同源域转录因子Isl1对小鼠幽门发育的调节功能和相关机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已有的研究报道,同源域转录因子Isl1在胚胎期小鼠胃的间质和上皮细胞中表达,但Isll在幽门发育过程中的时空表达模式、功能和作用机理尚未有系统的研究。因此,本研究利用原位杂交(in situ hybridization,ISH)、实时定量PCR (real-time quantitative PCR, RT-qPCR)和免疫组织化学(immunohistochemistry, IHC)等方法系统分析Isl1在胃幽门发育过程中的表达变化;利用Isl1诱导敲除小鼠模型研究Isl1在幽门发育的功能;最后通过染色质免疫共沉淀(Chromatin immunoprecipitation, ChIP)、双荧光素酶检测系统和凝胶阻滞(electrophoretic mobility shift assays, EMSA)方法研究Isl1调节幽门发育的信号通路和机理。主要的研究结果如下:
     1. RT-qPCR结果显示,Isll mRNA在小鼠E13.5胃中的表达量最高,E14.5急剧下降,但从E14.5到成年期无显著性变化;原位杂交和免疫组织化学结果显示,Isl1的表达局限于胃幽门部的肌肉层。
     2. Isl1和a-SMA免疫荧光双染结果显示,Isll阳性细胞中表达a-SMA的细胞比例逐渐升高,并在人肥厚性幽门狭窄的病例组织中检测到Isl1表达。这些结果推测Isl1可能参与幽门肌肉的形成。
     3. Tamoxifen诱导Isll敲除小鼠表现为Isll第四个外显子的缺失。蛋白质印迹和免疫荧光结果显示诱导Isll敲除(Isl1MCM/Del)小鼠的蛋白表达水平与野生型(Isl1F/+)小鼠相比明显变弱。这些证据表明tamoxifen高效诱导IslIMCM/Del小鼠敲除Isl1。
     4.敲除Isl1对幽门上皮和神经的发育没有影响,但会导致幽门背部的外侧纵行肌(outer longitudinal muscle, OLM)缺失。
     5. RT-qPCR结果显示,敲除Isll明显下调E14.5和E18.5小鼠胚胎胃中Nkx2.5、Gata3和Gremlin mRNA表达;全胚原位杂交结果显示,敲除Isll可使Nkx2.5、Gata3和Gremlin阳性信号变弱,其中Gata3mRNA降低70%左右。
     6.免疫荧光双染结果证明Isl1和Gata3在幽门肌肉细胞中共表达。此外,ChIP结果表明Isll能够分别与启动子Gata3-P1和Gata3-P6序列结合。
     7.双荧光素酶活性检测结果显示,Isl1激活Gata3-P1-WT (wild type, WT)区域的启动子活性,但对Gato3-P1-MT (mutant type, MT)、Gata3-P6-WT、Gata3-P6-MT和pGL3.0-basic启动子活性没有影响。
     8. Gata3-P1区域包含3个ATTA结合位点,EMSA结果显示Isll (?)(?)够有效结合到第1和3位点。这些数据表明Isl1可以直接调节Gata3转录。
     综上所述,LIM同源域蛋白转录因子Isll在幽门肌肉细胞中高表达,并且通过直接结合Gata3来调节幽门背部外侧纵行肌的发育。此外,这些研究结果提示Isll的表达可能与肥厚性幽门狭窄有关。
A recent report has shown that Isll is expressed in the mesenchyme and epithelium of the embryonic stomach in mice. However, it is unclear that regarding its spatiotemporal expression, functions and the related mechanisms in the pyloric development. First, we analyze Isl1expression in different developmental stages of the mouse pylorus by in situ hybridization (ISH), real-time quantitative PCR (RT-qPCR) and immunohistochemistry (IHC). Secondly, we identified the Isll biological functions in pyloric development utilizing an inducible Isl1knockout mouse model. Finally, we further study the signaling pathways and molecular mechanisms of Isl1in the pyloric development using chromatin immunoprecipitation (ChIP), dual luciferase vector and electrophoretic mobility shift assays (EMSA) methods. The most important results are as follows:
     1. RT-qPCR results showed that Isll mRNA reached the highest level at E13.5, followed by a sharp decline at E14.5and had no significant changes into adulthood. ISH and IHC results demonstrated that Isl1was localized to the smooth muscle layer of the pylorus.
