3
    138. Winick H, Doniach S. Synchrotron Radiation Research, Plenum Press, New York, London, 1980
    139. Koch E. Handbook on Synchrotron Radiation, Vol(1A), North-Holland publishing Company, Amsterdam, 1983
    
    
    140.戴闻,沈保根等.中国科学(E辑):1996,26(3):232~239
    141.朱俊发,徐法强等.科学通报,1998,43(11):1160~1163
    142. Gerken F, Barth J, etal. Phys. Rev. Lett, 1981,47(14):993~997
    143. Wandelt K, Brundle C R. Surface Science, 1985(157):162~182
    144. Hu Z. Starke K. Phys. Rev. B, 1999,90(15):9737~9740
    145. Schβler-Langeheine C., Meier R. Phys. Rev. B, 1999,60(5):3449~3452
    146.北京正负电子对撞机国家重点实验室编.北京同步辐射装置年报,1997:32
    147. Nefedov V I. X- Ray Photoelectron Spectroscopy of Solid Surface, The Nertherlands, VNU Science Press BV, 1988:45~80
    148. Ghosh P K, lntroduction to Photoelectron Spectroscopy, New York, Wiley-Interscience, 1983:179~202
    149. Yeh JJ, Lindao I. Atomic Data and Nuclear Data Tables, 1985, 32(1): 84
    150. Yeh JJ, Lindao I. Atomic Data and Nuclear Data Tables, 1985, 32(1): 7
    151. Yeh JJ, Lindao I. Atomic Data and Nuclear Data Tables, 1985, 32(1). 11
    152. Edited by Perkin-Elmer Corporation Physical Electronics Division. Handbook of X-Ray Photoelectron Spectroscopy:
    153. Briggs D. Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy, Heyden & Son Ltd., 1977
    154. Carlson T A. Photoelectron and Auger Spectroscopy,1976:337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700