稻瘟病菌(Magnaporthe grisea)14α-去甲基化酶与抑制剂的结合特性与新型杀真菌剂筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是限制水稻高产稳产的主要因素,广泛发生在世界各稻区,每年稻瘟病爆发对农业造成巨大经济损失。甾醇14α-去甲基化酶抑制剂(DMI inhibitors,DMIs)是目前农业生产中主要使用的一类抗真菌剂,它通过抑制靶标甾醇14α-去甲基化酶(sterol 14α-demethylase,P450_(14DM),CYP51)的活性而发挥杀菌抑菌作用。甾醇14α-去甲基化酶催化甾醇的14α-去甲基化反应,是真菌麦角甾醇合成过程中的一个关键酶,而麦角甾醇是真菌细胞膜的主要组分,抑制甾醇14α-去甲基化酶活性会阻碍真菌麦角甾醇的合成,麦角甾醇缺失会损害细胞膜的结构和功能,最终导致真菌死亡。
     为了合成和筛选稻瘟病的高效特异性杀菌剂,本研究以其病原体稻瘟病菌(Magnaporthegrisea)为研究对象,结合分子生物学技术和计算机辅助技术,从受体和配体两方面进行了研究。一方面从靶酶研究出发,对稻瘟病菌CYP51(MGCYP51)基因进行克隆和异源高效表达,同时对MGCYP51与氮唑类抗真菌剂的结合模式进行了分析,发现了靶酶的抑制剂特异结合位点;另一方面从抗真菌药物出发,利用异源表达的MGCYP51建立体外稻瘟病菌DMIs药物筛选方法,对筛选结果进行化合物结构特点分析,总结药物结构特点并用于指导抗真菌药物结构的改造;综合这两方面的研究,利用计算机药物辅助设计技术设计MGCYP51抑制剂,并进行体外筛选,获得MGCYP51抑制剂先导化合物,为稻瘟病菌新型高效特异杀菌剂的开发提供基础。具体研究结果如下。
     1.从稻瘟病菌中克隆了稻瘟病菌的CYP51基因(MGCYP51),该基因的氨基酸序列与已公布的序列(XP 362183和EDJ95970)相比仅有一个氨基酸不同,在266位插入一个谷氨酸。同源比对分析发现MGCYP51具有6个保守结构域SRS1-6和血红素辅基结合区(-FGxGxHxCxGxxFA-),其中SRS1(-YxxLxxPxFGxxVx-)和SRS4(-GQHTS-)是CYP51亚家族的识别标记。
     2.在大肠杆菌中获得MGCYP51高效表达。研究发现,去除N端跨膜区对于MGCYP51的原核表达至关重要。不管采用怎样的载体和宿主菌,全长MGCYP51在大肠杆菌中不表达,去除N端36个跨膜氨基酸后,截短的MGCYP51(T-MGCYP51)利用pET-30a(+)表达系统在BL21(DE3)pLysS宿主菌中获得高效表达,能维持CO结合活性。优化MGCYP51的表达菌株、表达载体、诱导温度、诱导时间和诱导剂浓度等条件后,利用pET-T-MGCYP51和pKG-T-MGCYP51重组表达菌株,在0.4mM IPTG条件下18℃诱导4h后的菌体作为材料,利用Ni-NTA琼脂糖亲和层析和GST-tag亲和层析技术,成功纯化得到MGCYP51重组蛋白。
     3.以原核表达的MGCYP51重组蛋白为材料,建立了DMIs抗真菌药物的体外筛选方法——结合光谱法。研究中分析了MGCYP51与DMIs抗真菌药物标准样品烯唑醇、戊唑醇、三唑醇和三唑酮的结合能力,分析了靶酶的活性、纯度及浓度对靶酶和药物间结合光谱的影响。结果表明,靶酶的P450活性、纯度及合适的靶酶浓度是获得准确结合光谱的必要条件。以表达MGCYP51的E.coli膜碎片作为研究材料,E.coli本身并无P450,避免了干扰,并且可以获得足够量且有活性的真菌靶酶CYP51,而且本身MGCYP51就是膜结合蛋白,用膜碎片作为研究材料更接近真实状态,使二者的结合光谱更能准确直接反映杀真菌剂与靶酶的结合。四种杀真菌剂与CYP51的亲和力的大小依次是烯唑醇>戊唑醇>三唑醇>三唑酮,不仅顺序与杀真菌剂对稻瘟病菌的生长抑制能力实验结果相吻合,而且结合常数K_d与lgEC_(50)具有显著相关性(P<0.05),这说明结合常数直接反映了杀真菌剂对靶酶功能的抑制能力,利用结合光谱法测定的结合常数反映抗真菌药物的抑菌潜力是真实和可靠的。
     4.应用结合光谱法从随机合成的氮唑类和非氮唑类化合物中筛选MGCYP51抑制剂。共筛选出7种与靶酶的亲和力和体外抑菌活性均较高的先导化合物,包括LHEXP-10、SYL-25、SYL-35、SYL-36、ZST-17、WJ-5、WJ-15。氮唑类衍生物包括三唑并咪唑啉酮、咪唑啉酮及三唑系列,非氮唑类化合物包括有机磷化合物、含吲哚环及含吡咯环系列。通过结构-活性比较分析,表明①咪唑啉酮类化合物咪唑啉酮苯环侧链卤素取代会增强其与MGCYP51的结合,而苯环侧链烷基取代会减弱甚至丧失与MGCYP51的结合;②ZST系列三唑手性化合物中S型比R型有利于ZST系列与MGCYP51的结合,苯环上3位卤素取代有利于ZST系列与MGCYP51的结合,且溴代比氯代、氟代的效果好,而苯环上1位卤素取代却减弱化合物与MGCYP51的亲和力;③吲哚或吡咯等杂环结构可能对于化合物与MGCYP51的结合没有作用,而噻吩杂环结构却可能有利于化合物与MGCYP51的结合。
     5.利用同源模建、分子对接、结合光谱法和定点突变研究了MGCYP51与三氮唑类抗真菌药物的结合特点,对高效特异稻瘟病菌DMIs杀真菌剂的研发具有重要的指导作用。研究表明化合物疏水性是决定三氮唑类化合物抑制MGCYP51活性能力的最主要因素,MGCYP51活性空腔中Y112,F120,F220,H308和F497是与三氮唑类抗真菌药物发生结合作用的关键氨基酸,而且F220和F497是特异性MGCYP51抑制剂设计的靶位点。定点突变结果还表明Y112、F220和F497与MGCYP51的三维空间结构维持有关。
     6.根据化合物结构-活性分析及靶酶与三氮唑类化合物结合特点的分析结果,利用计算机辅助药物设计技术,设计合成19种待筛选的化合物,从中筛选出4种与MGCYP51的亲和力和体外抑菌活性均高的先导化合物,包括QY3、QY8、QY9和QY17。QY3和QY17与MGCYP51的亲和力与烯唑醇相当,比戊唑醇强,并且QY3对稻瘟病菌生长抑制的120h-EC_(50)比三唑酮的低。这些结果表明QY3可能是稻瘟病菌高效特异的DMIs杀真菌剂,具有良好的商业应用前景。
Rice blast,caused by the ascomycete fungus Magnaporthe grisea,is one of the most serious diseases for cultivated rice and causes serious recurrent epidemics throughout rice growing regions in the world.Every year,the economic loss caused by rice blast is significant.Inhibitors of fungal sterol 14α-demethylase(CYP51,P450_(14DM)),termed demethylase inhibitors(DMI fungicides,DMIs),are the main group of fungicides used in agriculture.DMIs inhibit the biosynthesis of ergosterol.Ergosterol depletion will result in the accumulation of methylated sterol precursors,and affect both membrane integrity and function of membrane-bound proteins,eventually cause inhibition of fungal growth.
