奶山羊乳腺上皮细胞系的建立及脂肪酸合酶基因的RNA干扰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸合酶(Fatty acid synthase, FAS)是哺乳动物脂肪酸合成过程中的关键酶,在细胞生命活动中参与着极其复杂的代谢调控过程,它与能量贮存、生物膜的结构、信号转导和蛋白质的乙酰化有密切的关系。羊奶中短、中链脂肪酸含量十分丰富,能有效预防人类的某些代谢疾病,因而具有良好的保健功能。山羊乳腺FAS的乙酰/丙二酸单酰基转移酶(Acetyl-CoA and malonyl-CoA transacylases, AT/MT)功能域具有中链硫酯酶活性,推测其对羊奶特殊脂肪酸组成中起重要调控作用。因此研究山羊乳腺FAS在乳腺上皮细胞脂肪酸合成中的作用有利于揭示羊奶短、中链脂肪含量高的分子机理,同时对通过遗传手段调控羊奶中有益脂肪酸含量具有重要的理论及现实意义。
     本研究通过活体采集西北农林科技大学萨能羊原种场纯种萨能奶山羊乳腺组织,利用组织块法分离培养奶山羊乳腺上皮细胞,纯化后转染人端粒酶逆转录酶基因,激活细胞端粒酶,以期获得具有无限增值能力的奶山羊乳腺上皮细胞系,为奶山羊乳腺功能基因组学研究奠定基础。同时,以此细胞系为试验材料,利用腺病毒介导的RNA干扰技术沉默FAS基因,研究该基因沉默后细胞中脂肪酸组成的变化及对参与脂代谢调控的重要基因如瘦素受体、脂肪酸结合蛋白等表达的影响,以探讨乳腺FAS基因在脂肪酸合成中的作用。试验结果如下:
     (1)采用组织块法分离培养并纯化了奶山羊乳腺上皮细胞,通过脂质体转染法将编码人端粒酶逆转录酶基因的pCIneo-hTERT质粒导入原代培养的乳腺上皮细胞(第9代),经浓度为400μg/mL的G418筛选15天获得了抗性细胞克隆,采用滤纸片法转移、扩增后,hTERT基因稳定转入细胞,端粒酶活性检测呈阳性。细胞生长曲线测定结果表明,转入hTERT基因的细胞增殖能力增强,其生长曲线具有典型的S型特征。免疫细胞化学分析表明,所培养的细胞表达上皮细胞的标志物角蛋白8及上皮膜抗原(EMA),证明所培养细胞是乳腺上皮细胞。利用反转录PCR及Western blotting技术可以检测到细胞表达β-酪蛋白基因,而且加入催乳素后,β-酪蛋白基因表达量较对照组增加6.5倍,表明所培养细胞保持有乳腺细胞的基本功能。细胞在体外连续稳定培养67代,最终在91代时细胞死亡。
     (2)根据FAS基因的序列,设计并合成了三对针对该基因不同区域的shRNA及一个阴性对照(shRNA-5544、shRNA-5936、shRNA-6132及shRNA-NC),将模板退火形成双链后,构建了表达这四条shRNA的pENTR/CMV-GFP/U6-shRNA载体,并在HEK293细胞中通过共转染的方法成功筛选出两条有效干扰序列(shRNA-5544及shRNA-5936)。通过同源重组,成功构建了pAd-shRNA-5544, pAd-shRNA-5936, pAd-shRNA-NC三个重组腺病毒载体,并在HEK 293细胞中包装出腺病毒颗粒,病毒经扩增后滴度分别达6×108 PFU/mL、5×108 PFU/mL及6×108 PFU/mL。将腺病毒(MOI=200,表达shRNA-5936)感染乳腺上皮细胞72h后,荧光实时定量及Western blotting结果显示FAS基因表达水平降低74%(与对照相比),脂肪酸测定结果表明FAS基因沉默后,细胞中C10:0、C12:0、C16:0、C18:0含量分别降低42%、42.37%、18.51%、29.3%;C14:0含量增加29.82%;荧光实时定量结果表明瘦素受体(LEPR)基因及肝X受体(LXRΑ)基因表达量分别为对照组的1.71及1.36倍;脂肪细胞型脂肪酸结合蛋白(AFABP)基因及脂蛋白脂酶(LPL)基因表达水平分别下调32%及25%。研究结果表明FAS基因对乳腺上皮细胞中中链脂肪酸具有重要的调控作用。
Fatty acid synthase (FAS), a key enzyme in the process of fatty acid synthesis in mammal, participates in an extremely complicated metabolism regulation in cell life and activities, such as energy storage, forming of structure of biology membrane, signal transduction and protein acetylation. It is known that goat milk is rich in short and medium-chain fatty acid, which is beneficial to prevent some metabolism illness in human being. The Acetyl-CoA and malonyl-CoA transacylases (AT/MT) domain of FAS gene in goat mammary gland shows medium-chain Thioesterase activity, which may play an important role in the specific fatty acid composition of goat milk. So, it is significant to study the function of FAS gene on fatty acid synthesis in goat mammary gland epithelia cell in order to reveal the mechanism of high concentration of short and medium-chain fatty acid in goat milk, and as a result it will show an theoretical and practical meaning in up-regulating beneficial fatty acid in milk by genetic methods.
