同步辐射软X射线辐射效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因在辐射损伤的风险评估以及辐射防护等领域有着广泛的用途,X射线的辐射生物学效应一直受到科研工作者的关注。这其中具有较高线性能量衰减系数的低能软X射线更受到重视,就其原因,一方面低能X射线具有中等的线能传递系数,在细胞内能产生较高的能量衰减;同时低能软X射线与物质作用的主要形式为光电吸收,在细胞内产生大量的光电子并伴生俄歇电子。这些二次电子具有纳米的轨道径迹和局部能量高度沉积等特点,可造成细胞内大分子物质结构的破坏,进而造成细胞的辐射损伤,其损伤效应要高于高能硬X射线以及60Co-γ射线,并随着X射线能量的降低,其辐射损伤效应有增加趋势。
     将同步辐射软X射线应用于对生物细胞的辐射损伤效应的研究是近年来的一个研究热点。同步辐射具有亮度高、能量连续可调等优势,将其引入细胞辐射效应的研究,不仅可以获得高强度的X射线,在较短时间内可实现对较多细胞的照射,使实验结果更具有统计学意义,而且利用同步辐射,可以实现选择能量的照射,研究不同能量X射线的辐射损伤特异性,并且可以对细胞具有相同穿透能力的不同能量软X射线对细胞的辐射损伤的差异进行比较,实现在不同层面进行软X射线的辐射损伤效应研究。
     对于同步辐射来说,“水窗”波段软X射线是其辐射的特点,也是其优势。“水窗”波段软X射线为低能X射线,其与细胞作用时产生大量的光电子和俄歇电子,同时细胞的主要组成元素C、N、O的K吸收边均位于该波段内。当以元素吸收边能量X射线照射细胞时,由于共振吸收,在细胞内产生很强的剂量沉积,因而其辐射损伤可能会更强。
     针对同步辐射软X射线所具有的特点,以合肥弯铁辐射为辐射源,采用波带片色散单色技术,将同步辐射光单色化,获得低能软X射线,对“水窗”波段软X射线的辐射损伤的特性,从不同吸收边能量、吸收边附近能量的辐射损伤差异的比较、元素吸收边能量的辐射损伤增强效应,从射线照射至细胞核损伤、细胞死亡、变异、射线至细胞不同部位的辐射损伤差异等几个方面进行了比较研究。同时,利用同步辐射红外光谱分析和检测技术以及生物学的凝胶电泳技术对一些影响因素及辐射结果进行分析、检测和讨论,研究“水窗”波段不同能量软X射线的辐射损伤特异性。
     研究结果表明,同步辐射“水窗”波段软X射线对生物细胞具有较强的辐射损伤效应,其辐射损伤效应要高于60Co-γ射线的辐射损伤效应,且在该波段,其辐射损伤效应随着X射线能量增加有增加趋势,同时位于元素吸收边能量的软X射线的辐射损伤效应也存在不同,这些都显示出“水窗”波段软X射线的辐射损伤特异性。
As is valuable radiation damage in risk evaluation and radiation protection, the radiobiological studies of X-ray are attracted for attentions in these years, and even more, soft X-rays, which have higher linear energy attenuation coefficients, have attracted more interesting. For the reasons, firstly, as low energy rays, the main is photon-electron absorption when soft X-rays interacting with matter and large numbers of photoelectrons, also combining with large numbers of Auger electrons, and there second electrons have track path with nanoscale and can deposit energies in small space, which can cause the structure damage of macromeolecule in cells, thus can cause radiation damage in cells. At the same time, the effect of radiation damage is increasing with the X-ray energy decreasing and is more higher than that of hard X-rays and 60Co-γrays.
     Using soft X-rays from synchrotron radiation are valuable for radiobiological studies. The synchrotron radiation has many valuable characteristics, such as have high radiation flux and the radiation energy can be adjusted continuously. When using synchrotron radiation as the radiation source, the higher radiation fluxes can be obtained and more samples can be treated each time, and thus the experimental results can be more suitable for statistical principle. At the same time, with the help of synchrotron radiation, the radiation damage studied with selected energies can come true and thus the radiation damage with different energies can be studied. Also the radiation effects of soft X-rays with different energies, which have similar transmission abilities in cells, can be compared, thus the radiobiological effects of soft X-rays at different layer can be studied.
     As with other radiation source, the X-rays at“water window”region have their unique characteristics and also an advantage for synchrotron radiation. The X-rays at“water window”region are low energy rays and large numbers second electrons are produced in cells when transmitting through cells. At the same time, the K-shell absorption edges of C, N, O elements, which are also the main composing elements of biological cells, are all in this region. When cells irradiated with soft X-rays at the K-shell edges of those elements, more dose will be deposited in cells because of resonance absorption and the radiation damage may be more serious.
