玉米S-CMS核育性恢复基因Rf3的精细定位及其候选基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物杂种优势的利用推动了农作物产量、品质的大幅度提高。玉米是世界上最早将CMS及育性恢复系统应用于杂种优势育种的作物之一。CMS及育性恢复(restorer of fertility,Rf)系统为实践中杂交种的生产提供了巨大的便利,不仅能节省大量人工去雄,而且可减少因去雄不净所造成的混杂,充分发挥杂种优势的作用;同时CMS是研究核质互作分子机理的重要模式性状。玉米S-CMS系的育性由线粒体上育性相关基因和核基因(Rf3/rf3)共同决定。S组CMS是玉米三个主要细胞质雄性不育组群中最大的一个组,其育性表现较不稳定,影响了其在育种实践中的应用。为了进一步发挥玉米S-CMS在杂优利用中的作用,克隆育性恢复基因Rf3并阐明育性恢复机理显得尤其重要。图位克隆是一种有效的基因克隆方法,其成功的基础需要有目标基因区域高分辨率的遗传图谱,前人对核育性恢复基因Rf3已进行了定位,但所定位的遗传图距较远,远不能满足图位克隆的需要。
     本研究拟在本室前期对玉米S-CMS研究的基础上,以Rf3/rf3近等基因系S-MO17~(Rf3Rf3)/S-MO17~(rf3rf3)为材料,利用近等基因系间Rf3区段的分子标记信息,结合AFLP分子标记开发技术对Rf3进行精细定位,筛选与其紧密连锁或共分离的分子标记。同时利用cDNA-AFLP技术,在转录水平上研究近等基因系S-MO17~(Rf3Rf3)/S-MO17~(rf3rf3)不同发育时期基因的差异表达谱,以期鉴定玉米S-CMS育性恢复相关基因。主要研究结果如下:
     1.为开展玉米S-型细胞质雄性不育核恢复基因的精细定位,选用恢复基因近等基因系(NIL)材料构建回交一代群体(S-Mo17~(rf3rf3)×S-Mo17~(Rf3Rf3))×N-Mo17~(rf3rf3)。对所有单株进行田间花粉观察与室内镜检,二者结果一致,BC_1F_1群体中178株被划分为可育株;165株为不育株,符合1:1分离比,在本研究材料中该育性恢复性状受一对基因控制。
     2.选用Rf3所在的2.09bin区域的13对SSR标记进行双亲间多态性筛选,结果表明,仅标记UMC2184在双亲的2.09bin区间存在多态性,该标记被用于鉴定分析群体中的基因型并作为其它标记的锚定位点。采用EcoRI+MseI、PstI+MseI及EcoRI+PstI三种酶切方式共528对选择性扩增引物组合在双亲及DNA池中进行AFLP分析,共产生大约29,000条带纹。选择差异性引物组合进一步对可育/不育两DNA池的单株DNA进行检测,最终发现E3P1、E7P6、E10P7及E12M7共4个标记在个体中的带型与相应亲本一致,其序列相互不重复,代表4个不同的片段,作为候选的紧密连锁标记进一步在BC_1F_1群体中检测基因型。
     3.回收标记E3P1、E7P6、E10P7及E12M7对应的差异扩增片段,最终将AFLP标记E3P1及E12M7分别转化为共显性标记CAPSE3P1及显性标记SCARE12M7。
     4.用筛选、验证所得到的一个SSR标记UMC2184、2个AFLP标记E7P6、E10P7及2个基于PCR的标记SCARE12M7、CAPSE3P1构建了恢复基因Rf3区域的遗传连锁图,图谱全长11.1cM,平均间距为2.22cM。将Rf3定位于AFLP标记E7P6与SCAR标记SCARE12M7之间,遗传图距分别为0.9cM和1.8cM。为恢复基因Rf3的图位克隆奠定了基础。
     5.对分子标记SCARE12M7序列进行BLASTx分析及相关图谱比较,发现其与已定位的玉米抗丝黑穗病QTL紧密连锁或共分离。讨论了该标记用于玉米S-CMS育性恢复及丝黑穗抗性双性状聚合选择的潜力的可能性。
     6.利用64对引物组合对S-Mo17~(rf3rf3)和S-Mo17~(Rf3Rf3)苗期叶片及抽雄早期花粉进行cDNA-AFLP分析。共显示TDFs约2500条,片段大小介于80-800bp之间。其中差异表达片段分为质的表达差异和量的表达差异两种类型。质的差异表达带纹共122条,分为7大类型。对在恢复系叶片和花粉中表达但在不育系中沉默和仅在恢复系花粉中表达的33条片段进行序列分析和同源性比较,发现其分别代表:蛋白质降解与贮存相关基因3个,约占9%;转录调控相关基因5个,约占15%;信号转导相关基因4个,约占12%;能量代谢相关基因3个,约占9%;细胞生长与分裂相关基因3个,约占9%;转座子相关基因1个,约占3%;未知蛋白编码基因9个,约占28%;新发现的序列5个,约占15%。其中26S proteasome regulatory particle与本室前期利用cDNA芯片的研究结果表现相同的表达趋势。用电子拼接及在基因组cDNA中扩增、测序验证:该基因全长1329bp,编码443个氨基酸组成的多肽。经Clustal W比较分析,玉米26S proteasome regulatory subunit与水稻、拟南芥、人类中同源蛋白质序列相似性分别达91%、77%、41%。
     7.在已测序的差异表达片段中,与转录调控相关的基因占15%;对序列E1同源性搜索发现:其代表基因编码蛋白包含PPR模体。对该基因在恢复系及不育系苗期叶片、抽雄期叶片、抽雄期花粉、苗期根4个材料进行RT-real-time PCR分析,结果表明:该基因在不育系和恢复系两种材料的不同组织部位存在明显的表达模式差异,在可育材料的抽雄期花粉中,该基因表达量最高,为幼苗叶片及抽雄期叶片表达量的4倍,在根部表达量达到最;而在不育材料抽雄期花粉中表达量比抽雄期叶片略,为幼苗叶片表达量的2倍,根部表达量为最水平。研究结果暗示该PPR相关基因可能与育性恢复有关。