     2. Isll and α-SMA double immunofluorescence results showed that the proportion of Isll positive cells expressing α-SMA gradually increased. Meantime, Isll was expressed in human pylorus with the hypertrophic pyloric stenosis. These results suggested that Isll may participate in the muscle formation of pylorus.
     3. Tamoxifen inducible Isll knockout mice exhibited the deletion of exon4. Western blot and immunofluorescence results showed that Isl1protein levels in embryonic stomach of Isl1MCM/Del mice were significantly lower than those in wild type (Isl1F/+) mice. These collective data showed that Isl1expression was efficiently mutated in the IsllMCM/Del mice.
     4. Isl1deficiency had no significant effect on epithelium and nerve development, but led to nearly complete absence of the dorsal pyloric outer longitudinal muscle (OLM) layer.
     5. RT-qPCR results showed that Isll knockout down-regulated Nkx2.5, Gata3and Gremlin mRNA expression in the embryonic stomach both at E14.5and E18.5. Whole-mount ISH results showed that the ISH signals of aforementioned genes were much weaker in the Isl1MCM/Del mouse stomach than in Isl1F/+at E14.5. Gata3mRNA levels decreased about70%at both examined stages.
     6. Double immunofluorescence results showed that Isll and Gata3were co-expressed in the pyloric smooth muscle cells. In addition, Gata3P1and P6regions were occupied by Isll protein through ChIP.
     7. Dual-luciferase reporter assay showed that Isll enhanced the activity of the Gato3-P1-WT (wild type, WT) luciferase reporter, but Isl1did not affect luciferase activities of Gata3-P1-MT (mutant type, MT), Gata3-P6-WT, Gata3-P6-MT and pGL3.0-basic.
     8. Gata3-P1promoter region includes three putative ATTA binding sites, and EMSA assay showed that Isll efficiently bound to oligonucleotides representing number1and number3sites. These collective data strongly showed that Isl1was a direct regulator of Gata3transcription.
     Taken together, LIM homeodomain (LIM-HD) transcription factor Isl1was strongly expressed in the smooth muscle cells of pylorus, and involved in regulating dorsal pyloric OLM development via directly targeting Gata3. In addition, these findings suggested that Isl1may be related to hypertrophic pyloric stenosis.
引文
Agulnick, A.D., Taira, M., Breen, J.J., Tanaka, T., Dawid, I.B., and Westphal, H. (1996). Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384,270-272.
    Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T., and Edlund, H. (1997). Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385,257-260.
    Alifragis, P., Liapi, A., and Parnavelas, J.G. (2004). Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24, 5643-5648.
    Applegate, M.S., and Druschel, C.M. (1995). The epidemiology of infantile hypertrophic pyloric stenosis in New York State,1983 to 1990. Arch Pediatr Adolesc Med 149,1123-1129.
    Arceci, R.J., King, A.A., Simon, M.C., Orkin, S.H., and Wilson, D.B. (1993). Mouse GATA-4:a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13,2235-2246.
    Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17,126-140.
    Azpiazu, N., and Frasch, M. (1993). tinman and bagpipe:two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7,1325-1340.
    Bach, I., Rhodes, S.J., Pearse, R.V.,2nd, Heinzel, T., Gloss, B., Scully, K.M., Sawchenko, P.E., and Rosenfeld, M.G. (1995). P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci U S A 92,2720-2724.
    Barbosa, I.M., Ferrante, S.M., and Mandarim-De-Lacerda, C.A. (2001). [Role of nitric oxide synthase in the etiopathogenesis of hypertrophic pyloric stenosis in infants]. J Pediatr (Rio J) 77,307-312.
    Barlow, A.J., Bogardi, J.P., Ladher, R., and Francis-West, P.H. (1999). Expression of chick Barx-1 and its differential regulation by FGF-8 and BMP signaling in the maxillary primordia. Dev Dyn 214, 291-302.