     Considering the specialties of soft X-rays from synchrotron radiation, using the bending magnet radiation of Hefei synchrotron radiation as the radiation source and the zone plate as dispersively optical element, the synchrotron radiation was monochromated and the radiation damage characteristic of soft X-rays at“water window”was studied, including different energies irradiating, the radiation damage discrepancy of soft X-rays near the absorption edges and the radiation damage enhancement of X-rays at the K-shell edges, etc. The studies included soft X-rays causing nucleolus radiation damage, cell killing, mutating and the difference of different compartments of cells. At the same time, the infrared spectrum of synchrotron radiation and gel electrophoresis technique were used as valuable tools for radiation results detecting and analyzing, and also for some influence factors discussing. The peculiar radiation damage of soft X-rays with different energies at“water region”was studied.
     The experimental results showed that soft X-rays at“water window”region have high radiation damage abilities, and the radiobiological effects are higher than that of 60Co-γrays and the radiation increases with the X-ray energies increasing. At the same time, the radiation effects of X-rays at the K-shell absorption edges are also different. All these indicate that soft X-rays at“water window”region have peculiar radiation damage effects.
引文
1. Frankenberg D.,.Goodhead D.T, Frankenberg-schwager M., et al. Effectiveness of 1.5 keV aluminium K and 0.3 keV carbon K characteristic X-rays atinducing DNA double-strand breaks in yeast cells. Inter J Radi. Biol, 1986, 50(4) 727-741.
    2. Wlodek D., Banath J., Olive P.L.. Comparison between pulsed-field and constant field gel electrophoresis for measurement of DNA double strand breaks in irradiated Chinese hamster ovary cells. Inter J Radi. Biol,, 1991, 60(5), 779-790.
    3. Williams S., Zhang X., Jacobsen C., et al. Measurements of wet metaphase chromosomes in the scanning transmission X-ray microscope. J. microscopy, 1993, 170(2), 155-165.
    4. Ito T., Ito A., Hieda K., et al. Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-uv radiation (145-190nm), Radi Res, 1983, 96, 532-548.
    5..Povirk L.F, Wubker W., Kohnlein W., et al. DNA double strand breaks and alkali-labile bonds produced by bleomycin, Nucl Acids Resh, 1977, 4(10), 3573-3580.
    6. Munkata N, Hieda K, Usami N., et al. Inactivation action spectra of bacillus subtilis spores with monochromatic soft X-rays (0.1-0.6nm) of synchrotron radiation, Radi Res, 1992, 131, 72-80.
    7. Kobayashi K., Hieda K., Maezawa H., et al. Effects of K-shell X-ray absorption of intracellular phosphorus on yeast cells. Inter J Radi. Biol, 1991, 59(3), 643-650.
    8. de Lara C.M,.Hill M.A, Jenner T.J., et al. Dependence of the yield of DNA double strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft X-rays. Radi Res, 2001, 155, 440-448.
    10. Herve Penhoat M.A., Fayard B., Abel F., et al. Lethal effect of carbon K shell photoionizations in Chinese hamster V79 cell nuclei: Experimental method and theoretical analysis, Radi Res, 1999, 151, 649-658.
    11. Ponsa I., Barquinero J.F., Miro R., et al. Non-disjunction and chromosome loss in gamma irradiated human lymphocytes: A fluorescence in situ hybridization analysis using centromere specific probes, Radi Res, 2001, 155, 424-431.
    12. Meger Wells C., Pearson D. W., De Luca P. M., et al. Effects of K-shell X-ray Absorption of Intracellular Phosphorus on Yeast Cells , J Radi Res, 1991, 59, 643-650.
    13. Meger Wells D C, . Pearson W., De Luca P. M., et al. Synchrotron produced ultrasoft X-rays: A tool for testing biophysical models of radiation action, Inter J Radi. Biol,1991, 59, 985-996.
    14. Hieda K.. DNA damage induced by vacuum and soft X-ray photons from synchrotron radiation, Inter J Radi. Biol,, 1994, 66(5), 561-567.
    15. Hoshi M., Antoku S., Nakamura N., et al. Soft X-ray dosimetry and RBE for survival of Chinese hamster V79 cells, Inter J Radi. Biol,, 1988, 54(4), 577-591.
    16. Hieda K, Hirono T, Azami A, et al. Single- and double-strand breaks in pBR322 plasmid DNA by monochromatic X-rays on and off the K-absorption peak of phosphorus, Inter J Radi. Biol,, 1996, 70(4), 437-445.
    17. Trosko J.E., Chang C.C., Upham B.L., et al. Low-dose ionizing radiation: induction of differential intracellular signalling possibly affecting intercellular communication, Radi Environl Biophys, 2005, 44, 3-9.