Utilization of heterosis has facilitated the improvement of yield and quality of crop.Cytoplasmic male sterility (CMS) has been used extensively in breeding for theproduction of a range of F_1 hybrid crops because of its advantages on decreasing the costof labor and improving seed quality. Moreover, the system of CMS/Rf is a perfect modelfor studying molecular mechanism of the interaction between nucleolus and cytoplasm.Maize is one of the pioneer crops whose heterosis is enhanced through this system. Theunstanable fertility of maize S-CMS limits its utility in practice. For using CMS in maizeproduction by the greatest extent, it is necessary to theoretically elucidate the mechanismsof steility and restoration of fertility. Map-based cloning is an effective method of genecloning and the genetic linkage map in the vicinity of target gene with high density is thebasis to map-based cloning. Several attemps have been made to tag Rf3 with molecularmarkers, however, the distances between them and Rf3 are not yet near enough to clonethis gene.
     In the present study, we screened AFLP and SSR markers polymorphic between nearisogenic lines (NILs). A BC_1F_1 population from a pair of NILs with different Rf3 locus wasconstructed for linkage analysis. Additionally, the differentially expressed profile indifferent tissues and times of S-MO17~(Rf3Rf3)/S-MO17~(rf3rf3) was analyzed throughcDNA-AFLP technology. And some primary results are listed as follows:
     1. The BC_1F_1 generation yielded 178 semi-fertile (having 50% or more stainablepollen) and 165 sterile plants. This segregation ratio fits a monogenic Mendelianinheritance model of 1 fertile (Rf3rf3): 1 sterile (rf3rf3), it confirmed that fertilityrestoration was conditioned by one dominant restorer gene in these maize materials.
     2. One of 13 SSRs on chromosome 2.09 bin, UMC2184, was detected to showcodominant polymorphism between parents and bulks. Thus UMC2184 were employed toanalyze linkage relationship between itself and rf3 and perform anchor point to othermarkers. The total 528 AFLP primer combinations (PC) were screened for theirpolymorphism between parents and bulks. Only 4 polymorphic fragments from E3P1,E7P6, E10P7 and E12M7 were confirmed as candidate markers tightly linked to Rf3 andanalyzed subsequently using the BC_1F_1 population.
     3. Through designing primer and detecting in the parents and bulks, AFLP markersE3P1 and E12M7 are converted into codominant CAPS and dominant SCAR marker,respectively.
     4. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. Thetotal size of this map is 11.1 cM and E7P6 and SCARE12M7 delimited a 2.7cM windowwith 0.9 cM and 1.8 cM from Rf3, respectively
     5. BLASTx analysis showed that the marker SCARE12M7 was high homologouswith resistance protein. Through comparing and assembling the mapped results of thisstudy and others, we assumed that marker SCARE12M7 was tightly linked orcosegregant with gene resistant to head smut. The potential of SCARE12M7 in assessingand selecting both Rf3 gene and gene resistant to head smut was discussed.