     In order to obtain specific and effective fungicides for M.grisea,we have investigated the characteristics of both target enzyme CYP51 and inhibitor compounds by combining the molecular biology technique with computer-aided technique.About the target enzyme,CYP51 from M.grisea(MGCYP51)was cloned and over-expressed in E. coli.Three-dimensional structure of MGCYP51 was built via homology modeling.The characteristics of the interaction between MGCYP51 and azole fungicides were analyzed via difference binding spectra and molecular docking.About inhibitor compounds,a new DMIs screening method in vitro-binding spectrum was established and used in screening MGCYP51 inhibitors.Furthermore the structure-activity relationship was discussed to guide the fungicides' modification.Based on the results of above study,MGCYP51 inhibitors was designed via computer-aided drug design,and effective lead compounds were obtained by screening with binding spectrum.The results obtained in this study, listed below,provided basis for designation of novel,specific and effective DMIs for M. grisea.
     1.MGCYP51 gene was cloned.The sequences were confirmed identical to the published sequence(XP_362183 and EDJ95970),except the 266th Glutamic acid inserted.Homologous alignment analysis indicated that MGCYP51 contained six conserved domains(substrate binding region,SRS)and heme binding region (-FGxGxHxCxGxxFA-).SRS1(-YxxLxxPxFGxxVx-)and SRS4(-GQHTS-)are CYP51 signatures.
     2.MGCYP51 was over-expressed in E.coli.It is founded that the truncation of N-terminal amino acids of MGCYP51 were critical for its heterologous expression in E. coli.Full-length MGCYP51 was not expressed with various combinations of expression vector and strain,unless N-terminal 36aa of MGCYP51 was truncated.The truncated MGCYP51 was successfully expressed in E.coli and the P450 activity was maintained. After optimization of MGCYP51 expression in E.coli,recombinant MGCYP51 was purified by Ni-NTA or GST sepharose resin affinity chromatography under natural conditions.
     3.DMIs screening method in vitro-binding spectrum was established using heterologous expression MGCYP51 membrane.The affinities of four commercial azole fungicides diniconazole,tebuconazole,triadimenol and triadimefon for MGCYP51 were analyzed.The effects of enzyme activity,purity and concentration on the binding spectra were investigated.The results showed that active enzyme,elimination of interference of other P450s and proper enzyme concentration were necessary for obtaining accurate binding spectra.The K_d values of diniconazole,tebuconazole,triadimenol and triadimefon significantly correlated to their 120h-EC_(50)on the growth of M.grisea (P<0.05),which indicated that the binding spectra can serve as a reliable and fast method for DMIs fungicides screening.
     4.According to binding spectra and growth inhibition assay in vitro,seven potential effective and selective lead compounds were obtained,including LHEXP-10,SYL-25, SYL-35,SYL-36,ZST-17,WJ-5 and WJ-15,in type of organophosphorus compounds, pyrroles,indoles,imidazolinone derivatives,and azole derivatives respectively.The corollaries were concluded based on structure-activity relationship analysis.Firstly, among imidazolinone derivatives phenyl with halogen substituent could enhance its affinity for MGCYP51,and alkyl substituent was on the opposite.Secondly,among ZST series azole derivatives S isomer have stronger affinity in binding to MGCYP51 compared to R isomer.Phenyl-3-halogen substituent of ZST series compounds could enhance its affinity for MGCYP51,and Br-substituent has stronger affinity than Cl-and F-substituent.But Phenyl-1-halogen substituent of ZST series compounds could decrease its affinity for MGCYP51.Thirdly,pyrrole and indole compounds do not bind to MGCYP51,but thiophene could enhance its affinity for MGCYP51.
     5.The characteristics of the interaction between MGCYP51 and azole fungicides were analyzed via difference binding spectra,homology modeling,molecular docking and site-directed mutation.The results indicated that the hydrophobicity of the fungicide may be the key factor in determining its binding affinity for MGCYP51.Besides,Y112, F120,F220,H308 and F497 in active cavity are the key residues interacting with azole fungicides.Among them F220 and F497 are target sites of high selective MGCYP51 inhibitors.Y112,F120 and H308 function in the maintaining of 3D structure.
     6.19 compounds were designed via computer-aided drug design and screened by binding spectra and growth inhibition assay in vitro.The results showed QY3,QY8,QY9 and QY17 are potentially specific and effective lead compounds of MGCYP51 inhibitors. Furthermore,the affinities of QY3 and QY17 for MGCYP51 are basically equivalent with diniconazole and stronger than tebuconazole.120-EC_(50)of QY3 on growth of M. grisea was smaller than triadimefon.The results showed the above compounds may serve as potential fungicides for M.grisea.
引文
[1]Yoshida,Y.,Aoyama,Y.,Noshiro,M.,et al.Sterol 14-demethylase P450(CYP51)provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily[J].Biochem Bioph Res Co,2000,273(3):799-804.
    [2]Kelly,S.L.,Lamb,D.C.,Kelly,D.E.Cytochrome P450 biodiversity and biotechnology[J].Biochem Soc Trans,2006,34:1159-1160.
    [3]Lepesheva,G.I.,Waterman,M.R.Sterol 14 alpha-demethylase cytochrome P450(CYP51),a P450 in all biological kingdoms[J].Biochimica et Biophysica Acta,2007,1770(3):467-477.
    [4]Waterman,M.R.,Lepesheva,G.I.Sterol 14 alpha-demethylase,an abundant and essential mixed-function oxidase[J].Biochem Bioph Res Co,2005,338(1):418-422.
    [5]Yoshida,Y.Sterol 14-demethylase P450(CYP51)[J].Nippon Nogeik Kaishi,1999,73(10):1026-1029.
    [6]Kelly,S.L.,Lamb,D.C.,Cannieux,M.,et al.An old activity in the cytochrome P450superfamily(CYP51)and a new story of drugs and resistance[J].Biochem Soc T,2001,29(2):122-128.
    [7]Lepesheva,G.I.,Waterman,M.R.CYP51:The omnipotent P450[J].Mol Cell Endocrinol,2004,215(1-2):165-170.
    [8]Fiecchi,A.,Kienle,M.G.,Scala,A.,et al.Hydrogen Exchange and Double Bond Formation in Cholesterol Biosynthesis[J].P Roy Soc Lond B Bio(1934-1990),1972,180(1059):147-165.
    [9]Mitropoulos,K.A.,Gibbons,G.F.,Reeves,B.E.A.Lanosterol 14α-demethylase.Similarity of the enzyme system from yeast and rat liver[J].Steroids,1976,27(6):821-829.
    [10]Akhtar,M.,Alexander,K.,Boar,R.B.,et al.Chemical and enzymic studies on the characterization of intermediates during the removal of the 14alpha-methyl group in cholesterol biosynthesis.The use of 32-functionalized lanostane derivatives[J].Biochem J,1978,169(3):449-463.