    18. Hill M.A., Vecchia M.D., Townsend K.M.S., et al. Production and dosimetry of copper L ultrasoft x-rays for biological and biochemical investigations, Phys. Med. Biol. 1998, 43, 51–363.
    19. Paardekooper M.,.De Bruijne A.W, Gompel A.E.V., et al. Single strand breaks and mutagenesis in yeast induced by photodynamic treatment with chloroaluminum phthalocyanine , J Photochem Photobiol B: Biol, 1997, 40, 132-140.
    20..Hill M.A, Stevens D.L., Bance D.A., et al. Biological eVectiveness of isolated short electron tracks: V79-4 cell inactivation following low dose-rate irradiation with AlK ultrasoft X-rays, Int. J. Radiat. Biol 2002, 78, (11), 967-979.
    21. Kuipers G.K.,Lafleur M.V.M. Characterization of DNA damage induced by gamma-radiation derived water radicals, using DNA repair enzymes, Int. J. Radiat. Biol 1998, 74, 511-519.
    22. Kobayashi K., Uasmi N., Maezawa H., et al. Development of photon microbeam irradiation system for radiobiology, Int Congress Series, 2003, 1258, 207– 211.
    23. Zoetelief J., Broerse J.J., Davies R.W., et al. Protocol for X-ray dosimetry in radiobiology Int. J. Radiat. Biol 2001, 77, (11), 817-835.
    24. Griffin C.S., Hill M.A., Papworth D.G., et al. Effectiveness of 0.28 keV carbon K ultrasoft X-rays at producing simple and complex chromosome exchanges in human fbroblasts in vitrodetected using FISH, Int. J. Radiat. Biol 1998, 73, (11), 591-598.
    25. Ludwikow G., Xiao Y., Hoebe R.A, et al. Induction of chromosome aberrations in unirradiated chromatin after partial irradiation of a cell nucleus, Int. J. Radiat. Biol, 2002, 78, (11), 239-247.
    26. Edwards A.A.. Modelling radiation-induced chromosome aberrations, Int. J. Radiat. Biol, 2002, 78, 551-558. 9. Sgura A., Antoccia A., Cherubini R., et al. Chromosome nondisjunction and loss induced by protons and X-rays in primary human fibroblasts: role of centromeres in aneuploidy, Radi Res, 2001, 156, 225-231.
    27. Cotteleer F., Faber H., Tkonings A.W., et al. Three-dimensional dose distribution for partial irradiation of rat parotid glands with 200 kV X-rays, Int. J. Radiat. Biol, 2003, 79, 689-700.
    28. Nikjoo H., godhead D.T.. Track structure analysis illustrating the prominent role of lowenergy electrons in radiobiological effects of IOW-LET radiations, Phys. Med. Bid., 1991, 36, 229-238.
    29. Kobayashi K., Usami N., Hieda K., et al. Development of microbeam irradiation system for radiobiology, Nucl. Instru Meths in Phys Res A 2001, 467–468, 1329–1332
    30. Sowa M.B., Kathmann L.E., Holben B.A., et al. Low-LET Microbeam investigation of the track end dependence of electron-induced damage in normal human diploid fibroblasts, Radi Res, 2005, 164, 677-679.
    31. Tanno Y., Kobayashi K., Tatsuka M., et al. Mitotic arrest caused by an X-ray microbeam in a single cell expressing EGFP-AURORA kinase B, Radiat. Protect. Dosi., 2006, 122, 301–306
    32. Nikjoo H., Neill P.O., Goodhead D.T., et al. Computational modelling of low-energy electron induced DNA damage by early physical and chemical events, Int. J. Radiat. Biol,1997, 71, 467-483.
    33. Hoshi M.,.Goodhead D.T, Brenner D.J., et al. Dosimetry comparison and characterisation of an A1K ultrasoft x-ray beam from an MRC cold-cathode source, Phys. Med. Biol., 1985, 30, 1029-1041.
    34. Goodhead D.T., Thacker J., Cox R.. Is selective absorption of ultrasoft x-rays biologically important in mammalian cells? Phys. Med. Biol., 1981, 26, 1115-1127.
    35. Testard I., Dutrillaux B., Sabatier L.. Chromosomal aberrations induced in human lymphocytes by high-LET irradiation, Int. J. Radiat. Biol,1997, 72, 423-433.
    36. Bryant P.E.. DNA damage, repair and chromosomal damage, Int. J. Radiat. Biol,1997, 71,675-680.
    37. Saran M., Winkler K., Fellerhoff B.. Hydrogen peroxide protects yeast cells from inactivation by ionizing radiation: a radiobiological paradox, Int. J. Radiat. Biol,1997, 72, 745-750.
    38. Gillies N.E.. Radiation damage to cell membranes: insights from the oxygen effect, Int. J. Radiat. Biol,1997, 71, 643-648.