     6. Differential expression of genes in young leaves and pollen between S-Mo17~(rf3rf3)and S-Mo17~(Rf3Rf3) was investigated via cDNA-AFLP. 2500 fragments distributing80-800bp were displayed by 64 primer combinationa. 33 TDFs which expressed only infertile pollen or expressed in fertile materials specifically were sequenced successfully.By BLAST analysis, these sequences were assigned into 8 categories based on theirbiology function: protein synthesis and fate (9%); regulation on the transcript level (15%);signal transduction (12%); energy metabolism (9%); cell developing and dividing (9%);transposable element (3%); unknown function protein (28%); novel ESTs (15%).
     7. Through comparing functions of 33 differentially expressed genes with thosederived from analysis of cDNA-microarray (Zhang, 2004), protein synthesis and faterelative genes account for 9% and 13%, respectively. Among them, 26S proteasomeregulatory particle expressed high in fertile pollen in two studies above mentioned.Through in silico cloning strategy, the candidate cDNA sequence of maize 26Sproteasome regulatory particle was obtained, it covered 1451bp in which coding sequencewas 1329bp and coded 443 amino acids. Clustering analysis using the software of ClustalW shows that the homologic rate between 26S proteasome regulatory subunit5 in maizeand its homology in rice, arabidopsis, human is 91%, 77% and 41%, respectively.
     8. Regulation on the transcript level relative genes occupy 15% in the sequenceddifferentially expressed genes. BLASTx analysis for sequence E1 indicates therepresented gene coding protein containing PPR model. Through expressed patternanalysis in different tissues and times by RT-real-time PCR, this gene expressed in thepollen on the highest level for S-Mo17~(Rf3Rf3) but on the highest level in the leaves oftasseling time for S-Mo17~(rf3rf3).Differentially expressed patter of this gene indicates the itsrelationship with between it and fertility restoring in maize S-CMS.
引文
1.段院生,刘平武,杨光圣.用RAPD标记鉴定甘蓝型油菜杂种H9909的纯度.华中农业大学学报,2002,21(4):301-305.
    2.樊廷俊,夏兰.线粒体与细胞凋亡.生物化学与生物物理学报,2001,33(1):7-12
    3.J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).科学出版社,2002
    4.赖菁茹,郑用琏。玉米S-CMS育性不稳定遗传与S类质粒相关性的研究。遗传学报,1992,19:87-92
    5.李小琴,万邦惠,刘纪麟,郑用琏.玉米细胞质线粒体DNA RFLP分类研究.作物学报,2001,27(4):476-481
    6.刘纪麟主编.玉米育种学.北京:中国农业出版社,2002,257-285
    7.刘杰,ChaoChienJAN.中国食用向日葵种质资源遗传变异的RAPD及AFLP分析.植物学报,2003,45(3):352-358
    8.刘良式.植物分子遗传学.科学出版社.1998
    9.刘平武.甘蓝型油菜人工合成种及杂交种亲本遗传多样性评价与研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    10.刘平武,周国岭,杨光圣。傅廷栋.双甘蓝型油菜杂交种亲本批指纹图谱构建和杂交种纯度鉴定.作物学报,2005,31(5),640-646
    11.刘仁虎、孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    12.穆蕊,张祖新,张方东,郑用琏.玉米CMS-S小孢子败育过程中的细胞程序性死亡.作物学报,2006,32(5):666-670
    13.秦泰辰.玉米雄性不育性研究.江苏农学院学报,1984,3(1):23-26
    14.石永刚,郑用琏,李建生,刘纪麟.玉米S组CMS育性恢复基因的分子标记定位.作物学报,1997,23(1):1-6
    15.铁双贵.玉米S组CMS育性不稳定现象遗传与基因定位.[博士学位论文].武汉:华中农业大学图书馆,2000
    16.王泽立,王鲁昕,戴景瑞.运用近等基因系(NIL)、AFLP、RFLP和SCR对玉米S组育性恢复基因(Rf3)的研究.遗传学报,2001,28(2):465-470
    17.韦桂旺,郑用琏.玉米CMS材料mtDNA遗传多样性的研究.遗传学报,1997,24(1):66-77
    18.吴敏生,王守才,戴景瑞.RAPD分子标记与玉米杂交种产量优势预测的研究.遗传学报.1999,26(5):578-584
    19.吴秀艳,肖木辑.电泳谱带法在玉米杂交种纯度鉴定中的应用探讨.种子世界,2001,7:26
    20.夏军红,郑用琏.玉米Rf3近等基因系的分子标记辅助回交选育与效益分析.作物学报,2002,28(3):339-344
    21.肖海林.玉米S型细胞质雄性不育的育性恢复机理研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    22.易平,汪莉,孙清萍,朱英国.水稻线粒体功能基因转录本的编辑位点研究.科学通报,2002,47(4):370-373
    23.袁力行,Warbu M.利用RFLP,SSR,AFLP和RAPD标记分析玉米自交系遗传多样性的比较 研究.遗传学报,2000,27(8):725-733。