    [11]Gibbons,F.G.,Pullinger,C.R.,Mitropoulos,K.A.Studies on the mechanism of lanosterol 14alpha-demethylation.A requirement for two distinct types of mixed-function-oxidase systems[J].Biochem J,1979,183(2):309-315.
    [12]Trzaskos,J.M.,Bowen,W.D.,Shafiee,A.,et al.Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis.Microsomal electron transport and C-32demethylation[J].J Biol Chem,1984,259(21):13402-13412.
    [13]Trzaskos,J.M.,Fischer,R.T.,Favata,M.F.Mechanistic studies of lanosterol C-32demethylation.Conditions which promote oxysterol intermediate accumulation during the demethylation process[J].J Biol Chem,1986,261(36):16937-16942.
    [14]Yoshida,Y.,Aoyama,Y.Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation.I.Purification and spectral properties[J].J Biol Chem,1984,259(3):1655-1660.
    [15]Kalb,V.F.,Loper,J.C.,Dey,C.R.,et al.Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae[J].Gene,1986,45(3):237-245.
    [16]Nebert,D.W.,Nelson,D.R.,Coon,M.J.,et al.The P450 superfamily:update on new sequences,gene mapping,and recommended nomenclature[J].DNA Cell Biol,1991,10(1):1-14.
    [17]Trzaskos,J.,Kawata,S.,Gaylor,J.L.Microsomal enzymes of cholesterol biosynthesis.Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes[J].J Biol Chem,1986,261(31):14651-14657.
    [18]Kahn,R.A.,Bak,S.,Olsen,C.E.,et al.Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor(L.)Moench[J].J Biol Chem,1996,271(51):32944-32950.
    [19]Aoyama,Y.,Horiuchi,T.,Gotoh,O.,et al.CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51[J].J Biochem(Tokyo),1998,124(4):694-696.
    [20]Bellamine,A.,Mangla,A.T.,Nes,W.D.,et al.Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis[J].Proc Natl,4cad Sci U S A,1999,96(16):8937-8942.
    [21]Shyadehi,A.Z.,Lamb,D.C.,Kelly,S.L.,et al.The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are:lanosterol 14 alpha-demethylase,P-45014DM,and CYP51)[J].J Biol Chem,1996,271(21):12445-12450.
    [22]Nelson,D.R.Cytochrome P450 and the Individuality of Species[J].Arch Biochem Biophys,1999,369(1):1-10.
    [23]Stout,C.D.Cytochrome p450 conformational diversity[J].Structure(Cambridge),2004,12(11):1921-1922.
    [24]季海涛,张万年,周有骏.抗真菌药物作用靶酶羊毛甾醇14a去甲基化酶研究[J].生物化学与生物物理进展,1999,26(2):108-113.
    [25]Aoyama,Y.Recent progress in the CYP51 research focusing on its unique evolutionary and functional characteristics as a diversozyme P450[J].Front Biosci,2005,10:1546-1557.
    [26]Lepesheva,G.I.,Zaitseva,N.G.,Nes,W.D.,et al.Cyp51 from Trypanosoma cruzi - A phyla-specific residue in the B' helix defines substrate preferences of sterol 14alpha-demethylase[J].J Biol Chem,2006,281(6):3577-3585.
    [27]Nitahara,Y.,Kishimoto,K.,Yabusaki,Y.,et al.The amino acid residues affecting the activity and azole susceptibility of rat CYP51(sterol 14-demethylase P450)[J].J Biochem(Tokyo),2001,129(5):761-768.
    [28]Aoyama,Y.,Yoshida,Y.Different substrate speeifieities of lanosterol 14a-demethylase (P-45014DM)of Saccharomyces cerevisiae and rat liver for 24-methylene-24,25-dihydro -lanosterol and 24,25-dihydrolanosterol[J].Biochem Bioph Res Co,1991,178(3).
    [29]Lamb,D.C.,Kelly,D.E.,Kelly,S.L.Molecular diversity of sterol 14α-demethylase substrates in plants,fungi and humans[J].FEBS Lett,1998,425(2):263-265.
    [30]Jackson,C.J.,Lamb,D.C.,Marczylo,T.H.,et al.A novel sterol 14alpha-demethylase /ferredoxin fusion protein(MCCYP51FX)from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily[J].J Biol Chem,2002,277(49):46959-46965.
    [31]Jackson,C.J.,Lamb,D.C.,Marczylo,T.H.,et aL Conservation and cloning of CYP51:A sterol 14alpha-demethylase from Mycobacterium smegmatis[J].Biochem Bioph Res Co,2003,301(2):558-563.
    [32]Berriman,M.,Ghedin,E.,Hertz-Fowler,C.,et al.The Genome of the African Trypanosome Trypanosoma brucei[J].Science,2005,309(5733):416-422.
    [33]Lepesheva,G.I.,Nes,W.D.,Zhou,W.,et al.CYP51 from Trypanosoma brucei is obtusifoliol-specific[J].Biochemistry-US,2004,43(33):10789-10799.
    [34]Pena-Diaz,J.,Montalvetti,A.,Flores,C.-L.,et al.Mitochondrial Localization of the Mevalonate Pathway Enzyme 3-Hydroxy-3-methyl-glutaryl-CoA Reductase in the Trypanosomatidae[J].Mol Biol Cell,2004,15(3):1356-1363.
    [35]Schaller,H.The role of sterols in plant growth and development[J].Prog Lipid Res,2003,42(3):163-175.
    [36]O'Brien,M.,Chantha,S.-C.,Rahier,A.,et al.Lipid signaling in plants.Cloning and expression analysis of the obtusifoliol 14alpha-demethylase from Solarium chacoense Bitt.,a pollination- and fertilization-induced gene with both obtusifoliol and lanosterol demethylase activity[J].Plant Physiol,2005,139(2):734-749.
    [37]Kim,H.B.,Schaller,H.,Goh,C.-H.,et al.Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity[J].Plant Physiol,2005,138(4): 2033-2047.
    [38]Seliskar,M.,Rozman,D.Mammalian cytochromes P450-importance of tissue specificity[J].Biochimica et Biophysica Acta,2007,1770(3).
    [39]Rozman,D.Lanosterol 14alpha-demethylase(CYP51):A cholesterol biosynthetic enzyme involved in production of meiosis activating sterols in oocytes and testis:A minireview[J].Pflug Arch Eur J Phy,2000,439(3 Suppl.):R56-R57.
    [40]Kushiro,M.,Nakano,T.,Sato,K.,et al.Obtusifoliol 14alpha-demethylase(CYP51)antisense Arabidopsis shows slow growth and long life[J].Biochem Bioph Res Co,2001,285(1):98-104.
    [41]Sono,H.,Sonoda,Y.,Sato,Y.Purification and characterization of cytochrome P-45014DM (lanosterol 14 alpha-demethylase)from pig liver microsomes[J].Biochimica et Biophysica Acta,1991,1078(3):388-394
    [42]Stromstedt,M.,Rozman,D.,Waterman,M.R.The Ubiquitously Expressed Human CYP51Encodes Lanosterol 14α-Demethylase,a Cytochrome P450 Whose Expression Is Regulated by Oxysterols[J].Arch Biochem Biophys,1996,329(1):73-81.