     In this study, Xinong Saanen goat mammary gland tissue was collected for primary epithelial cell culture. Human Telomerase Reverse Transcriptase (hTERT) gene was transfected into the purified primary cell in order to obtain stable goat mammary gland epithelial cell (GMEC) line which will become an excellent materials in gene function research of goat mammary gland. Additionally, we carry out functional silencing of FAS gene in GMEC cell by adenovirus-mediated delivery of short hairpin RNA, and investigate changes of fatty acid composition and several fatty acid metabolism-related genes (such as Leptin receptor, AFABP, et al) after silence of FAS. The results of this research are as follows:
     (1) Purified GMEC were obtained by tissue culture. Then the pCIneo-hTERT plasmid encoding hTERT was transfected into purified primary GMEC, followed by G418 screening as a concentration of 400μg/mL. Anti-G418 positive cell clones appreared and the cell clones were transmitted using small filter papper and expanded for continuous culture. After stable transfection, telomerase activity turned to be positive in these transfected cells. Growth curve, all are typical“S”type, shows that transfected cells possessed more powerful proliferation activities. Immunocytochemistry analysis proofed that the cells are GMEC, because keratin 8 and epithelial membrane antigen, both of which are marker of epithelial cell, can be detected. Additionally, we have detected the expression ofβ-casein in the cells by RT-PCR and western blotting. The expression ofβ-casein up-regulated by 6.5 time compared with control after stimulating by prolactin. The transfected cells have stably passed 67 passages, died at 91st passages at last.
     (2) According to the FAS sequence, three shRNA sequences target different area of FAS and one negative control (shRNA-5544, shRNA-5936, shRNA-6132 and shRNA-NC) were designed and synthesized. After annealing, shRNA templates were constructed into pENTR/CMV-GFP/U6 vecor. By cotransfecting HEK 293 Cell, the result shows that entry vector expressing shRNA-5544 and shRNA-5936 sequences caused an obvious interference effect. Then we generated three recombinant adenovirus vectors (pAd-shRNA-5544, pAd-shRNA-5936, pAd-shRNA-NC) by LR recombination and adenovirus were successfully packed in HEK 293 Cell. The titer of the adenoviral stock was determined by TCID50 method and respectively reaches 6×108 PFU/mL (Expressing shRNA-5544 sequence), 5×108 PFU/mL (Expressing shRNA-5936 sequence), 6×108 PFU/mL (Expressing shRNA-NC sequence). Then we use adenovirus (MOI=200, Expressing shRNA-5936 sequence) to infect GMEC (72h), and expression of FAS mRNA was reduced by 74% by Real-time PCR and western blotting analysis. Fatty acid analysis shows that the content of C10:0, C12:0, C16:0, C18:0 reduced by 42%, 42.37%, 18.51% and 29.3%; the content of C14:0 improved by 29.82%. The result of quantitative Real-time PCR shows LEPR and LXR gene were up-regulated by 1.71 and 1.36 fold, while AFABP and LXR gene were respectively down-regulated by 32% and 25% after the silence of FAS gene. The study shows that FAS plays an important role in the regulation in medium chain fatty acid synthesis.
引文
[1] Haenlein G F W. Past, Present, and Future Perspectives of Small Ruminant Dairy Research [J]. J. Dairy Sci, 2001, 84: 2097-2115.