    24.张翅,张方东,郑用琏.玉米CMS线粒体DNA R多型性分析及物理图谱构建.遗传学报,2002,29(3):273-277
    25.张方东,郑用琏.玉米S组细胞质雄性不育线粒体R区序列与多型性分析.遗传学报,2000,27(9):824-833
    26.张赛群,张方东,肖海林,郑用琏.玉米S型CMS线粒体DNA R区及其orf77的表达研究.遗传学报,2003,30(3):277-282
    27.张书芬,傅廷栋,马朝芝,朱家成,王建平。3种分子标记分析油菜品种间的多态性效率比较.中国油料作物学报,2005,27(2):19-23。
    28.张祖新.玉米S-CMS核恢复基因和玉米对淹水胁迫响应基因的功能分析.[博士学位论文].武汉:华中农业大学图书馆,2004
    29.郑用琏.若干玉米细胞质雄性不育类型育性机理的研究.华中农学院学报,1982,1(1):44-68
    30.郑用琏.玉米CMS材料雄花育性不稳定遗传现象的分子生物学研究.[博士学位论文].武汉:华中农业大学图书馆,1990
    31.郑用琏.玉米细胞质雄性不育细胞质类型的快速鉴定.专利申请号:03119853.6,2003。
    32. Abbott AG, Fauron C MR. Quantiatative variation in components of the maize mitochondrial genome between tissues and between plant male sterile cytoplasms. Plant Mol Boil, 1985, 4: 233-240
    33. Akagi H NA, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108:1449-1457
    34. Aubourg S, Boudet N, Kreis M. In Arabidopsis Thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Boil, 2000,42:603-613
    35. Bachem CWB, Ronald JF, Oomen J, Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Molecular Biology Report, 1998, 16:157-173
    36. Bachem CWB, Hoeven Van der RS, Bruijn SM. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis ofgene expression during potato tuber development. Plant Journal, 1996, 9:745-753
    37. Balk J, Leaver CJ. The Petl-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell, 2001, 13:1803-1818
    38. Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann Biochem, 1991, 196:80-83
    39. Barley J, O'Sullivan H, Edwards LJ, Edwards D. Mining for single nucleotide polymorphisms and insertions-deletions in maize expressed sequence tag data. Plant Physiol, 2003, 132:84-89
    40. Begu D, Graves P V, Domec C, et al. RNA editing of wheat mitochondrial ATP synthase subunit 9: Detect protein and DNA sequencing. Plant Cell, 1990,2:1283~1290
    41. Bentolila S and Hanson MR. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Ri) gene. Mol Genet Genomics, 2001, 266: 223-230
    42. Bentolila S, Altonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic malesterile plants. Proc Natl Acad Sci USA, 2002,99 (16): 10887-10892
    43. Bortiri E, Jackson D, Hake S. Advances in maize genomics: the emergence of positional cloning. Current Opinion in Plant Biology, 2006, 9: 164-171
    44. Botstein D, White RC, Skolonick M. Construction of genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet, 1980, 32: 314-331
    45. Brown, GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003,35: 262-272
    46. Brugmans B, Ron GM, Van Der H, Visser. GF Richard, Lindhout P, van Eck Herman J. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Research, 2003, 31: e55
    47. Brumfield RT, Nickerson DA, Edwards SV. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol, 2003,18:249-256
    48. Causse MA, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274
    49. Chao S, Harp P J, Gale M D. In Proc 7th Int Wheat Genet Symp (IPSR, Cambridge Laboratory.Cambridge). 1988,493-498
    50. Ching A C K, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002,3: 19
    51. Chu Z H, Yuan M, Yao J L, Ge X J, Yuan B, Xu C G, Li X H, Fu B Y, Li Z K, Bennetzen J L, Zhang Qf, Wang S P. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development. 2006,20:1250-1255
    52. Cifarelli R A, Cellini G M F. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acids Research, 1995,23: 3802-3803
    53. Cooper D N, Cooke H J, Niemann S, Schmidtke J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet, 1985,69:201-205