    39. Thierens H., Vral A., Scheerder F.D., et al. Semi-automated micronucleus scoring in cytokinesis-blocked lymphocytes after irradiation, Int. J. Radiat. Biol,1997, 71, 643-648.
    40. Sutherland B.M.,.Bennett P.V, Sutherland J.C., et al. Clustered DNA damages induced by X rays in human cells, Radi Res, 2002, 157, 611-616.
    41. Sawant S.G., Pehrson G.R., Metting N.F., et al. Adaptive response and the bystander effect induced by radiation in C3H 10T? cells in culture, Radi Res, 2001, 156, 177-180.
    42. Short S.C., Bourne S., Martindale C., et al. DNA Damage responses at low radiation doses, Radi Res, 2005, 164, 292-302.
    43. Ojima M., Ban N., Kai M.. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects, Radi Res, 2008, 170, 365-371.
    44. Kellerer A.M.. Electron spectra and the RBE of X rays, Radiation Research, 2002, 158, 13-22.
    45. Cai Z.L., Cloutier P.,.Hunting D, et al. Enhanced DNA damage induced by secondary electron emission from a tantalum surface exposed to soft X rays, Radi Res, 2006, 165, 365-371.
    46. Kiefer J., Egenolf R., Ikpeme S.. Heavy ion-induced DNA double-strand breaks in yeast, Radi Res, 2002, 157, 141-148.
    47. Hamada N., Schettino G., Kashino G., et al. Histone H2AX phosphorylation in normal human cells irradiated with focused ultrasoft X rays: evidence for chromatin movement during repair, Radi Res, 2006, 166, 31-38.
    48. Bryant P.E., Jones C., Armstrong G., et al. Induction of chromatid breaks by carbon K-shell ultrasoft X rays, Radi Res, 2003, 159, 247-250.
    49. Fujii K., Akamatsu K., Yokoya A.. Ion desorption from DNA components irradiated with 0.5 keV ultrasoft X-ray photons, Radiation Research, 2004, 161, 435-441.
    50. Schettino G., Folkard M., Prise K.M., et al. Low-Dose Studies of bystander cell killing with targeted soft X rays, Radi Res, 2003, 160, 505-511.
    51. Brennan R.J., Schiest R.H.. Persistent genomic instability in the yeast Saccharomyces
    cerevisiae induced by ionizing radiation and DNA-damaging agents, Radi Res, 2005, 164, 677-679.
    52. Akamastsu K., Fujii K, Yokoya A. Qualitative and quantitative Analyses of the decomposition products that arise from the exposure of thymine to monochromatic ultrasoft X rays and 60Co Gamma Rays in the solid state, Radi Res, 2004, 161, 442-450.
    53. Hofland I., Ramakers B., Begg A.C., et al. Rapid fluorescence ratio assay for detecting changes in radiosensitivity, Radi Res, 2002, 157, 734-739.
    54. Lehnert A., Dorr W., Lessmann E., et al. RBE of 10 kV X Rays Determined for the human mammary epithelial cell line MCF-12A, Radi Res, 2008, 169, 330-336.
    55. Alard J.P..Bodez V, Tchirkov A., et al. Simulation of neutron interactions at the single-cell level, Radi Res, 2002, 158, 650-656.
    56. Pang D.L., Rodgers J.E., Berman B.L., et al. Spatial distribution of radiation-induced double strand breaks in plasmid DNA as resolved by atomic force microscopy, Radi Res, 2005, 164, 755-765.
    57. Colussi N., Lohman P.H.M. Low dose-rate X-irradiation induces larger deletions at the human HPRT locus than high dose-rate X-irradiation, Int. J. Radiat. Biol,1997, 72, 531-536.
    58. Schneiderman M.H., Hofer K.G., Schneiderman G.S.. Targets for radiation-induced cell death: when DNA damage doesn’t kill, Radi Res, 2001, 155, 529-535.
    59. Mitchell S.A., Pehrson G.R., Brenner D.J., et al. The bystander response in C3H 10T? cells: the influence of cell-to-cell contact, Radi Res, 2004, 161, 397-401.
    60. Yasui L.S., Chen K., Wang K.T., et al. Using Hoechst 33342 to target radioactivity to the cell nucleus, Radi Res, 2007, 167, 167-175.
    61. Akamatsu K., Yokoya A.. X-ray absorption near edge structures of DNA or its components around the oxygen K-shell edge, Radi Res, 2001, 155, 449-452.
    62. Fayard B., Touati A., Abel F., et al. Cell Inactivation and Double-Strand Breaks: The role of core ionizations, as probed by ultrasoft X rays, Radi Res, 2002, 157, 128-140.
    63. Kobayashi K., Hieda K., Maezawa H., et al. Monochromatic X-ray irradiation system (0.08-0.4nm) for radiation biology studies using synchrotron radiation at the Photon Factory, J Radi Res, 1987, 28, 243-253.