    Barnes, J.D., Crosby, J.L., Jones, C.M., Wright, C.V., and Hogan, B.L. (1994). Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161,168-178.
    Barolo, S., and Posakony, J.W. (2002). Three habits of highly effective signaling pathways:principles of transcriptional control by developmental cell signaling. Genes Dev 16,1167-1181.
    Birk, O.S., Casiano, D.E., Wassif, C.A., Cogliati, T., Zhao, L., Zhao, Y, Grinberg, A., Huang, S., Kreidberg, J.A., Parker, K.L., et al. (2000). The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403,909-913.
    Boehm, T., Foroni, L., Kaneko, Y, Perutz, M.F., and Rabbitts, T.H. (1991). The rhombotin family of cysteine-rich LIM-domain oncogenes:distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A 88,4367-4371.
    Braunstein, E.M., Qiao, X.T., Madison, B., Pinson, K., Dunbar, L., and Gumucio, D.L. (2002). Villin:A marker for development of the epithelial pyloric border. Dev Dyn 224,90-102.
    Cai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S. (2003). Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5,877-889.
    Chawengsaksophak, K., de Graaff, W., Rossant, J., Deschamps, J., and Beck, F. (2004). Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci U S A 101,7641-7645.
    Chawengsaksophak, K., James, R., Hammond, V.E., Kontgen, F., and Beck, F.(1997). Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386,84-87.
    Choi, Y., Ballow, D.J., Xin, Y, and Rajkovic, A. (2008). Lim homeobox gene, 1hx8, is essential for mouse oocyte differentiation and survival. Biol Reprod 79,442-449.
    Colvin, S.C., Mullen, R.D., Pfaeffle, R.W., and Rhodes, S J. (2009). LHX3 and LHX4 transcription factors in pituitary development and disease. Pediatr Endocrinol Rev 6 Suppl 2,283-290.
    Curtiss, J., and Heilig, J.S. (1998). DeLMiting development. BioEssays 20,58-69.
    Daniel, E.E. (1992). Sphincters:normal function-changes in diseases (Boca Raton, Fla.:CRC Press).
    Das, P., and May, C.L. (2011). Expression analysis of the Islet-1 gene in the developing and adult gastrointestinal tract. Gene Expr Patterns 11,244-254.
    Dawid, I.B., Toyama, R., and Taira, M. (1995). LIM domain proteins. Comptes rendus de l'Academie des sciences Serie III, Sciences de la vie 318,295-306.
    De Santa Barbara, P., van den Brink, G.R., and Roberts, D.J. (2002). Molecular etiology of gut malformations and diseases. Am J Med Genet 115,221-230.
    De Santa Barbara, P., Williams, J., Goldstein, A.M., Doyle, A.M., Nielsen, C., Winfield, S., Faure, S., and Roberts, D.J. (2005). Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev Dyn 234,312-322.
    Dessimoz, J., Opoka, R., Kordich, J.J., Grapin-Botton, A., and Wells, J.M. (2006). FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123,42-55.
    Dodou, E., Verzi, M.P., Anderson, J.P., Xu, S.M., and Black, B.L. (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131,3931-3942.
    Du, A., Hunter, C.S., Murray, J., Noble, D., Cai, C.L., Evans, S.M., Stein, R., and May, C.L. (2009). Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58, 2059-2069.
    Ericson, J., Norlin, S., Jessell, T.M., and Edlund, T. (1998). Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125,1005-1015.
    Franklin, V., Khoo, P.L., Bildsoe, H., Wong, N., Lewis, S., and Tam, P.P. (2008). Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech Dev 125,587-600.
    Freyd, G, Kim, S.K., and Horvitz, H.R. (1990). Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 344,876-879.
    Fukamachi, H., Mizuno, T., and Takayama, S. (1979). Epithelial-mesenchymal interactions in differentiation of stomach epithelium in fetal mice. Anat Embryol 157,151-160.