    [2] Haenlein G F W. Role of goat meat and milk in human nutrition [J]. Proc. Vth Intern. Conf. Goats, New Delhi, India, ICAR. 1992, 2(2):575-580.
    [3] Luna P, Bach A, Juárez M, et al. Effect of a diet enriched in whole linseed and sunflower oil on goat milk fatty acid composition and conjugated linoleic acid isomer profile [J]. J Dairy Sci., 2008, 91(1):20-28.
    [4] Williams C M. Dietary fatty acids and human health [J]. Ann. Zootech, 2000, 49:165-180.
    [5] Daniel St-Gelais, Ould B A, Sophie T. Composition of Goat's Milk and Processing Suitability [J]. http://sci.agr.ca/crda/pdf/goat2000-chevre2000_e.PDF, 2000.
    [6] Soryal K, Beyene F A, Zeng S B, et al. Effect of goat breed and milk composition on yield, sensory quality, fatty acid concentration of soft cheese during lactation [J]. Small Ruminant Research, 2005, 58:275-281.
    [7] Knutzon D S, Bleibaum J L, Nelsen J, et al. Isolation and characterization of 2 safflower oleoyl-acyl carrier protein thioesterase cDNA clones [J]. Plant physiology, 1992, 100(4): 1751-1758.
    [8] Topper Y J, Freeman C S. Multiple hormone interactions in the developmental biology of the mammary gland [J].Physiological Reviews, 1980, 60, 1049-1106.
    [9] Smith S. Mechanism of chain length determination in biosynthesis of milk fatty acids [J].Journal of Dairy Science, 1980, 63:337-352.
    [10] Glass R L, Jenness R, Lohse L W. Comparative biochemical studies of milk.V.The triglyceride composition of milk fats [J]. Comparative Biochemistry and Physiology, 1969, 28:783-786.
    [11] B.L.拉森,王秋芳等译.泌乳[M].北京:农业出版社,1992,70-73.
    [12] Antunac N, Havranek J L, Samarzija D. Effect of breed on chemical composition of goat milk [J].Czech Journal of Animal Science,2001a,6:268-274.
    [13] Chilliard Y, Fertay A,Rouel J,et al. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis [J]. Journal of Dairy Science, 2003, 86:1751-1770.
    [14]刘荫武,曹斌云.应用奶山羊生产学[M].北京:轻工业出版社, 1990, 388-420.
    [15] Kameda K, Goodridge A G. Isolation and partial characterization of the gene for goose fatty acid synthase [J]. Journal of Biological Chemistry, 1991, 266:419-426.
    [16] Amy C M, Williams-Ahlf B, Naggert J, et al. Intronexon organization of the gene for the multifunctional animal fatty acid synthase [J]. Proceedings of the National Academy of Sciences, 1992, 89:1105-1108.
    [17] Roy R, Taourit S, Zaragoza P, et al. Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping [J]. Cytogenetics and Cell Genetics, 2001, 93:141-142.
    [18] Chirala S S, Kasturi R, Pazirandeh M, et al. A novel cDNA extension procedure. Isolation of chicken fatty acid synthase cDNA clones [J]. Journal of Biological Chemistry, 1989, 264: 3750-3757.
    [19] Soryal K, Beyene F A, Zeng S B, et al. Effect of goat breed and milk composition on yield, sensory quality, fatty acid concentration of soft cheese during lactation [J]. Small Ruminant Research, 2005, 58:275-281.
    [20] Voelker T A, Worrell A C, Anderson L, et al. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants [J].Science,1992,257(5066):72-74.
    [21] Chilliard Y, Ferlay A, Mansbridge R M, et al. Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids [J]. Annales De Zootechnie, 2000, 49:181-205.
    [22] Agostini M, Silva S D, Zecchin K G, et al. Fatty acid synthase is required for the proliferation of human oral squamous carcinoma cells [J]. Oral Oncology, 2004, 40: 728-735
    [23] Asturias F J, Chadick J Z, Cheung I K et al. Structure and molecular organization of mammalian fatty acid synthase. Nature structural & molecular biology, 2005, 12(3): 225-231
    [24] Maier T, Jenni S, Ban N. Architecture of Mammalian Fatty Acid Synthase at 4.5A Resolution [J]. Science, 2006, 311: 1258-1262
    [25] Kim E K, Kleman A M, Ronnett G V. Fatty acid synthase gene regulation in primary hypothalamic neurons [J]. Neuroscience Letters, 2007, 423: 200–204.