    [43]Hitchcock,C.A.,Dickinson,K.,Brown,S.B.,et al.Purification and properties of cytochrome P-450-dependent 14 alpha-sterol demethylase from Candida albicans[J].Biochem J,1989,263(2):573-579.
    [44]Lamb,D.C.,Kelly,D.E.,Manning,N.J.,et al.Expression,purification,reconstitution and inhibition of Ustilago maydis sterol 14α-demethylase(CYP51;P45014DM)[J].FEMS Microbiol Lett,1998,169(2):369-373.
    [45]Yang,J.,Zhang,Q.,Xiao,W.,et al(2008).Expression and homology modeling of sterol 14alpha-demethylase from Magnaporthe grisea.Paper presented at:The 2nd International Conference on Bioinformatics and Biomedical Engineering(Shanghai,China).
    [46]Li,Y.,Chiang,J.The expression of a catalytically active cholesterol 7 alpha- hydroxylase cytochrome P450 in Escherichia coli[J].J Biol Chem,1991,266(29):19186-19191.
    [47]Venkateswarlu,K.,Lamb,D.C.,Kelly,D.E.,et al.The N-terminal membrane domain of yeast NADPH-cytochrome P450(CYP)oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity[J].J Biol Chem,1998,273(8):4492-4496.
    [48]Shen,A.L.,O'Leary,K.A.,Kasper,C.B.Association of Multiple Developmental Defects and Embryonic Lethality with Loss of Microsomal NADPH-Cytochrome P450 Oxidoreductase[J].J Biol Chem,2002,277(8):6536-6541.
    [49]Zanno,A.,Kwiatkowski,N.,Vaz,A.D.N.,et al.MT FdR:a ferredoxin reductase from M.tuberculosis that couples to MT CYP51[J].Biochimica et Biophysica Acta,2005,1707(2-3):157-169.
    [50]Taton,M.,Rahier,A.Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 alpha-demethylase from maize(Zea mays)seedlings[J].Biochem J,1991,277(Pt2)(2):483-492.
    [51]Cabeilo-Hurtado,F.,Taton,M.,Forthoffer,N.,et al.Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase(CYP51)expressed in yeast.Complementation of erg11Delta yeast mutants by plant CYP51[J].Eur J Biochem,1999,262(2):435-446.
    [52]Lepesheva,G.I.,Virus,C.,Waterman,M.R.Conservation in the CYP51 family.Role of the B'helix/BC loop and helices F and G in enzymatic function[J].Biochemistry-US,2003,42(30):9091-9101.
    [53]Lisitsa,A.V.,Gusev,S.A.,Miroshnichenko,Y.V.,et al.Structural-functional motifs of sterol 14-alpha demethylases(CYP51)[J].Biomeditsinskaya Khimiya,2004,50(6):554-565.
    [54]Gotoh,O.Substrate recognition sites in cytochrome P450 family 2(CYP2)proteins inferred from comparative analyses of amino acid and coding nucleotide sequences[J].J Biol Chem,1992,267(1):83-90.
    [55]Holtje,H.-D.,Fattorusso,C.Construction of a model of the Candida albicans lanosterol 14α-demethylase active site using the homology modelling technique[J].Pharmaceutica Acta Helvetiae,1998,72(5):271-277.
    [56]Ji,H.,Zhang,W.,Zhou,Y.,et al.A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals[J].J Med Chem,2000,43(13):2493-2505.
    [57]Podust,L.M.,Poulos,T.L.,Waterman,M.R.Crystal structure of cytochrome P45014alpha-sterol demethylase(CYP51)from Mycobacterium tuberculosis in complex with azole inhibitors[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(6):3068-3073.
    [58]Podust,L.M.,Stojan,J.,Poulos,T.L.,et al.Substrate recognition sites in 14alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51[J].J Inorg Biochem,2001,87(4):227-235.
    [59]Podust,L.M.,Yermalitskaya,L.V.,Lepesheva,G.I.,et al.Estriol bound and ligand-free structures of sterol 14alpha-demethylase[J].Structure(Cambridge),2004,12(11):1937-1945.
    [60]de Groot,M.J.Designing better drugs:predicting cytochrome P450 metabolism[J].Drug Discov Today,2006,11(13-14):601-606.
    [61]Poulos,T.L.,Finzel,B.C.,Howard,A.J.High-resolution crystal structure of cytochrome P450cam[J].J Mol Biol,1987,195(3):687-700.
    [62]Hasemann,C.A.,Ravichandran,K.G.,Peterson,J.A.,et al.Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution[J],J Mol Biol,1994,236(4):1169-1185.
    [63]Cupp-Vickery,J.R.,Poulos,T.L.Structure of cytochrome P450eryF involved in erythromycin biosynthesis[J].Nat Struct Mol Biol,1995,2(2):144-153.
    [64]Ravichandran,K.G.,Boddupalli,S.S.,Hasermann,C.A.,et al.Crystal structure of bemoprotein domain of P450BM-3,a prototype for microsomal P450's[J].Science,1993,261(5122):731-736.
    [65]Ruge,E.,Korting,H.C.,Borelli,C.Current state of three-dimensional characterisation of antifungal targets and its use for molecular modelling in drug design[J].Int J of Antimicrob Ag,2005,26(6):427-441.
    [66]Boscott,P.E.,Grant,G.H.Modeling cytochrome P450 14 alpha demethylase(Candida albicans)from P450cam[J].J Mol Graph,1994,12(3):185-192.
    [67]Tsukuda,T.,Shiratori,Y.,Watanabe,M.,et al.Modeling,synthesis and biological activity of novel antifungal agents(1)[J].Bioorg Med Chem Lett,1998,8(14):1819-1824.
    [68]季海涛,张万年,周有骏,等.白色念珠菌羊毛甾醇14-去甲基化酶三维结构分子模型研究[J].生物化学与生物物理学报,1998,30(6):585-592.
    [69]Lewis,D.F.,Wiseman,A.,Tarbit,M.H.Molecular modelling of lanosterol 14alpha-demethylase(CYP51)from Saccharomyces cerevisiae via homology with CYP102,a unique bacterial cytochrome P450 isoform:quantitative structure-activity relationships (QSARs)within two related seres of antifungal azole derivatives[J].J Enzyrae Inhib,1999,14(3).
    [70]Xiao,L.,Madison,V.,Chau,A.S.,et al.Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding[J],Antimicrob Agents Ch,2004,48(2):568-574.
    [71]Gollapudy,R.,Ajmani,S.,Kulkarni,S.A.Modeling and interactions of Aspergillus fumigatus lanosterol 14-alpha demethylase 'A' with azole antifungals[J].Bioorgan Med Chem,2004,12(11):2937-2950.
    [72]Rupp,B.,Raub,S.,Marian,C.,et al.Molecular design of two sterol 14 alpha-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole[J].J Comput Aid Mol Des,2005,19(3):149-163.
    [73]Matsuura,K.,Yoshioka,S.,Tosha,T.,et aL Structural diversities of active site in clinical azole-bound forms between sterol 14 alpha-demethylases(CYP51s)from human and Mycobacterium tuberculosis[J].J Biol Cheat,2005,280(10):9088-9096.