    Galli-Resta, L., Resta, G, Tan, S.S., and Reese, B.E. (1997). Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J Neurosci 17,7831-7838.
    Gao, N., White, P., and Kaestner, K.H. (2009). Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 16,588-599.
    Goessling, W., North, T.E., Lord, A.M., Ceol, C., Lee, S., Weidinger, G, Bourque, C., Strijbosch, R., Haramis, A.P., Puder, M., et al. (2008). APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol 320,161-174.
    Grigoriou, M., Tucker, A.S., Sharpe, P.T., and Pachnis, V. (1998). Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125,2063-2074.
    Grutz, G, Forster, A., and Rabbitts, T.H. (1998). Identification of the LMO4 gene encoding an interaction partner of the LIM-binding protein LDB1/NLI1:a candidate for displacement by LMO proteins in T cell acute leukaemia. Oncogene 17,2799-2803.
    Guy, P.M., Kenny, D.A., and Gill, G.N. (1999). The PDZ domain of the LIM protein enigma binds to beta-tropomyosin. Mol Biol Cell 10,1973-1984.
    Habener, J.F., Kemp, D.M., and Thomas, M.K. (2005). Minireview:transcriptional regulation in pancreatic development. Endocrinology 146,1025-1034.
    Hermans, D., Sokal, E.M., Collard, J.M., Romagnoli, R., and Buts, J.P. (2003). Primary duodenogastric reflux in children and adolescents. Eur J Pediatr 162,598-602.
    Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H., and Fishman, M.C. (1993). Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75,1273-1286.
    Kaku, Y., Ohmori, T., Kudo, K., Fujimura, S., Suzuki, K., Evans, S.M., Kawakami, Y., and Nishinakamura, R. (2013). Isletl Deletion Causes Kidney Agenesis and Hydroureter Resembling CAKUT. J Am Soc Nephrol 24,1242-1249.
    Karam, S.M., Li, Q., and Gordon, J.I. (1997). Gastric epithelial morphogenesis in normal and transgenic mice. Am J Physiol 272, G1209-1220.
    Karlsson, O., Thor, S., Norberg, T., Ohlsson, H., and Edlund, T. (1990). Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo-and a Cys-His domain. Nature 344,879-882.
    Kasahara, H., Bartunkova, S., Schinke, M., Tanaka, M., and Izumo, S. (1998). Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ Res 82,936-946.
    Kaufman, C.K., Zhou, P., Pasolli, H.A., Rendl, M., Bolotin, D., Lim, K.C., Dai, X., Alegre, M.L., and Fuchs, E. (2003). GATA-3:an unexpected regulator of cell lineage determination in skin. Genes Dev 17,2108-2122.
    Kawakami, K., Ohto, H., Takizawa, T., and Saito, T. (1996). Identification and expression of six family genes in mouse retina. FEBS Lett 393,259-263.
    Kawazoe, Y., Sekimoto, T., Araki, M., Takagi, K., Araki, K., and Yamamura, K. (2002). Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44, 77-84.
    Kedinger, M., Simon-Assmann, P.M., Lacroix, B., Marxer, A., Hauri, H.P., and Haffen, K. (1986). Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev Biol 113,474-483.
    Kenny, D.A., Jurata, L.W., Saga, Y., and Gill, G.N. (1998). Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc Natl Acad Sci U S A 95,11257-11262.
    Kiefer, J.C. (2007). Back to basics:Sox genes. Dev Dyn 236,2356-2366.
    Kim, B.M., Buchner, G, Miletich, I., Sharpe, P.T., and Shivdasani, R.A. (2005). The stomach mesenchymal transcription factor Barxl specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell 8,611-622.
    Kim, B.M., Miletich, I., Mao, J., McMahon, A.P., Sharpe, P.A., and Shivdasani, R.A. (2007). Independent functions and mechanisms for homeobox gene Barxl in patterning mouse stomach and spleen. Development 134,3603-3613.
    Kim, S.K., Hebrok, M., Li, E., Oh, S.P., Schrewe, H., Harmon, E.B., Lee, J.S., and Melton, D.A. (2000). Activin receptor patterning of foregut organogenesis. Genes Dev 14,1866-1871.