    [26] Knudsen J, Grunnet I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase [J]. The Biochemical Society, 1983, 202: 139-143.
    [27] Grunnet I, Knudsen J. Medium-chain fatty acid synthesis by goat mammary-gland fatty acid Synthetase [J]. The Biochemical Society, 1983, 209: 215-222.
    [28] Smith S, Witkowski A, Joshi A K. Structural and functional organization of the animal fatty acid synthase [J]. Progress in Lipid Research, 2003, 42: 289–317.
    [29] Najjar S M, Yang Y, Fernstrom M A et al. Insulin acutely decreases hepatic fatty acid synthase activity [J]. Cell Metabolism, 2005, 2: 43-53
    [30]顾健人,曹雪涛.基因治疗.北京:科学出版社, 2002: 56-71.
    [31] O’Connell M J, McInerey J O. Adaptive evolution of the human fatty acid synthase gene: Support for the cancer selection and fat utilization hypotheses. Gene, 2005, 360: 151-159.
    [32] Sebastiani V, Visca P, Botti C et al. Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma [J]. Gynecologic Oncology, 2004, 92: 101-105.
    [33] Rots M G, Curiel D T, Gerritsen W R et al. T argeted cancer gene therapy: the flexibility of adenoviral gene therapy vectors [J]. Journal of Controlled Release, 2003, 87: 159-165.
    [34] Schrijver D E, Brusselmans K, Heyns W et al. RNA Interference-mediated Silencing of the Fatty Acid Synthase Gene Attenuates Growth and Induces Morphological Changes and Apoptosis of LNCaP Prostate Cancer Cells [J]. Cancer Research, 2003, 63: 3799-3804.
    [35] Chung Y L, Swinnen J V, Brusselmans K et al. Metabolomic Studies of a Prostate Cancer Cell Line Following RNA Interference-Mediated Silencing of the Fatty Acid Synthase Gene [J]. Proc. Intl. Soc. Mag. Reson. Med, 2004, 11:70.
    [36] Menendez J A, Vellon L, Mehmi I et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells [J]. PNAS, 2004, 101(29): 10715-10720.
    [37] Bandyopadhyay S, Pai S K, Watabe M et al. FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis [J]. Oncogene, 2005, 24: 5389-5395.
    [38] Brusselmans K, Schrijver E D, Verhoeven G et al. RNA Interference–Mediated Silencing of the Acetyl-CoACarboxylase- a Gene Induces Growth Inhibition and Apoptosis of Prostate Cancer Cells [J]. Cancer Res, 2005, 65(15): 6719-6725.
    [39] Li JN, Mahmoud MA, Han WF, et al. Sterol regulatory element binding protein participates in the regulation of fatty acid synthase expression in colorectal neoplasia [J]. Exp Cell Res, 2000, 261 : 159- 165.
    [40] Van de Sande T, De Schrijver E, Heyns W, et al. Role of the phosphatidylinositol kinase/ PTEN/ Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells [J]. Cancer Res, 2002, 62: 642-646
    [41] Christie W W, Hunter M L, Clegg R A. The effects of cerulenin on lipid metabolism in vitro in cellular preparations from the rat [J]. Biochim Biophys Acta, 1981, 666: 284-290.
    [42] Smith I E, Dowsett M 2003 Aromatase inhibitors in breast cancer. N Engl J Med, 348:2431-2442.
    [43] Dahse R, FiedlerW, Ernst G. Telomeres and telomerase [J]. Pathologe, 1997, 18(6): 425-429.
    [44] Hawley R S. Sticky endings: separating telomeres [J]. Science, 1997, 276(5316): 1215-1219.
    [45] Hayflick L, Moorhead P S. The serial cultivation of human diploid cell strains [J]. Exp Cell Res, 1961,25: 585-621.
    [46] Stein G H, Namba M, Corsaro C M, et al. Relationship of finite proliferative lifespan senescence and quiescence in human cells [J]. Cell Physiol, 1985, 122(3): 343.
    [47] Kalakura Y, Alam S, Shirallata S. Immortalization by gene transfection [J].Methods Cell Biol, 1998, 57: 69-91.