    [74]Ito,A.,Sudo,K.,Kumazawa,S.,et al.Three-dimensional modeling of cytochrome P450 14alpha-demethylase(CYP51)and interaction of azole fungicide metconazole with CYP51[A].ACS Symposium Series[C].2005.142-150.
    [75]Chen,S.,Jiang,Y.,Zhang,W.,et al.Y118,S378,H310 three crucial acid residues that contribute to sterol 14a demethylase and inhibitor interaction in candida albicans[J].Acta Pharmacol Sin,2006,27(Suppl.1):236-237.
    [76]徐铮,曹永兵,姜远英.麦角甾醇生物合成途径中的抗真菌药作用靶酶[J].国外医药抗生素分册,2001,22(5):193-197.
    [77]Tuck,S.F.,Patel,H.,Sail,E.,et aL Lanosterol 14 alpha-demethylase(P45014DM):effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol[J].J Lipid Res,1991,32(6):893-902.
    [78]McNeil,M.M.,Nash,S.L.,Hajjeh,R.A.,et al.Trends in mortality due to invasive mycotic diseases in the United States,1980-1997[J].Clin Infect Dis,2001,33(5):641-647.
    [79]Buckner,F.,Yokoyama,K.,Lockman,J.,et al.A class of sterol 14-demethylase inhibitors as anti-Trypanosoma cruzi agents[J].Proc Natl Acad Sci USA,2003,100(25):15149-15153.
    [80]Zarn,J.A.,Bruschweiler,B.J.,Schlatter,J.R.Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase[J].Environ Health Perspect,2003,111(3):255-261.
    [81]Francois,I.E.J.A.,Cammue,B.P.A.,Borgers,M.,et al.Azoles:Mode of antifungal action and resistance development.Effect of miconazole on endogenous reactive oxygen species production in Candida albicans[J].Anti-Infective Agents in Medicinal Chemistry,2006,5(1):3-13.
    [82]何秀萍,张博润.微生物麦角固醇的研究进展[J].微生物学通报,1998,25(3):166-169.
    [83]Lees,N.D.,Kleinhans,F.W.,Broughton,M.C.,et al.Membrane fluidity alterations in a cytochrome P-450-deficient mutant of Candida albicans[J].Steroids,1989,53(3-5):567-578
    [84]Georgopapadakou,N.H.,Walsh,T.J.Human mycoses:drugs and targets for emerging pathogens[J].Science,1994,264(5157):371-373.
    [85]Ji,H.,Zhang,W.,Zhang,M.,et al.Structure-based de novo design,synthesis,and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi[J].J Med Chem,2003,46(4):474-485.
    [86]盛春泉,瑞,马.,吕小伟,等.三唑类抗真菌药物构效关系[J].药学进展,2003,27(6):336-340.
    [87]Ekins,S.,Mankowski,D.C.,Hoover,D.J.,et al.Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors[J].Drug Metab Dispos,2007,35(3):493-500.
    [88]Tasaka,A.,Tamura,N.,Matsushita,Y.,et al.Optically active antifungal azoles.I.Synthesis and antifungal activity of(2R,3R)-2-(2,4-difluorophenyl)-3-mercapto-1-(1H-1,2,4-triazol-1-yl)-2-b utanol and its stereoisomers[J].Chem Pharm Bull(Tokyo),1993,41(6):1035-1042.
    [89]Eto,H.,Kaneko,Y.,Takeda,S.,et al.New Antifungal 1,2,4-Triazoles with Difluoro(substituted sulfonyl)methyl Moiety[J].Chem Pharm Bull,2001,49(2):173-182.
    [90]Fung-Tomc,J.C.,Bonner,D.P.Recent developments in pradimicin-benanomicin and triazole antibiotics[J].Expert Opin Inv Drug,1997,6(2):129-145.
    [91]Fung-Tomc,J.C.,Huczko,E.,Minassian,B.,et al.In Vitro Activity of a New Oral Triazole,BMS-207147(ER-30346)[J].Antimicrob Agents Ch,1998,42(2):313-318.
    [92]Moore,C.B.,Walls,C.M.,Denning,D.W.In Vitro Activity of the New Triazole BMS-207147 against Aspergillus Species in Comparison with Itraconazole and Amphotericin B[J].Antimicrob Agents Ch,2000,44(2):441-443.
    [93]Yamazumi,T.,Pfaller,M.A.,Messer,S.A.,et al.In Vitro Activities of Ravuconazole (BMS-207147)against 541 Clinical Isolates of Cryptococcus neoformans[J].Antimicrob Agents Ch,2000,44(10):2883-2886.
    [94]Fromtling,R.A.,J.Castane.Syn-2869[J].Drugs Fut,1999,24(1):30-37.
    [95]Johnson,E.M.,Szekely,A.,Warnock,D.W.In Vitro Activity of Syn-2869,a Novel Triazole Agent,against Emerging and Less Common Mold Pathogens[J].Antimicrob Agents Ch,1999,43(5):1260-1263.
    [96]Schell,W.A.,De Almeida,G.M.D.,Dodge,R.K.,et al.In Vitro and In Vivo Efficacy of the Triazole TAK-187 against Cryptococcus neoformans[J].Antimicrob Agents Ch,1998,42(10):2630-2632.
    [97]Dickinson,R.P.,Bell,A.S.,Hitchc ock,C.A.,et al.Novel antifungal 2-aryl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol derivatives with high activity against Aspergillus fumigatus[J].Bioorg Med Chem Lett,1996,6(16):2031-2036.
    [98]Manek,S.,Bland,S.UWHC guidelines for the use of voriconazole(Vfend)[J].J Pharma Soc Wisconsin,2002,11/12:40-42.
    [99]Cao,Y.-b.,Zhang,L.,Wang,Y.,et al.Voriconazole and its clinical use[J].Zhongguo Xinyao yu Linchuang Zazhi,2005,24(4):330-332.
    [100]Scott,L.J.,Simpson,D.Voriconazole:a review of its use in the management of invasive fungal infections[J].Drugs,2007,67(2).
    [101]Oakley,K.L.,Moore,C.B.,Denning,D.W.In vitro activity of SCH-56592 and comparison with activities of amphotericin B and itraconazole against Aspergillus spp[J].Antimicrob Agents Ch,1997,41(5):1124-1126.
    [102]Pfailer,M.A.,Messer,S.,Jones,R.N.Activity of a new triazole,Sch 56592,compared with those of four other antifungal agents tested against clinical isolates of Candida spp.and Saccharomyces cerevisiae[J].Antimicrob Agents Ch,1997,41(2):233-235.
    [103]Caceiapuoti,A.,Loebenberg,D.,Corcoran,E.,et al.In Vitro and In Vivo Activities of SCH 56592(Posaconazole),a New Triazole Antifungal Agent,against Aspergillus and Candida[J].Antimicrob Agents Ch,2000,44(8):2017-2022.
    [104]Pfaller,M.A.,Messer,S.A.,Hollis,R.J.,et al.In Vitro Activities of Posaconazole(Sch 56592)Compared with Those of Itraconazole and Fluconazole against 3,685 Clinical Isolates of Candida spp.and Cryptococcus neoformans[J].Antimicrob Agents Ch,2001,45(10):2862-2864.