    Kinkel, M.D., Eames, S.C., Alonzo, M.R., and Prince, V.E. (2008). Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number. Development 135,919-929.
    Komuro, I., and Izumo, S. (1993). Csx:a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci U S A 90,8145-8149.
    Kouros-Mehr, H., Slorach, E.M., Sternlicht, M.D., and Werb, Z. (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127,1041-1055.
    Kutejova, E., Engist, B., Self, M., Oliver, G, Kirilenko, P., and Bobola, N. (2008). Six2 functions redundantly immediately downstream of Hoxa2. Development 135,1463-1470.
    Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y, Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isll+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433,647-653.
    Lee, E.R. (1985). Dynamic histology of the antral epithelium in the mouse stomach:I. Architecture of antral units. Am J Anat 172,187-204.
    Leonard, J., Serup, P., Gonzalez, G, Edlund, T., and Montminy, M. (1992). The LIM family transcription factor Isl-1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc Natl Acad Sci U S A 89,6247-6251.
    Li, H., Liu, H., Sage, C., Huang, M., Chen, Z.Y., and Heller, S. (2004). Islet-1 expression in the developing chicken inner ear. J Comp Neurol 477,1-10.
    Li, X., Udager, A.M., Hu, C., Qiao, X.T., Richards, N., and Gumucio, D.L. (2009). Dynamic Patterning at the Pylorus:Formation of an Epithelial Intestine-Stomach Boundary in Late Fetal Life. Dev Dyn 238,3205-3217.
    Lichtsteiner, S., and Tjian, R. (1995). Synergistic activation of transcription by UNC-86 and MEC-3 in Caenorhabditis elegans embryo extracts. EMBO J 14,3937-3945.
    Lieuw, K.H., Li, G., Zhou, Y., Grosveld, F., and Engel, J.D. (1997). Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev Biol 188,1-16.
    Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., and Harvey, R.P. (1993). Nkx-2.5:a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119,969.
    Litingtung, Y, Lei, L., Westphal, H., and Chiang, C. (1998). Sonic hedgehog is essential to foregut development. Nat Genet 20,58-61.
    Liu, J., Hunter, C.S., Du, A., Ediger, B., Walp, E., Murray, J., Stein, R., and May, C.L. (2011). Islet-1 regulates Arx transcription during pancreatic islet{alpha}-cell development. J Biol Chem 286, 15352-15360.
    Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L., and Harvey, R.P. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9,1654-1666.
    Martinez Barbera, J.P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., Kioussis, D., and Beddington, R.S. (2000). The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127,2433-2445.
    Martinez, G, Mishina, Y, and Bertram, J.F. (2002). BMPs and BMP receptors in mouse metanephric development:in vivo and in vitro studies. Int J Dev Biol 46,525-533.
    Matsui, S., Matsumoto, S., Adachi, R., Kusui, K., Hirayama, A., Watanabe, H., Ohashi, K., Mizuno, K., Yamaguchi, T., Kasahara, T., et al. (2002). LIM kinase 1 modulates opsonized zymosan-triggered activation of macrophage-like U937 cells. Possible involvement of phosphorylation of cofilin and reorganization of actin cytoskeleton. J Biol Chem 277,544-549.
    McGinnis, W., Garber, R.L., Wirz, J., Kuroiwa, A., and Gehring, W.J. (1984). A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37,403-408.
    McHugh, K.M. (1995). Molecular analysis of smooth muscle development in the mouse. Dev Dyn 204, 278-290.
    McLin, V.A., Henning, S.J., and Jamrich, M. (2009). The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 136,2074-2091.
    McLin, V.A., Rankin, S.A., and Zorn, A.M. (2007). Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134, 2207-2217.
    Merika, M., and Orkin, S.H. (1993). DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13,3999-4010.
    Michos, O., Panman, L., Vintersten, K., Beier, K., Zeller, R., and Zuniga, A. (2004). Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131,3401-3410.