    [48]闻玉梅.医学分子病毒学[M].第1版,北京:人民卫生出版社. 1990: 133-141.
    [49] Chang L S, Pater M M, Hutchinscn NI, et al. TransformationbyPurifiedearlygenesofsimianvirus40. Virotogy [J], 1984, 133(2):341- 353.
    [50] Schwyzer M, Weil R, Frank G, et al. Amino acid sequence analysis of fragments generated by proteolysis from large simian virus 40 tumor antigens [J]. Biol Chem, 1980, 255(12):5627-5634.
    [51] Simmous D T. Geometry of simian virus 40 large tumor antigen-DNA complex as probed by protease digestion [J]. Proc Natl Accad Si USA, 1998, 85(7):2086-2090.
    [52] Loeber G, Parsons R, Tegtmeyer P. The zinc finger region of simian virus 40 large T antigen [J]. Virol, 1989, 63(1): 94-100.
    [53] Tevethia M J, Pipas J M, Kierstead T, et al. Requirements for immortalization of primary mouse embryo fibroblasts probed with mutants bearing deletion in the 3’end of SV40 gene [J]. Virology, 1988, 162(1): 76-89.
    [54] Tevethia M J. Immortalization of primary mouse embryo fibroblasts with SV40 virions, viral DNA, and abubgenomic DNA fragment in a quantitative assay [J]. Virology, 1984, 137(2): 414-421.
    [55] Lat P S, Sharp P A. Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature [J]. Mol Cell Biol, 1989, 9(4): 1672-1681.
    [56] Frisa P S, Goodman M N, Smith G M, et al. Immortalization of immature and mature mouse astrocytes with SV40 T antigen [J]. Neurosci Res, 1994, 39(1): 47-56.
    [57] Lei K J, Gluzman Y, Pan C J, et al. Immortalization of virus-free human placental cells that express tissue-specific functions [J]. Mol Endocrinol, 1992, 6(5): 703-712.
    [58] Christian B J, Loretz L J, Oberley T D, et al. Characterization of humuan uroepithelial cells immortalized in vitro by simian virus 40 [J]. Cancer Res, 1987, 47(22): 6066-6073.
    [59] Jha K K, Banga S, Palejwala V, Ozer H L. SV40-Mediated immortalization [J]. Exp Cell Res, 1998, 245(1): 1-7.
    [60] Huschtscha L J, Holliday R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts [J]. Cell Sci, 1983, 63: 77-99.
    [61] Shay J W, Wright W E. Quantization of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen [J]. Exp Cell Res, 1989,84(1):109-118
    [62]吴志华.现代性病学.广东:广东人民出版社, 1996: 421-425.
    [63] Douglas J M, Werness B A. Genital human papillomavirus infections. Chin Lab Med, 1989, 9(3):421-444.
    [64] De Villiers E M, Gissmann L, Zur Hausen H. Molecular cloning of viral DNA from human genital warts [J]. Virol, 1981,24: 932-940.
    [65] Zur Haussen H. Viruses in human cancer. Science, 1991, 252: 1167-1173.
    [66] Furukawa T, Duguid W P, Rosenberg L, et al. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6, E7 gene of human papilloma virus 16 [J]. Am J Pathol, 1996, 148(6):1763-1770.
    [67] Bank V, Zajchowski D, Kulesa V, et al. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements [J]. Proc Natl Acad Sci USA, 1990, 87(1): 463-467.
    [68] Hawley-Nelson P, Vousden K H, Hubbert N L, et al. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes [J]. EMBO J, 1989, 8(12): 3905-3910.
    [69] Munger K, Phelps W C, Bubb V, et al. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes [J]. Virol, 1989, 63(10): 4417-4421.
    [70] Oda D, Bigler L, Lee P, et al. HPV immortalization of human oral epithelial cells: a model for carcinogenesis [J]. Exp Cell Res, 1996, 226(1): 164-169.
    [71] Watanab S, Kanada T, Yoshiike K. Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7 [J]. Virol, 1989, 63(2): 965-969.
    [72] Thonemann B, Schmalz G. Bovine detal papilla-derived cells immortalized with HPV 18 E6/E7 [J]. Eur J Oral Sci, 2000, 108(5): 432-441.
    [73] Gao Q, Hauser S H, Liu X L, et al. Mutant p53-induced immortalization of primary human mammary epithelial cells [J]. Cancer Res, 1996, 56(13): 3129-3133.