    54. Copenhaver G P, Kuromori T, Benito M-I, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Paraell L D, Mccombie W R, Martienssen R A, Marra M, Preuss D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science, 1999, 286:2468-2474
    55. Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile, T-cytoplasm maize. Science , 1996,272: 1334-1336
    56. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Cabochel M, Delourme R, Bendahmanel A. Identification of the ferrtility restoration locus, Rfo, in radish, as a member of the pentatricopoeptide-repeat protein family. EMBO reports. 2003,4: 588-594
    57. Duvick D N. Cytoplasmic pollen sterility in corn. Adv Genet, 1965,13: 1-56
    58. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002,104: 399-407
    59. Feng C D, Stewart J M D, Zhang J F. STS markers linked to the rfl fertility restorer gene of cotton. Theor Appl Genet, 2005,110:237-243
    60. Fisher P J, N. A., Bailey A, Booth A, Markham A F. PCR isolation of microsatellites repeat sequences using anchored dinucleotide repeats primers. Nucleic Acids Research, 1996,24: 2190-2191
    61. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall'Aglio E. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture, 2005, 82, 317-342
    62. Frank S A, Barr C M. Programmed cell death and hybrid incompatibility. J of Hered, 2003, 94: 181-183
    63. Franser LG, Harvey CF, Crowhurst RN, DE Silva HN. Est-derived micrrosatellites from Actinidia species and their potential for mapping. Theor Appl Genet, 2004,108: 1010-1016
    64. Fu, H H, Park W, Yan X, Zheng Z W, Shen B Z, Dooner H K. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci, 2001,98: 8903-8908
    65. Garg K, Nickerson D A. Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using saaembled expressed sequence tags. Genome Res, 1999, 1087-1092
    66. Hagihara E, Itchoda, Habu N Y, Mikami T, Kubo T. Molecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet. Theor Appl Genet, 2005, 111: 250-255
    67. Kosack E, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14: 177-193
    68. Hanson M R, Sutton C A , Lu B. Plant organelle gene expression: altered by RNA editing Trends Plant Sci, 1996,1:57-64
    69. Harushima Y, Yao M, Shomura A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494
    70. Hayden M J, Sophis P J. Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers. Nucleic Acids Research, 2001, 29,43E-43
    71. Hernould M, Suharsono S, Litvad S, et al. Male sterility induction in transgenic tobacco plants with an unedited ATP 9 mitochondrial gene from wheat. Proc Natl Acad Sci USA, 1993,90:2370-2374
    72. Hernould M, Suharsono S, Zabaleta E, et al. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plant. Plant Mol Boil, 1998, 36: 499-508
    73. Hieter P, Hieter M B P. Functional genomics: it's all how you read it. Science, 1997, 278: 601-602
    74. Hu J, Seiler GJ, Jan CC, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 2003,21: 289-294
    75. Janeja HS, Banga SS, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for toumefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet, 2003, 107:148-154
    76. Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer of fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rfi allele. Theor. Appl. Genet, 1997, 95: 525-531
    77. Karagyozov L, Kamps. I. D., Chapman V M. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Research, 1993, 21: 3911-3912