    [105]Groll,A.H.,Walsh,T.J.Posaconazole:clinical pharmacology and potential for management of fungai infections[J].Expert Rev Anti Infect Ther,2005,3(4).
    [106]Hof,H.A new,broad-spectrum azole antifungal:posaconazole mechanisms of action and resistance,spectrum of activity[J].Mycoses,2006,49(Suppl.1):2-6.
    [107]Kagoshima,Y.,Konosu,T.Substituent effect of fluorine atoms in the 2,4-difluorophenyl group on antifungai activity of CS-758[J].J Fluorine Chem,2006,127(4-5):643-650.
    [108]Salama,S.M.,Atwal,H.,Gandhi,A.,et al.In Vitro and In Vivo Activities of Syn2836,Syn2869,Syn2903,and Syn2921:New Series of Triazole Antifungal Agents[J].Antimicrob Agents Ch,2001,45(9):2420-2426.
    [109]盛春泉,张万年,季海涛,等.1-(1,2,4-三唑-1-H-1-基)-2-(2,4-二氟苯基)-3-(4-取代苯基-1-哌嗪基)-2-丙醇的合成及抗真菌活性[J].药学学报,2003,38(9):665-670.
    [110]盛春泉,朱杰,张万年,等.新型三唑类化合物的合成及抗真菌活性[J].药学学报,2004,39(12):984-989.
    [111]Kitazaki,T.,Ichikawa,T.,Tasaka,A.,et aL Optically active antifungal azoles.X.Synthesis and antifungai activity ofN[J].Chem Pharm Bull(Tokyo),2000,48(12):1935-1946.
    [112]盛春泉,朱杰,张万年,等.N-[2-(2,4-氟苯基)-2-羟基-3-(1H-1,2,4-三唑-1-基)丙基]-N′-(4-取代苯基)-3(2H,4H)-1,2,4-三唑酮的合成和抗真菌活性[J].中国药学杂志,2006,41(1):469-471.
    [113]甘亚,吕丁,刘剑,等.三唑醇类化合物的合成及抗真菌活性[J].中国药物化学杂志,2001,40(2):85-88,90.
    [114]Odds,F.C.Resistance of yeasts to azole-derivative antifungals[J].J Antimicrob Chemoth,1993,31(4):463-471.
    [115]Lupetti,A.,Danesi,R.,Campa,M.,et al.Molecular basis of resistance to azole antifungals[J].Trends Mol Med,2002,8(2):76-81.
    [116]Sanglard,D.,Odds,F.C.Resistance of Candida species to antifungal agents:molecular mechanisms and clinical consequences[J].Lancet Infect Dis,2002,2(2).
    [117]Vanden Bossche,H.,Marichal,P.,Gorrens,J.,et al.Mutation in cytochrome P-450-dependent 14 alpha-demethylase results in decreased affinity for azole antifungals[J].Biochem Soc Trans,1990,18(1):56-59.
    [118]Asai,K.,Tsuehimori,N.,Okonogi,K.,et al.Formation of azole-resistant Candida albicans by mutation of sterol 14-demethylase P450[J].Antimicrob Agents Ch,1999,43(5):1163-1169.
    [119]Marichal,P.,Koymans,L.,Willemsens,S.,et al.Contribution of mutations in the cytochrome P450 14alpha-demethylase(Erg11p,Cyp51p)to azole resistance in Candida albicans[J].Microbiology,1999,145(Pt 10):2701-2713
    [120]Lamb,D.C.,Kelly,D.E.,White,T.C.,et al.The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity[J].Antimicrob Agents Ch,2000,44(1):63-67.
    [121]Rodero,L.,Meilado,E.,Rodriguez,A.C.,et al.G484S amino acid substitution in lanosterol 14-alpha demethylase(ERG11)is related to flueonazole resistance in a recurrent Cryptococcus neoformans clinical isolate[J].Antimicrob Agents Ch,2003,47(11):3653-3656.
    [122]Sanglard,D.,Iseher,F.,Parkinson,T.,et aL Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents[J].Antimicrob Agents Ch,2003,47(8):2404-2412.
    [123]Kudo,M.,Ohi,M.,Aoyama,Y.,et al.Effects of Y132H and F145L substitutions on the activity,azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450(CYP51):a live example showing the selection of altered P450 through interaction with environmental compounds[J].J Biochem(Tokyo),2005,137(5):625-632.
    [124]Wyand,R.A.,Brown,J.K.M.Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides[J].Fungal Genet Biol,2005,42(8):726-735.
    [125]Cernicka,J.,Subik,J.Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis[J].Int J Antimicrob Ag,2006,27(5):403-408.
    [126]Howard,S.J.,Webster,I.,Moore,C.B.,et al.Multi-azole resistance in Aspergillus fumigants[J].Int J Antimicrob Ag,2006,28(5):450-453.
    [127]Brun,S.,Berges,T.,Poupard,P.,et al.Mechanisms of azole resistance in petite mutants of Candida glabrata[J].Antimicrob Agents Ch,2004,48(5):1788-1796.
    [128]Hankins,E.G.,Gillespie,J.R.,Aikenhead,K.,et al.Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors[J].Mol Biochem Parasitol,2005,144(1):68-75
    [129]Vandeputte,P.,Larcber,G.,Berges,T.,et al.Mechanisms of azole resistance in a clinical isolate of Candida tropicalis[J].Antimicrob Agents Ch,2005,49(11):4608-4615.
    [130]Ma,Z.,Proffer,T.J.,Jacobs,J.L.,et al.Overexpression of the 14 alpha-demethylase target gene(CYP51)mediates fungicide resistance in Blumeriella jaapii[J].Appl Environ Microb,2006,72(4):2581-2585.
    [131]Guinea,J.,Sanchez-Somolinos,M.,Cuevas,O.,et al.Fluconazole resistance mechanisms in Candida krusei:The contribution of efflux-pumps[J].Med Mycol,2006,44(6):575-578.
    [132]Slama,J.T.,Hancock,J.L.,Rho,T.,et al.Influence of Some Novel N-Substituted Azoles and Pyridines on Rat Hepatic CYP3A Activity[J].Biochem Pharmacol,1998,55(11):1881-1892.
    [133]李健和,许树梧,陈孝治.氟康唑与眼部真菌感染[J].中国新药杂志,1998,7(3):184-188.
    [134]Zhang,W.,Ramamoorthy,Y.,Kilicarslan,T.,et al.Inhibition of Cytochromes P450 by Antifungal Imidazole Derivatives[J].Drug Metab Dispos,2002,30(3):314-318.[135]Matsumoto,M.,Ishida,K.,Konagal,A.,et al.Strong Antifungal Activity of SS750,a New Triazole Derivative,Is Based on Its Selective Binding Affinity to Cytochrome P450 of Fungi[J].Antimicrob Agents Ch,2002,46(2):308-314.
    [136]Pyrgaki,C.,Gera,L.,Gerber,J.G,et al.Search For Safer Azole Antifungal Drugs:Studies Of New Ketoconazole(K)Derivatives[J].FASEB J,2004,18(4-5).
    [137]Tsuruoka,A.,Kaku,Y.,Kakinuma,H.,et al.Synthesis and antifungal activity of novel thiazole-containing triazole antifungals.Ⅱ.Optically active ER-30346 and its derivatives[J].Chem Pharm Bull,1998,46(4):623-630.