    Mitsiadis, T.A., Angeli, I., James, C., Lendahl, U., and Sharpe, P.T. (2003). Role of Isletl in the patterning of murine dentition. Development 130,4451-4460.
    Moniot, B., Biau, S., Faure, S., Nielsen, C.M., Berta, P., Roberts, D.J., and de Santa Barbara, P. (2004). SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals. Development 131,3795-3804.
    Mullen, R.D., Colvin, S.C., Hunter, C.S., Savage, J.J., Walvoord, E.C., Bhangoo, A.P., Ten, S., Weigel, J., Pfaffle, R.W., and Rhodes, S.J. (2007). Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol Cell Endocrinol 265-266,190-195.
    Nielsen, C., Murtaugh, L.C., Chyung, J.C., Lassar, A., and Roberts, D.J. (2001). Gizzard formation and the role of Bapx1. Dev Biol 231,164-174.
    Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., Stein, R.W., Magnuson, M.A., Hogan, B.L., and Wright, C.V. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122,983-995.
    Oliver, G, Wehr, R., Jenkins, N.A., Copeland, N.G., Cheyette, B.N., Hartenstein, V., Zipursky, S.L., and Gruss, P. (1995). Homeobox genes and connective tissue patterning. Development 121,693-705.
    Pai, S.Y., Truitt, M.L., and Ho, I.C. (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A 101,1993-1998.
    Panteli, C. (2009). New insights into the pathogenesis of infantile pyloric stenosis. Pediatr Surg Int 25, 1043-1052.
    Park, H.S., Goodlad, R.A., and Wright, N.A. (1995). Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol.147,1416-1427.
    Peukert, D., Weber, S., Lumsden, A., and Scholpp, S. (2011). Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol 9,e1001218.
    Pfaff, S.L., Mendelsohn, M., Stewart, C.L., Edlund, T., and Jessell, T.M. (1996). Requirement for LIM homeobox gene Is11 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84,309-320.
    Porter, F.D., Drago, J., Xu, Y., Cheema, S.S., Wassif, C., Huang, S.P., Lee, E., Grinberg, A., Massalas, J.S., Bodine, D., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124,2935-2944.
    Potten, C.S. (1998). Stem cells in gastrointestinal epithelium:numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353,821-830.
    Ramalho-Santos, M., Melton, D.A., and McMahon, A.P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127,2763-2772.
    Reecy, J.M., Li, X., Yamada, M., DeMayo, F.J., Newman, C.S., Harvey, R.P., and Schwartz, R.J. (1999). Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 126,839-849.
    Rincon-Limas, D.E., Lu, C.H., Canal, I., and Botas, J. (2000). The level of DLDB/CHIP controls the activity of the LIM homeodomain protein apterous:evidence for a functional tetramer complex in vivo. EMBO J 19,2602-2614.
    Rizzoti, K., and Lovell-Badge, R. (2007). SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis. Development 134,3437-3448.
    Roberson, M.S., Schoderbek, W.E., Tremml, G, and Maurer, R.A. (1994). Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 14, 2985-2993.
    Roberts, D.J. (2000). Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn 219, 109-120.
    Sanchez-Garcia, I., Osada, H., Forster, A., and Rabbitts, T.H. (1993). The cysteine-rich LIM domains inhibit DNA binding by the associated homeodomain in Isl-1. EMBO J 12,4243-4250.
    Scott, M.P., and Weiner, A.J. (1984). Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci U S A 81,4115-4119.
    Self, M., Geng, X., and Oliver, G. (2009). Six2 activity is required for the formation of the mammalian pyloric sphincter. Dev Biol 334,409-417.
    Self, M., Lagutin, O.V., Bowling, B., Hendrix, J., Cai, Y., Dressler, GR., and Oliver, G. (2006). Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25,5214-5228.
    Sharma, K., Sheng, H.Z., Lettieri, K., Li, H., Karavanov, A., Potter, S., Westphal, H., and Pfaff, S.L. (1998). LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817-828.
    Shawlot, W., and Behringer, R.R. (1995). Requirement for Liml in head-organizer function. Nature 374, 425-430.