    64. Hirak K P, Shuvojit B, Utpal C, et al. Cell selective response to gold nanoparticles,Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 111– 119.
    65. Chithrani B D, Ghazani A A, Chan C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Letters, 2006, 6, 662-668.
    66. Kawasaki E S, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer, Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 101– 109.
    1. Cazaux J, A physical approach to the radiation damage mechanisms induced by x-rays in x-ray microscopy and related techniques. J Microscopy, 1997,188, 106-124.
    2. Cox R, Thacker J, Goodhead D T, Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft x-rays. II. Dose-response of Chinese hamster and human diploid cells to aluminium x-rays and radiations of different LET. Int. J. Radiat Biol, 1977, 31, 561-576.
    3. De Lara C M, Hill M A, Jenner T J, et al, Dependence of the yield of DNA double-strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft x-rays. Radiati Res, 2001,155, 440-448.
    4. Fayard B, Touati A, Abel F, et al, Cell Inactivation and Double-Strand Breaks: The Role of Core Ionizations, as Probed by Ultrasoft X Rays. Radiati Res, 2002, 157, 128-140.
    5. Folkard M, Vojnovic B, Prise K M, et al, An arrangement for irradiating cultured mammalian cells with aluminium characteristic ultrasoft x-rays. Phys. Med. Biol., 1987a, 32, 1615-1626.
    6. Folkard M, Schettino G, Vojnovic B, et al, Development and application of a focused ultrasoft x-ray probe for radiobiological applications. Proc. SPIE, 2001b, 4499, 10-18.
    7. Frankenberg D, Goodhead D T, Frankenberg-Schwager M, et al. Effectiveness of 1.5 keValuminium K and 0.3 keV carbon K characteristic x-rays at inducing DNA double-strand breaks in yeast cells. Int J Radiat Biol, 1986, 50, 727-741.
    8. Fujisaki H, Takahashi S, Ohzeki H, et al, Soft-x-ray damage to biological samples. J Microscopy, 1996,182, 79-83.
    9. Goodhead D T, Thacker J, Cox R, Effectiveness of 0.3 keV carbon ultrasoft x-rays for the inactivation and mutation of cultured mammalian cells. Int J Radiat Biol, 1979, 36, 101-114.
    10. Herve du Penhoat M A, Fayard B,Abel F, Lethal effect of carbon K-shell photoionizations in Chinese Hamster V79 cell nuclei: experimental method and theoretical analysis. Radiat Res, 1999, 151, 649-658.
    11. Hamada N, Schettino G, Kashino G, et al. Histone H2AX phosphorylation in normal human cells irradiated with focused ultrasoft X rays: evidence for chromatin movement during repair, Radi Res, 2006, 166, 31-38.
    12. Hill M A, Vecchia M D, Townsend K M S, Production and dosimetry of copper L ultrasoft x-rays for biological and biochemical investigations. Phys Med Biol, 1998, 43, 351-363.
    13. Kobayashi K, Hieda, K, Maezawa H, et al, Effects of K-shell x-ray absorption of intracellular phosphorus on yeast cells. Int J Radiat Biol, 1991, 59, 643-650.
    14. Jacobsen C. Soft x-ray microscopy. Trends in cell Biology, 1999, 9, 44-47.
    15. Masini A, Batani D, Previdi F, et al, X-ray irradiation of yeast cells. Proceedings of SPIE, 1998,3157, 10-18.
    16. Prise K M, Folkard M, Michael B D, Bystander responses induced by low LET radiation. Oncogene, 2003, 22, 7043-7049.
    17. Schettino G, Folkand M, Michael B D, et al, Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused Ck x-rays. Radiat Res, 2005, 163, 332-336.
    18. Sutherland B M, Bennett P V, Sutherland J C, et al. Clustered DNA damages induced by X rays in human cells, Radi Res, 2002, 157, 611-616.
    19. Spector S J, Jacobsen C J, Tennant D M, Process optimization for production of sub-20 nm soft x-ray zone plates. J Vacu Sci Tech, 1997, 15, 2872-2876.
    20. Thacker J, Cox R, Goodhead D T, Do carbon ultrasoft x-rays induce exchange aberrations in cultured mammalian cells? Int J Radiat Biol, 1980,38, 469-472.
    21. I.Hofland, B.Ramakers, A.C.Begg, et al. Rapid fluorescence ratio assay for detecting changes in radiosensitivity, Radi Res, 2002, 157, 734-739.A, Lindau I, Attwood D, et al (Eds), 2001, X-ray data booklet. Edited by et al. LBNL.
    22. Nikjoo H,.Neill P O, Goodhead D T, et al. Computational modelling of low-energy electron induced DNA damage by early physical and chemical events, Int. J. Radiat. Biol,1997, 71, 467-483.