    [138]Upadhayaya,R.S.,Sinha,N.,Jain,S.,et al.Optically active antifungal azoles:synthesis and antifungai activity of(2R,3S)-2-(2,4-difluorophenyl)-3-(5-{2-[4-aryl-piperazin-1-yl]-ethyl}-te trazol-2-yl/1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol[J].Bioorgan Med Chem,2004,12(9):2225-2238.
    [139]Morisaki,M.,Sonoda,Y.,Makino,T.,et al.Inhibitory Effect of 15-Oxygenated Sterols on Cholesterol Synthesis from 24,25-Dihydrolanosterol[J].J Biochem,1986,99(2):597-600.
    [140]Cooper,A.B.,Wright,J.J.,Ganguly,A.K.,et al.Synthesis and Antifungal Properties of 14-Aminomethyl-Substituted Lanosterol Derivatives[J].Ann NY Acad Sci,1988,544(1):109-112.
    [141]Trzaskos,J.M.,Fischer,R.T.,Ko,S.S.,et al.Substrate-based inhibitors of lanosterol 14alpha-methyl demethylase:Ⅱ.Time-dependent enzyme inactivation by selected oxylanosterol analogs[J].Biochemistry-US,1995,34(30):9677-9681.
    [142]Frye,L.1.,Leonard,D.A.Lanosterol analogs:dual-action inhibitors of cholesterol biosynthesis[J].Crit Rev Biochem Mol Biol,1999,34(2):123-140.
    [143]Harwood,H.J.,Jr.,Petras,S.F.,Hoover,D.J.,et al.Dual-action hypoglycemie and hypoeholesterolemie agents that inhibit glycogen phosphorylase and lanosterol demethylase[J].J Lipid Res,2005,46(3):547-563.
    [144]盛春泉,张万年,季海涛,等.抗真菌药物的创新设计研究[J].中国新药杂志,2004,13(2):97-102.
    [145]Zhu,J.,Lu,J.,Zhou,Y.,et al.Design,synthesis,and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14 alpha-demethylase (CYP51)of fungi[J].Bioorg Med Chem Lett,2006,16(20):5285-5289.
    [146]Vasanthanathan,P.,Lakshmi,M.,Babu,M.A.,et al.Classical QSAR study on chromene derivatives as lanosterol 14alpha- demethylase inhibitor:a non azole antifungal target[J].Med Chem,2006,2(4):363-367.
    [147]Xiao,M.,Yang,J.-Y.,Xiao,W.-J.,et al.Application of Binding Spectrum in DMIs Fungicide Screening[J].Chinese Journal of Biotechnology,2007,23(6):1129-1134.
    [148]肖敏,杨娇艳,肖文精,等.结合光谱法在DMIs类杀真菌剂筛选中的应用[J].生物工程学报,2007,23(6):1129-1134.
    [149]韩平,刘西莉,刘鹏飞,等.高效液相色谱法研究啶菌噁唑对番茄灰霉病菌麦角甾醇生物合成的影响[J].分析化学 2006,34(10):1467-1470.
    [150]Wen-Sheng,X.,Xiang-Jing,W.,Tian-Rui,R.,et al.Purification of recombinant wheat eytochrome P450 monooxygenase expressed in yeast and its properties[J].Protein Express Purif,2006,45(1):54-59.
    [151]曹永兵,姜远英,殷明,等.薄层色谱扫描法检测氟康唑对真菌麦角固醇生物合成的影响 [J].第二军医大学学报 1999,20(5):312-315.
    [152]刘洪涛,高平挥,曹永兵,等.气-质联用研究氟康唑对白念珠菌甾醇生物合成的抑制作用[J].中国药理学与毒理学杂志,2002,16(5):368-371.
    [153]晏秀伟,刘洪涛,曹永兵,等.同位素掺入法测定耐药白念珠菌CYP51酶活性[J].中国新医药,2004,3(6):1-3.
    [154]Schenkman,J.B.,Remmer,H.,Estabrook,R.W.Spectral studies of drug interaction with hepatic microsomal cytochrome[J].Mol Pharmacol,1967,3(2):113-123.
    [155]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能和应用前景[M].北京:科学出版社,2001.
    [156]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002:355-363.
    [157]周晓云.酶学原理与酶工程[M].中国轻工业出版社,2005:63-65.
    [158]Venkateswarlu,K.,Kelly,D.E.,Manning,N.J.,et al.NADPH cytochrome P-450oxidoreductase and susceptibility to ketoconazole[J].Antimicrob Agents Ch,1998,42(7):1756-1761.
    [159]Guardiola-Diaz,H.M.,Foster,L.-A.,Mushrush,D.,et al.Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis:implications for treatment of tuberculosis[J].Biochem Pharmacol,2001,61(12):1463-1470.
    [160]Lamb,D.C.,Cannieux,M.,Warrilow,A.G.S.,et al.Plant sterol 14alpha-demethylase affinity for azole fungicides[J].Biochem Bioph Res Co,2001,284(3):845-849.
    [161]McLean,K.J.,Marshall,K.R.,Richmond,A.,et al.Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes[J].Microbiology,2002,148(10):2937-2949.
    [162]Bellamine,A.,Lepesheva,G.I.,Waterman,M.R.Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology[J].J Lipid Res,2004,45(11):2000-2007.
    [163]曹永兵,高平挥,张军东,等.核素掺入研究氟康唑对真菌麦角甾醇生物合成的影响[J].第二军医大学学报,2004,25(7):751-754.
    [164]嵇汝运,戎锁宝,陈凯先.计算机辅助药物设计研究[J].中国药学杂志,1997,32(11):674-677.
    [165]唐贇,蒋华良,陈凯先,等.计算机辅助药物设计正在走向成功[J].生命科学,1996,8(4):5-9
    [166]Dixon,J.S.Computer-aided drug design:getting the best results[J].Trends biotechnol,1992,10(10):357-363
    [167]Fau,G.J.,Erickson,J.W.,Baldwin,J.J.,et al.Application of the three-dimensional strluctures of protein target molecules in structure-based drug design[J].J Med Chem,1994,37(8):1035-1054.
    [168]Kuntz,I.,Meng,E.,Shoichet,B.Structure-based molecular design[J].Accounts Chem Res,1994,27(5):117-123.
    [169]Robertus,J.Structures-based drug design ten years on[J].Nat Struct Mol Biol,1994,1(6):352-354.
    [170]Blundell,T.L.Structure-based drug design[J].Nature,1996,384(6604 Suppl):23-26.
    [171]Gane,P.J.,Dean,P.M.Recent advances in structure-based rational drug design[J].Curr Opin Struc Biol,2000,10(4):401-404.
    [172]Shoichet,B.K.,McGovem,S.L.,Wei,B.,et al.Lead discovery using molecular docking[J].Curr Opin Chern Biol,2002,6(4):439-446.
    [173]Taylor,R.D.,Jewsbury,P.J.,Essex,J.W.A review of protein-small molecule docking methods[J].J Comput Aid Mol Des,2002,16(3):151-166.
    [174]Abagyan,R.,Totrov,M.High-throughput docking for lead generation[J].Curr Opin Chem Biol,2001,5(4):375-382.