    78. Kaul MLH. Male Sterility in Higher Plants. 1988, (Berlin: Springer).
    79. Kazama T. and K. Toriyama. (2003). A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544, 99-102.
    80. Kemble R, Gunn RE, Flavell RB. Mitochondria DNA variation in races of maize indigenous to Mexio. Theor Appl Genet, 1983,65 :129 -144
    81. Kilian A, Chen J, Han F, et al.towards map-based cloning of the barley stem rust resistance gene rpgl and rpg4 using rice as a intergenomic cloning vehicle. Plant Molecular Biology. 1997,35:187-195
    82. Kilian A, Kudrna D A, Kleinhofs A, et al. Nucleic Acids Res. 1995,23:2729-2733
    83. Ko MSH. An 'eqalized cDNA library' by the reassociation of short double-stranded cDNA. Nucl Acids Res, 1990,118:5705-5711
    84. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J, 2003, 34: 407-415
    85. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J, 2004, 37: 315-325
    86. Komori T, Yamamoto T, Takemori N, Kashihara M, Matsushima H, Nitta N. Fine genetic mapping of the nuclear gene, Rf-1, that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR-based markers. Euphytica, 2003,129: 241-247
    87. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J, 1993,4: 403-410
    88. Kosambi D D. The estimation of map distances from recombination values. Ann. Eugen, 1944, 12: 172-175
    89. Kusterer B, Horn R, Friedt W. Molecular mapping of the fertility restoration locus Rfl in sunflower and development of diagnostic markers for the restorer gene. Euphytica, 2005, 143: 35-42
    90. Kuzel G, Korzun L, Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 2000, 154:397-412
    91. Lahmy S, Barneche F, Derancourt J et al. A chloroplastic RNA-binding protein is a new member of the PPR family. FEBS Lett, 2000,480: 255-260
    92. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 2001,411: 848-853
    93. Lander E S, Green P, Abrahamson J, Barlow A, Daly MJ, Lincole S E, Newburg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
    94. Lander E S. The new genomics: Global views of biology. Science, 1996,274: 536
    95. Laser KD, Lersten NR. Anatomy and cytology of microsporogenesis in cytoplasmic male-sterile angiosperms. Botl Rev. 1972,28:425-454
    96. Laughnan J R, Gabay S J. Nuclear and cytoplasmic mutations to fertility in S male sterile maize. New York: 1978, Walden D B (ed)
    97. Levings C S III, D R Pring. Restriction endonuclearse analasis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science, 1976,193: 158—169
    98. Levings C S III, Siedow J N. Molecular basis of disease susceptibility in the Texas cytoplasm of maize, Plant Mol.Bio, 1992, 19: 135-147
    99. Li G, Quiros C F. Sequencerelated amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103: 455-461
    100. Li G, Yang B, Quiros C F. Gene for gene alignment between the brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107: 168-180
    101. Liang CZ, Gu MH, Pan XB. RFLP tagging of a new semidwarfing gene in rice. Theor Apl Genet, 1994, 88: 898-900
    102. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992,257: 967—997
    103. Lin X, Rounsley S, Shea T P, Benito M-I, Town C D, Fujii C Y, Mason T, Bowman C L, Barnstead M, Feldblyum T, Buell C R, Ketchum K A, Ronning Cm, Koo H, Moffat K, Oronin L, Shen M, Pai G, Van Aken S Umayam L, Tallon L, Gill J, Adams M D. (1999). Sequence and analysis of chromosome 2 of the plant Arabidopsis Thaliana. Nature, 402: 761-768
    104. Lindsey J, Toit D, Pataky J K. Effects of silk maturity and pollination on infection of maize ears by ustilago maydis. Plant Disease, 1999, 83: 621-626
    105. Lopez C, Cooke R, Delseny M, Tohme J, Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta crantz). Theor Appl Genet, 2005, 110:425-431
    106. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Ret ML, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004,16:2089-2103
    107. Mancebo R, Zhou X, Shillinglaw W et al. BSF binds specifically to the bicoid mRNA 3' untranslated of region and contributes to stabilization of bicoid mRNA. Mol Cell Boil, 2001,21: 3462-3471
    108. Maureen R H, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 2004,16: S154-S169
    109. Mauricio J, Mondego C, Simoes-Araujo J L. A gene similar to bacterial translocase I (mra Y) identified by cDNA-AFLP is expressed during flower bud development of Arabidopsis thaliana. Plant Science, 2003, 164: 323-331
    110. Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot D A. Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics, 2001, 265:207-214
    111. Michelmore R W, Paranand I, Kessali R V. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect marders in specific genomic regions using segregating populations. Proc Natl Acad Sci USA, 1991, 88:9829—9832
    112. Mogg R, B J, Hanley S, Edwards D, O'Sullivan H, Edwards J. Characterization of the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet, 2002,105: 532-543
    113. Moore G, Devos K M, Wang A. Grasses, line up and form a circle. Curr. Biol, 1995,5: 737—739
    114. Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J, 1993,3:175-182
    115. Murakami S, Komatsuda M K, Furuta Y. AFLP-based STS markers closely linked to a fertility restoration locus (rfm1) for cytoplasmic male sterility in barley. Plant Breeding, 2005,124: 133-136