    1. Frankenberg D, Goodhead D T, Frankenberg-Schwager M, et al. Effectiveness of 1.5 keV aluminium K and 0.3 keV carbon K characteristic x-rays at inducing DNA double-strand breaks in yeast cells. Int J Radiat Biol, 1986, 50, 727-741.
    2. Saigusa S, Ejima Y, Kobayashi K, et al. Induction of chromosome aberrations by monochromatic x-rays with resonance energy of phosphorus K-shell absorption edge. Int J Radiat Biol, 1992, 61, 785-790.
    3. Nobuo M, Kotaro H, Noriko U, et al. Inactivation action spectra of Bacillus subtilis spores withmonochromatic soft X rays (0.1 nm-0.6 nm) of synchrotron radiation. Radi Res, 1992,131: 72-80.
    4.张玉烜,蒋诗平,张新夷等。合肥光源软x射线光束线光子通量的测量,核技术,2001,24(7):529-533。
    5. Kobayashi K, Hieda K, Maezawa H, et al. Effects of K-shell x-ray absorption of intracellar phosphorus on yeast cells. Int J Radiat Biol, 1991, 59, 643-650.
    6. Hill M A, Vecchia M D, Townsend K M S, et al. Production and dosimetry of copper L ultrasoft x-rays for biological and biochemical investigations. Phys Med Biol, 1998,43, 351-363.
    7.张欣,徐师国,张玉恒等。同步辐射产生的Ck软x射线对质粒pBK—CMV DNA的辐射生物效应,中华故射医学与防护杂志,2001年1,2l(5)321-324。
    8. Munakata N, Hieda K, Usami N, et al. Inactivation action spectra of Bacillus subtilis spores with monochromatic soft x-rays of synchrotron radiation. Radiat Res, 1992,131, 72-80.
    9. Goodhead D T, Thacker J, Cox R. Is selective absorption of ultrasoft x-raysbiologically important in mammalian cells?. Phys Med Biol, 1981,26, 1115-1127.
    10. Jacobsen C. 1999, Soft x-ray microscopy. Trends in cell Biol, 9, 44-47.
    11. Zhang Y W, Xu C Y, Xu X L, et al. Design and construction of a soft x-ray microscopy beamline at HESYRL. Physica Scipta, 1990, 41, 422-424.
    12. Benga G. Birth of water channel proteins– the aquaporins. Cell Biol International, 2003,27, 701-709.
    13.陈亮,蒋诗平,万里飚等。曲酸生产菌的同步辐射软X射线诱变选育和发酵动力学研究。辐射研究与辐射工艺学报,2006,24(5):308-312。
    14. Masini A, Batani D, Previdi F, et al. x-ray irradiation of yeast cells. Proceeding of SPIE, 1997,3157,203-217.
    15. Henke B L, Gullikson E M, Davis J C. X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50~30000 eV, Z=1-92. Atomic data and Nuclear Date Tables, 1993,41:181-343.
    16. X-ray data booklet. Edited by A.Thompsom, I.Lindau, D.Attwood, et al. LBNL, 2001.
    17. Gazaux J. A physical approach to the radiation damage mechanisms induced by x-rays in x-ray m icroscopy and related techniques. J Microscopy, 1997,188, 106-124.
    18. Foster G F, Buckley C J, Bennett P M, et al. Investigation of radiation damage to biological specimens at water window wavelengths. Rev Sci Instrum, 1992, 63(1): 599-600.
    1. Folkard M, Schettino G, Vojnovic B, et al, Development and application of a focused ultrasoft x-ray probe for radiobiological applications. Proc SPIE, 2001, 4499, 10-18.
    2. Fayard B, Touati A, Abel F, et al, Cell Inactivation and Double-Strand Breaks: The Role of Core Ionizations, as Probed by Ultrasoft X Rays. Radiat Res, 2002, 157, 128-140.
    3. De Lara C M, Hill M A, Jenner T J, et al, Dependence of the yield of DNA double-strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft x-rays. Radiat Res, 2001, 155, 440-448.
    4. Chen L, Yan J W, Jiang S P, et al. Soft X-ray radiation effects on yeast cells with energies on and off the Ok absorption edge by a soft X-ray microscope. Radiat Protect Dosim, 2009, 133, 20-24.
    5. Sutherland B.M., Bennett P.V., Sutherland J.C, et al. Clustered DNA Damages Induced by X Rays in Human Cells, Radiat Res, 2002, 157, 611-616.
    6. Resat M S, Morgan W F. Clustered DNA Damages Induced by X Rays in Human Cells, Cancer and metastasis reviews, 2004, 23, 323-331.