    [175]Doman,T.N.,McGovem,S.L.,Witherbee,B.J.,et al.Molecular Docking and High-Throughput Screening for Novel Inhibitors of Protein Tyrosine Phosphatase-1B[J].J Med Chem,2002,45(11):2213-2221.
    [176]Joseph-McCarthy,D.Computational approaches to structure-based ligand design[J].Pharmacol Therapeut,1999,84(2):179-191.
    [177]Kellogg,G.E.,Semus,S.F.3D QSAR in modem drug design[J].EXS,2003,(93):223-241.
    [178]Veselovsky,A.V.,Ivanov,A.S.Strategy of Computer-Aided Drug Design[j].Current Drug Targets-Infectious Disorsers,2003,3(1):33-40.
    [179]Martin,Y.C.3D QSAR:current state,scope,and limitations[J].Perspect Drug Discov,1998,12-14:3-23.
    [180]Finn,P.W.Computer-based screening of compound databases for the identification of novel leads[J].Drug Discov Today,1996,1(9):363-370.
    [181]Hill,A.P.,Hyde,R.M.,Robertson,A.D.,et al.Oral delivery of 5-HT1D receptor agonists:Towards the discovery of 31 IC90,a novel anti- migraine gent[J].Headache,1994,34:308.
    [182]Glen,R.C.,Martin,G.R.,Hill,A.P.,et al.Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor:discovery of compounds with potential anti-migraine properties[J].J Med Chem,1995,38(18):3566-3580.
    [183]Dorsey,B.,Levin,R.,McDaniel,S.,et al.L-735,524:the design of a potent and orally bioavailable HIV protease inhibitor[J].J Med Chem,1994,37(21):3443-3451.
    [184]Holloway,M.k.,Wai,J.M.,Halgren,T.A.,et al.A priori prediction of activity for HIV-1protease inhibitors employing energy minimization in the active site[J].J Med Chem,1995,38(2):305-317.
    [185]Schevitz,R.W.,Bach,N.J.,Carlson,D.G.,et al.Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2[J].Nat Struct Mol Biol,1995,2(6):458-465.
    [186]Sheng,C.-q.,Zhu,J.,Zhang,W.-n.,et al.Synthesis and antifungal activity of novel triazole antifungal agents[J].Yaoxue Xuebao,2004,39(12):984-989.
    [187]Schiaffella,F.,Macchiarulo,A.,Milanese,L.,et al.Design,synthesis,and microbiological evaluation of new Candida albicans CYP51 inhibitors[J].J Med Chem,2005,48(24):7658-7666.
    [188]Sheng,C.,Zhang,W.,Ji,H.,et al.Structure-based optimization of azole antifungal agents by CoMFA,CoMSIA,and molecular docking[J].J Med Chem,2006,49(8):2512-2525.
    [189]Baker,B.,Zambryski,P.,Staskawicz,B.,et al.Signaling in Plant-Microbe Interactions[J].Science,1997,276(5313):726-733.
    [190]许志刚.普通植物病理学[M].中国农业出版社,2003.
    [191]Talbot,N.J.,Ebbole,D.J.,Hamer,J.E.Identification and characterization of MPG1,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea[J].Plant Cell,1993,5(11):1575-1590.
    [192]Venkateswarlu,K.,Denning,D.W.,Manning,N.J.,et al.Comparison of D0870,a new triazole antifungal agent,to fluconazole for inhibition of Candida albicans cytochrome P-450by using in vitro assays[J].Antimicrob Agents Ch,1996,40(6):1382-1386.
    [193]许华夏.真菌细胞色素P450与多环芳烃浓度及降解率的相互关系[J].农业环境科学学报,2004,23(5):972-976.
    [194]Lamb,D.C.,Maspahy,S.,Kelly,D.E.,et al.Purification,Reconstitution,and Inhibition of Cytochrome P-450 Sterol Delta 22-Desaturase from the Pathogenic Fungus Candida glabrata[J].Antimicrob Agents Ch,1999,43(7):1725-1728.
    [195]Ballard,S.A.,Kelly,S.L.,Ellis,S.W.,et al.Interaction of microsomal cytochrome P-450isolated from Aspergillus fumigatus with fluconazole and itraconazole[J].Med Mycol,1990,28(4):327-334.
    [196]Hitchcock,C.A.,Dickinson,K.,Brown,S.B.,et al.Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14 alpha-sterol demethylase purified from Candida albicans[J].Biochem J,1990,266:475-480.
    [197]刘小红,李健强,周立刚,等.丁布对小麦赤霉病菌和玉米小斑病菌的抑制作用[J].菌物学报,2004,23(1):109-114.
    [198]周文明,王昌钊,李长杰,等.新三唑类化合物的合成及抑菌活性研究[J].西北农林科技大学学报(自然科学版),2005,33(6):147-150.
    [199]刘德立,张山,赵莉.细胞色素P450与农药相互作用及其机理研究[J].华中师范大学学报(自然科学版),2005,39(4):518-524.
    [200]SYBYL7.0.St.Louis,Missouri,USA.:Tripos Inc.,http://www.tripos.com.
    [201]Shi,J.,Blundell,T.L.,Mizuguchi,K.FUGUE:Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties[J].J Mol Biol,2001,310:243-257.
    [202]Laskowski,R.A.,MacArthur,M.W.,Moss,D.S.,et al.PROCHECK:A program to check the stereochemical quality of protein structures[J].J Appl Cryst,1993,26:283-291.
    [203]Kramer,B.,Rarey,M.,Lengauer,T.Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking[J].Proteins:Struct Funct Genet,1999,37:228-241.
    [204]Robert,C.Z.,Kenneth,P.H.,John,F.H.SKETCH:an interface for sketching 3D scenes[C].ACM SIGGRAPH 2006 Courses,Boston,Massachusetts.ACM,2006.
    [205]Lamb,D.C.,Kelly,D.E.,Baldwin,B.C.,et al.Differential inhibition of Candida albicans CYP51 with azole antifungal stereoisomers[J].FEMS Microbiol Lett,1997,149(1):25-30.
    [206]Bellamine,A.,Mangla,A.T.,Dennis,A.L.,et al.Structural requirements for substrate recognition of Mycobacterium tuberculosis 14alpha-demethylase:Implications for sterol biosynthesis[J].J Lipid Res,2001,42(1):128-136.
    [207]Lepesheva,G.I.,Podust,L.M.,Bellamine,A.,et al.Folding requirements are different between sterol 14alpha-demethylase(CYP51)from Mycobacterium tuberculosis and human or fungal orthologs[J].J Biol Chem,2001,276(30):28413-28420.
    [208]Kelly,S.L.,Lamb,D.C.,Kelly,D.E.Y132H substitution in Candida albicans sterol 14α-demethylase confers fluconazole resistance by preventing binding to haem[J].FEMS Microbiol Lett,1999,180(2):171-175.
    [209]Matthew,C.,Richard D.Cramer,Ⅲ,Nicole Van,O.Validation of the general purpose Tripos 5.2 force field[J].J Comput Chem,1989,10(9):982-1012.
    [210]Jones,G.,Willett,P.,Glen,R.C.Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation[J].J Mol Biol,1995,245(1):43-53.
    [211]Muegge,I.,Martin,Y.C.A General and Fast Scoring Function for Protein-Ligand Interactions:A Simplified Potential Approach[J].J Med Chem,1999,42(5):791-804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700