    116. Nair S, Prasada Rao U, Mohan M. DNA markers tightly linked to a gall midge resistance gene (Gm2) are potentially useful for marker-aided selection in rice breeding. Theor Appl Genet, 1995, 91:68-73
    117. Nair S K A, Srivastava M N, Mohan M. PCR-based DNA markers linked to a gall midge resistance gene, Gm4t, has potential for marker aided selection in rice. Theor Appl Genet, 1996, 92: 660-665
    118. Nawa S. Coloning of plasmids in cytoplasmic male sterile rice and changes of organization of mitochondrial and nuclear DNA in cytoplasmic reversion. Jpn J Genet, 1987,42 : 301—330
    119. Neff MM, Neff JD, Chory J, Pepper AE. DCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant Journal, 1998, 14: 387-392
    120. Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2000, 101: 146-152
    121. Nicod J C, Largiad C R. SNPs by AFLP (SBA): a rapid SNP isolation strategy for non-model organisms. Nucleic Acids Research, 2000,31: e19
    122. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1998, 120: 621-623
    123. Ostrander E A, J P M, Rine J, Duyk G. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. PNAS, 1992, 89:3419-3423
    124. Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85: 985-993
    125. Patanjali S R, Parimoo S, Weissman S M. Construction of a Uniform-Abundance (Normalized) cDNA Library. Proc Natl Acad Sci USA, 1991, 88: 1943-1947
    126. Paterson A H, Bowers J E, Burow M D. Comparative genomic of plant chromosomes. Plant Cell. 2000,12:1523-1539
    127. Picoult-Newberg L, I T, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M. Mining SNPs from EST databases. Genome Res, 1999,9: 167-174
    128. Pring D R, Chen W, Tang H V. Interaction of mitochondrial RNA editing and nucleal processing in the restoration of male sterility in sorghum. Curr Genet, 1978, 33:429-436
    129. Pring D R, Levings C S III, Hu W W L. Unique DNA associated with mitochondrial in the S-type cytoplasm of male sterile maize. Proc Natl Acatl Sci, 1977, 74:2904-2908
    130. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Boil 2002, 5: 94-100
    131. Rajeev K V, Andreas G, Mark E S. Genic microsatellite markers in plants: features and applications. Trends in Biotechnology,2005,231:48-55
    132. Reijans M, Lascaris R, Groeneger AO. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces Cerevisiae. Genomics, 2003, 82: 606-618
    133. Ruan Y J, Gilmore J, Conner T. Towards arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant Journal. 1998: 821-833
    134. Saleh N M. Small mitochondrial DNA molecules of wild abortive cytoplasmic male sterility in rice. Theor Appl Genet, 1989, 7: 617 -619
    135. Schmid KJ, S T, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res, 2003, 13: 1250-1257
    136. Schmidt R. Synteny: recent advances and future prospectsCurr Opin Plant Biol. 2000,3: 97-102
    137. Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 1998, 3: 175-180
    138. Schuster W, Brennicke A. The plant mitochondrial genome: Physical structure, information content, RNA editing and gene migration to nucleus. Annu Rev Plant Physiol Plant Mol Boil.1994,45:61-78
    139. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ. Analysis of SSRs derived from grape ESTs.Theor Appl Genet, 2000,100: 723-726
    140. Seo YWL, Jang CSL, Johnson JWL. Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL. Euphytica, 2001, 121: 279-287
    141. Shan X, Blake T K, Talbert L E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet, 1999,98:1072-1078
    142. Shi H L, Jiang Y X, Wang Z H, Li X H, Li M S, Zhang S H. QTL identification of resistance to heat smut in maize. Acat Agronomica Sinica, 2005, 31: 1449-1454
    143. Shi Y G, Zheng Y L, Li J S, Liu J L. Mapping CMS-S restorers gene Rf3 with RFLP and RAPD. Acta Agronomica Sinica, 1997,23: 1-6
    144. Small I D, Earle E D, Escote-Caarison L J. A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor Appl Genet, 1988, 76: 609-618
    145. Small I D, Peters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci, 2000,25:46-47
    146. Soares M B, Bonaldo M F, Jelene P, Su L, Lawton L, Efstretiadis A. Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA, 1994,91: 9228- 9232
    147. Stackelberg M V, Lindemann S, Menke M, Riesselmann S, Jacobse H J. Identification of AFLP and STS markers closely linked to the def locus in pea. Theor Appl Genet, 2003, 106: 1293-1299
    148. Suazo A, Glenn H. Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA. BioTechniques. 1999,26: 704-709
    149. Susan G L, Chase C D, Ortega V M, Zhao L M. Molecular-genetic characterization of CMS-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics, 2004,166,959-970
    150. Tansey WP. .Death, Destruction, and the Proteasom. The New England Journal of Medicine.2004,8:393-394
    151. Tautz D. Hypervariability of simple sequences as a general source for polymorphic markers. Nucl Acids Res, 1999, 17: 6463-6471
    152. Tian Z Y, Dai J R. Relationship between differential gene expression patterns in functional leaves of maize inbreds and hybrids at spikelet differentiation stage and heterosis. Acta Genetica Sinica, 2003,30:154-162
    153. Tie S G. Genetic characterization and gene mapping of S-CMS in maize, 2000, Wuhan: Huazhong Agricultural University.