    7. Ito T, Ito A, Hieda K, et al. Wavelength dependence of inactivation and membrane damage to sccharomyces cerevisiae cells by monochromatic synchrotron vacuum-uv radiation (145-190 nm). Radiat Res, 1983, 96, 532-548.
    8. Kobayashi K, Hieda K, Maezawa H, et al. Effects of K-shell X-ray absorption of intracellular phosphorus on yeast cells. Int J Radiat Biol, 1991, 59, 643-650.
    9. Chen L, Jiang S P, Wan L B, et al. Radiobiological investigations of soft x-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores. Radiat Protect Dosim, 2008, 128, 68-71.
    10. Masini A, Batani D, Previdi F, et al. x-ray irradiation of yeast cells. Proc SPIE, 1997, 3157,203-217.
    11. Henke, B. L., Gullikson, E. M. and Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50–30000 eV, Z=1–92. Atomic Data Nucl Date Tables 1993, 41, 181–343.
    12. Gobert F N, Lamoureux M, Herve du Penhoat M A, et al. Chromosome aberrations and cell inactivation induced in mammalian cells by ultrasoft X-rays: correlation with the core ionizations in DNA. Int J Radiat Biol, 2004, 80: 135-145.
    13. Prise K.M., Folkard M.,.Kuosaite V, et al. What role for DNA damage and repair in bystander response? Mutation Res. 2006, 597, 1-4.
    14. Kashino G., Prise K. M., Schettino G., et al. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells, Mutation Res. 2004, 556, 209-215.
    15. Figueiredo M.O.,.Mirao J.P. Soft X-ray absorption at the O K-edge in rutile-type natural oxides, Nucle. Instrum. Meths Phys Res B, 2005, 238, 314-318.
    16. Frankenberg, D., Goodhead, D. T., Frankenberg-Schwager, M., et al. Effectiveness of 1.5 keV aluminium K and 0.3 keV carbon K characteristic X-rays at inducingDNA double-strand breaks in yeast cells. Int. J. Radiat. Biol. 1986, 50, 727–741.
    17. Hill, M. A., Vecchia, M. D., Townsend, K. M. S. et al. Production and dosimetry of copper L ultrasoft X-rays for biological and biochemical investigations. Phys. Med. Biol. 1998, 43, 351–363.
    18. Saigusa S, Ejima Y, Kobayashi K, et al. Induction of chromosome aberrations by monochromatic x-rays with resonance energy of phosphorus K-shell absorption edge. Int. J. Radiat. Biol., 1992, 61, 785-790.
    19. Herve du Penhoat M A, Fayard B,Abel F, Touati A, et al, Lethal effect of carbon K-shell photoionizations in Chinese Hamster V79 cell nuclei: experimental method and theoretical analysis. Radiat. Res., 1999, 151, 649-658.
    20. Prise K M, Folkard M, Michael B D, Bystander responses induced by low LET radiation. Oncogene, 2003, 22, 7043-7049 ().
    21. Schettino G, Folkand M, Michael B D, et al, Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused Ck x-rays. Radiat. Res, 2005, 163, 332-336.
    22. Fujisaki H, Takahashi S, Ohzeki H, et al, Soft-x-ray damage to biological samples. J. microscopy, 182, 79-83 (1996).
    23. Masini A, Batani D, Previdi F, et al, X-ray irradiation of yeast cells. Proc. SPIE, 1998, 3157, 10-18.
    24. Gazaux J. A physical approach to the radiation damage mechanisms induced by x-rays in x-ray microscopy and related techniques. J. Microscopy, 1997,188, 106-124.
    25. Frankenberg D, Binder A. RBE Values for the Induction of DNA Double Strand Breaks as a Function of Photon Energy, Radiat. Protect. Dosimetry, 1985, 13, 157-159.
    1. Gogate P.R., Mujumdar S., Thampi J., et al. destruction of phenol using sonochemical reactors: scale up aspects and comparison of novel configuration with conventional reactors. Separation and Purification Technology, 2004, 34: 25.
    2. Guo Z.B., Gu C.H., Zheng Z., et al. Sonodegradation of halomethane mixtures in chlorinated drinking water. Ultrason. Sonochem. 2006,13: 487.
    3. Goskonda S., Catallo W.J., Junk T.. Sonochemical degradation of aromatic organic pollutants. Waste Management, 2002, 22: 351.
    4. Findik S., Gunduz G., Gunduz E.. Direct sonication of acetic acid in aqueous solutions. Ultrason. Sonochem. 2006.13: 203.
    5. Fernandes D.M., Hechenleitner W.A.A., Job A.E., et al. Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends. Polymer Degradation and Stability. 2006, 91: 1192.
    6. Singh R., Singh S., Trimukhe K.D., et al. Lignin-carbohydrate complexes from sugarcane hagasse: Preparation, purification and characterization. Carbohydrate Polymers, 2005, 62: 57.