    Sheng, H.Z., Moriyama, K., Yamashita, T., Li, H., Potter, S.S., Mahon, K.A., and Westphal, H. (1997). Multistep control of pituitary organogenesis. Science 278,1809-1812.
    Sherwood, R.I., Chen, T.Y., and Melton, D.A. (2009). Transcriptional dynamics of endodermal organ formation. Dev Dyn 238,29-42.
    Shibaguchi, T., Kato, J., Abe, M., Tamamura, Y, Tabata, M.J., Liu, J.G., Iwamoto, M., Wakisaka, S., Wanaka, A., and Kurisu, K. (2003). Expression and role of Lhx8 in murine tooth development. Arch Histol Cytol 66,95-108.
    Silberg, D.G, Sullivan, J., Kang, E., Swain, G.P., Moffett, J., Sund, N.J., Sackett, S.D., and Kaestner, K.H. (2002). Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122,689-696.
    Smith, D.M., Grasty, R.C., Theodosiou, N.A., Tabin, C.J., and Nascone-Yoder, N.M. (2000a). Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evol Dev 2,348-359.
    Smith, D.M., Nielsen, C., Tabin, C.J., and Roberts, D.J. (2000b). Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 127,3671-3681.
    Smith, D.M., and Tabin, C.J. (1999). BMP signalling specifies the pyloric sphincter. Nature 402,748-749.
    Smythe, A., O'Leary, D., and Johnson, A.G. (1993). Duodenogastric reflux after gastric surgery and in gastric ulcer disease:continuous measurement with a sodium ion selective electrode. Gut 34, 1047-1050.
    Sukegawa, A., Narita, T., Kameda, T., Saitoh, K., Nohno, T., Iba, H., Yasugi, S., and Fukuda, K. (2000). The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127,1971-1980.
    Sun, Y, Dykes, I.M., Liang, X., Eng, S.R., Evans, S.M., and Turner, E.E. (2008). A central role for Isletl in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11,1283-1293.
    Sun, Y, Liang, X., Najafi, N., Cass, M., Lin, L., Cai, C.-L., Chen, J., and Evans, S.M. (2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304,286-296.
    Taira, M., Evrard, J.L., Steinmetz, A., and Dawid, I.B. (1995). Classification of LIM proteins. Trends Genet 11,431-432.
    Takahashi, Y, Imanaka, T., and Takano, T. (1998). Spatial pattern of smooth muscle differentiation is specified by the epithelium in the stomach of mouse embryo. Dev Dyn 212,448-460.
    Theodosiou, N.A., and Tabin, C.J. (2005). Sox9 and Nkx2.5 determine the pyloric sphincter epithelium under the control of BMP signaling. Dev Biol 279,481-490.
    Thomas, P.Q., Brown, A., and Beddington, R.S. (1998). Hex:a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125,85-94.
    Thor, S., Ericson, J., Brannstrom, T., and Edlund, T. (1991). The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7,881-889.
    Tissier-Seta, J.P., Mucchielli, M.L., Mark, M., Mattei, M.G., Goridis, C., and Brunet, J.F. (1995). Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech Dev 51,3-15.
    Tremblay, K.D., and Zaret, K.S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280,87-99.
    Tribioli, C., Frasch, M., and Lufkin, T. (1997). Bapxl:an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev 65,145-162.
    Tribioli, C., and Lufkin, T. (1999). The murine Bapxl homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126,5699-5711.
    Tsukamoto, T., Mizoshita, T., Mihara, M., Tanaka, H., Takenaka, Y, Yamamura, Y, Nakamura, S., Ushijima, T., and Tatematsu, M. (2005). Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology 46,649-658.
    Udager, A.M. (2010). Cell-specific gene expression:pylorus morphogenesis and hedgehog-regulated enhancers (Michigan University, Cell and Developmental Biology).
    Udager, A.M., Prakash, A., Saenz, D.A., Schinke, M., Moriguchi, T., Jay, P.Y., Lim, K.C., Engel, J.D., and Gumucio, D.L. (2014). Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology 146,157-165 e110.