    154. Timothy D H, Hu W, Wang L. Plasmit-like mitochondrial DNA in Diploperenial teosinte. Maydica, 1983,139: 149
    155. Touzet P, Hueber N, Bkholz A, Barnes S, Cuguen J. Genetic analysis of male fertility restoration in wild cytoplasmic male sterility G of beet. Theor Appl Genet, 2004, 109: 240-247
    156. Useche FJ, Harafey M, Rafalski A. High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform Ser Workshop Genome Inform, 2001, 12: 194-203
    157. Vos P, Marjo Bleeker R H, Reijans M, van de Lee T, Hornes A F, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995,23: 4407-4414
    158. Wang DG, F. J., Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998,280:1077-1082
    159. Wang H, Nussbaum-Wagler T, Li B, Zhao Q,Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF. The origin of the naked grains of maize. Nature, 2005,436: 714-719
    160. Wang JX, Yang GS, Fu TD et al. Development of PCR-based markers linked to the fertility restorer gene for the polima cytoplasmic male sterility in rapeseed (Brassica napus L.). Yi Chuan Xue Bao, 2000,27: 1012-1016
    161. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res, 1990, 8:7213-7218
    162. Wen L Y, Ruesch K L, Ortega V M, Kamps T L, Laughnan S G, Chase C D. A nuclear restorer-of-fertility mutation disrupts accumulates of mitochondrial ATP synthase subunit in developing pollen of S male-sterile maize. Genetics, 2003, 165, 771-779
    163. Wen L, Chase C D. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-sterile and S male-sterile maize. Curr Genet, 1999a, 35: 521-526
    164. Wen L, Tang H V, Chen W, Chang R, Pring D R, Klein P E, Childs K L, Klein R R. Development and mapping of AFLP markers linked to the sorghum fertility restorer gene rf4. Theor Appl Genet, 2002,104: 577-585
    165. Williams JG, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990,18: 6531-6535
    166. Williams M N V, P. N., Nair S, Mohan M, Bennett J. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet, 1991, 82: 489-498
    167. Wise R P, Pring D R. Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: light at the end of the tunnel? Proc Natl Acad Sci USA, 2002, 99: 10240-10242
    168. Xia J H, Zheng Y L. Molecular marker-assisted backcross breeding of maize Rf3 NIL and its efficient analysis. Acta Agronomica Sinica, 2002, 28: 339-344
    169. Yamaguchi H. Electrophoretic analysis of mitochondrial DNAfrom normal and male - sterile cytoplasm in rice. Jpn J Genet, 1983, 58: 607 -611
    170. Yang L, Zheng B, Mao C. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 2003, 314: 141 -148
    171. Young ND, Zamir D, Ganal M W. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato.Genetics, 1988,120: 579-585
    172. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004,47: 805-18
    173. Zabala G, Laughnan S G, Laughnan J L. The nuclear gene rf3 affects the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics, 1997,147: 847-860
    174. Zhang C, Wang HY, Shen YZ. Location of the fertility restorer gene for T-type CMS wheat by microsatellite marker. Yi Chuan Xue Bao, 2003,30: 459-464
    175. Zhang Q, Gao Y J, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet, 1994,89: 185-192
    176. Zhao Z L, Huang X, Li N. Direct cloning of cell differential expression genes with full-length by a new strategy based on the multiple rounds of "long distance" polymerase chain reaction and magnetic beads mediated subtraction. J Biotechnol. 1999,73: 35-41
    177. Zhong S B, Steffenson B J. A simple and sensitive silver-staining method for detecting AFLP
    178. Zhu J, Gale M D, Quarrie S, Jackson M T, Bryan G J. AFLP markers for the study of rice biodiversity. Theor Appl Genet, 1998,96: 602-611
    179. Zhu YL, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics, 2003,163: 1123-1134
    180. Zietkiewicz E, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994,20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700