    7. Kohli, K.; Davies G; Vinh, N.et al. "Isotope Dependence of the Lifetime of the 1136-cm-1 Vibration of Oxygen in Silicon". Physical Review Letters, 2006, 96 (22): 225503.
    8. Hamm P., Lim M. H., Hochstrasser R. M.. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B, 1998, 102: 6123.
    9. Mukamel S.. Multidimensional Fentosecond Correlation Spectroscopies of Electronic and Vibrational Excitations. Annual Review of Physics and Chemistry, 2000, 51: 691.
    10. Demirdoven N., Cheatum C. M., Chung H. S., et al. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure. Journal of the American Chemical Society, 2004, 126 (25): 7981.
    11. Dauphin, Y. Potential of the diffuse reflectance infrared Fourier transform (DRIFT) method in paleontological studies of bones. Applied Spectroscopy, 1993. 47(1): 52.
    12. Derrick, M. R., E. Doehne, A. Parker, Some new analytical techniques for use in conservation. Journal o f the American Institute for Conservation 1994.33(3): 171-84.
    13. Gillard, R., Hardman S., Thomas R., The detection of dyes by FTIR microscopy. Studies in Conservation 1994, 39: 187-92.
    14. Hansen. E F, Derrick M R, Schilling M R, et al. The effects of solution application on some mechanical and physical properties of thermoplastic amorphous polymers used in conservation: Poly(vinyl acetate)s. J American Institute for Conservation 1991, 30(2) :203- 1 3 .
    15. Jakes, K A, Sibley L. R., Yerkes R.. A comparative collection for the study of fibres used in prehistoric textiles from eastern North America. J Archaeological Sci 1994, 21:641-50.
    1. Ward J.F, DNA damage produced by ionizing radiations in mammalian cells: Identities mechanisms of formation and repairability. Progress in Nucleic Acid Research and Molecular Biology. 1988, 35, 95–125.
    2. Schettino G., Folkard M., Prise K.M., et al. Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays. Radiation Research, 2003, 160, 505-511.
    3. Vrhovac1 V.G., Kopjar N.. The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation, Mutagenesis, 2003, 18, 265–271.
    4. Folkard M., Schettino G., Vojnovic B., et al. Development and application of a focused ultrasoft x-ray probe for radiobiological applications, SPIE, 2001, 4499: 10-18.
    5. Herve du Penhoat M.A., Fayard, B. et al, Lethal effect of carbon K-shell photoionizations in Chinese Hamster V79 cell nuclei: experimental method and theoretical analysis. Radiation Research, 1999, 151, 649-658.
    6. Fayard B, Touati A, Abel F, et al, Cell Inactivation and Double-Strand Breaks: The Role of Core Ionizations, as Probed by Ultrasoft X Rays. Radiation Research, 2002, 157, 128-140.
    7. Yokoya A., Watanabe R., Hara T.. Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft x-rays at photon energies of 388, 435 and 573 eV. Journal of Radiation Research, 1999, 40, 145-158.
    8. de Lara C.M., Hill M.A., Jenner T.J., et al. Dependence of the Yield of DNA Double-Strand Breaks in Chinese Hamster V79-4 Cells on the Photon Energy of Ultrasoft X Rays, Radiation Research, 2001, 155, 440-448.
    9. Hieda K., Hirono T., Azami A, et al. Single- and double-strand breaks in pBR322 plasmid DNA by monochromatic X-rays on and off the K-absorption peak of phosphorus. International Journal of Radiation Biology, 1996, 70, 437 -445.
    10. Rothkamm K., Lobrich M.. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses, Proceedings of the National Academy of Sciences of the United states of America, 2003, 100, 5057-5062.
    11. Olive P.L.. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. International Journal of Radiation Biology, 1999, 75, 395- 405.
    12. Chen L., Yan J.W., Jiang S.P.,. Development of a soft X-ray microprobe for single cell radiobiology. Nuclear Science and Techniques, (Accepted).
    13. Chen L., Yan J.W.,.Jiang S.P,. The soft x-ray radiation effects on yeast cells with energies on and off the OK absorption edge by a soft x-ray microprobe. Radiation Protection Dosimetry, (Accepted).
    14. ICRP, International Commission on Radiation Protection, Gross and elemntal content of reference man. ICRP Publication, 1975, 273-329.
    15. Henke B L, Gullikson E M, Davis J C. X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50~30000 eV, Z=1-92. Atomic data and Nuclear Date Tables, 1993, 41:181-343.
    16..Sastre M.P, Vernet M., Steinert S.. Single-cell Gel/Comet Assay Applied to the Analysis of UV Radiation–induced DNA Damage in Rhodomonas sp. (Cryptophyta). Photochemistry and Photobiology, 2001, 74(1): 55–60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700