    Vaezi, M.F., and Richter, J.E. (1996). Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111,1192-1199.
    Vaezi, M.F., Singh, S., and Richter, J.E. (1995). Role of acid and duodenogastric reflux in esophageal mucosal injury:a review of animal and human studies. Gastroenterology 108,1897-1907.
    Verzi, M.P., Stanfel, M.N., Moses, K.A., Kim, B.M., Zhang, Y, Schwartz, R.J., Shivdasani, R.A., and Zimmer, W.E. (2009). Role of the homeodomain transcription factor Bapxl in mouse distal stomach development. Gastroenterology 136,1701-1710.
    Wallace, A.S., and Burns, A.J. (2005). Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319,367-382.
    Wang, M., and Drucker, D.J. (1996). Activation of amylin gene transcription by LIM domain homeobox gene isl-1. Mol Endocrinol 10,243-251.
    Way, J.C., and Chalfie, M. (1988). mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54,5-16.
    Wells, J.M., and Melton, D.A. (1999). Vertebrate endoderm development. Annu Rev Cell Dev Biol 15, 393-410.
    Wills, A., Dickinson, K., Khokha, M., and Baker, J.C. (2008). Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus. Dev Dyn 237,2177-2186.
    Woodside, K.J., Shen, H., Muntzel, C., Daller, J.A., Sommers, C.L., and Love, P.E. (2004). Expression of Dlx and Lhx family homeobox genes in fetal thymus and thymocytes. Gene Expr Patterns 4, 315-320.
    Wordinger, R.J., Zode, G, and Clark, A.F. (2008). Focus on molecules:gremlin. Exp Eye Res 87,78-79.
    Wright, N.A. (2000). Epithelial stem cell repertoire in the gut:clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Pathol 81,117-143.
    Wu, Y, Luo, H., Liu, J., Kang, D., McNeilly, A.S., and Cui, S. (2010). LIM homeodomain transcription factor Isl-1 enhances follicle stimulating hormone-beta and luteinizing hormone-beta gene expression and mediates the activation of leptin on gonadotropin synthesis. Endocrinology 151, 4787-4800.
    Xue, D., Tu, Y, and Chalfie, M. (1993). Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science 261,1324-1328.
    Yasuda, H., Yamada, M., Endo, Y, Inoue, K., and Yoshiba, M. (2005). Elevated cyclooxygenase-2 expression in patients with early gastric cancer in the gastric pylorus. J Gastroenterol 40, 690-697.
    Yuan, S., and Schoenwolf, G.C. (2000). Islet-1 marks the early heart rudiments and is asymmetrically expressed during early rotation of the foregut in the chick embryo. Anat Rec 260,204-207.
    Zhang, H., Wang, W.P., Guo, T., Yang, J.C., Chen, P., Ma, K.T., Guan, Y.F., and Zhou, C.Y. (2009). The LIM-homeodomain protein ISL1 activates insulin gene promoter directly through synergy with BETA2. J Mol Biol 392,566-577.
    Zhang, J.H., Liu, J.L., Wu, Y.J., and Cui, S. (2006). LIM homeodomain proteins Islet-1 and Lim-3 expressions in the developing pineal gland of chick embryo by immunohistochemistry. J Pineal Res 41,247-254.
    Zhao, Y, Sheng, H.Z., Amini, R., Grinberg, A., Lee, E., Huang, S., Taira, M., and Westphal, H. (1999). Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. Science 284,1155-1158.
    Zhuang, S., Zhang, Q., Zhuang, T., Evans, S.M., Liang, X., and Sun, Y. (2013). Expression of Isll during mouse development. Gene Expr Patterns 13,407-412.
    Zorn, A.M., and Wells, J.M. (2009). Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25,221-251.
    Zuniga, A., Michos, O., Spitz, F., Haramis, A.P., Panman, L., Galli, A., Vintersten, K., Klasen, C., Mansfield, W, Kuc, S., et al. (2004). Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18, 1553-1564.
    陈彪,范明,周长满(1997).LIM同源框基因家族与神经系统.生理科学进展.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700