    [74] Fushimi K, Iijima M, Gao C, et al. Transformation of normal human fibroblasts into immortalized cells with the mutant p53 gene and X-rays [J]. Int J Cancer, 1997, 70: 135-140.
    [75] Gollahon L S, Shay J W. Immortalization of human mammary epithelial cells transfected with mutant p53 [J]. Oncogene, 1996, 12(4): 715-725.
    [76] Rovinski B, Benchimol S. Immortalization of rat embryo fibroblasts by the cellular p53 oncogene [J]. Oncogene, 1988, 5(2): 445-452.
    [77] Ketekar A, Cole M D. Immortalization by c-myc, H-ras, and E1a oncogenes induces differential cellular gene expression and growth factor responses [J]. Mol Cell Biol, 1987, 7(11): 3899-3907.
    [78] Land H, Parada L F, Weinberg R A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes [J]. Nature, 1983, 304(5927): 596-602.
    [79] Schutte J, Minna J D, Birrer M J. Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat cells as a single gene [J]. Proc Natl Acad Sci USA, 1989, 86(7): 2257-2261.
    [80] Jones S N, Ansari-Lari M A, Hancock A R, et al. Genomic organization of the mouse double minute 2 gene [J]. Gene, 1996, 175(1): 209-213.
    [81] Hjelle B, Liu E, Bishop J M. Oncogene v-src transforms and establishes embryonic rodent fibroblasts but not dilploid human fibroblasts [J]. Proc Natl Acad Sci USA, 1988, 85(12): 4355-4359.
    [82] MacDonald K P, Mackay-Sim A, Bushell G R. Generated by retroviral insertion of theet aln-myc 01 factory neuronal cell lines oncogene display different developmental phenotypes [J]. Nerosci Res, 1996, 45(3):237-247.
    [83] Nakafuku M, Nakamura S. Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro [J]. Neurosci Res, 1995, 41(2): 153-168.
    [84] Counter C M, Avilion AA, Lefeuvre C E, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity [J]. Curr Opin Biotechnol, 1999, 10(5):465-469.
    [85] Harley C B, Futcher A B, Gredier C W. Telomeres shorten during ageing of human fibroblasts [J]. Nature, 1990, 345: 458-460.
    [86] Smith O M, Smith J R. Genetic analysis of indefinite division in human cells: identification of four complementation groups [J]. Proc Narl Acad Sci USA, 1998, 85(16): 6042-6046.
    [87] Hong H X, Zhang Y M, Xu H, et al. Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol. Cells, 24(3):358-363.
    [88] Steinert S, Shav J W, Wright W E, et al. Transient expression of human telomerase extends the life span of normal human fibroblasts [J]. Biochem Biophye Res Commun, 2000, 273(3): 1095-1098.
    [89] Bernstein E, Denli AM, Hannon GJ, The rest is silence. RNA, 2001: 7:1509-1521.
    [90] Catalanotto C., Azzalin G, Macino G, et al. Gene silencing in worms and fungi [J].Nature, 2000: 404: 245-246.
    [91] Fjose A, Ellingsen S, Wargefius A, et al. RNA interference: mechanisms andapplications [J]. BiotechAnnRev, 2001: 7:31-57.
    [92] Hannon G J. RNA interference [J]. Nature, 2002: 418:244-251.
    [93] Sharp P. A. RNA interference-2001 [J]. Gene Dev, 2001, 15:485-490.
    [94] Agami R. RNAi and related mechanisms and their potential use for therap3. Curr Opin Chem Biol, 2002: 6 (6):829-834.
    [95] Ramaswam S F J. siRNA- A guid for RNA silencing [J]. J Chem Biol, 2002:9 (10):1053-1055.
    [96] Plasterk R H. RNA silencing: the genome's immune system [J]. Science, 2002:296:1263-1265.
    [97] Miura A,Yonebayashi S, Watanabe K, et al. Moiliztion of transposons by a mutation abolishing full DNA methylation in Arabidopsis [J]. Nuture, 2001, 411:212-214.
    [98] Grishok A, Pasquinelli AE, Conte D, et al. Gene and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C.elegans developmental timing [J]. Cell, 2001, 106: 23-34.
    [99] Williams N S, Gaynor R B, Scoggin S, et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference [J]. Cancer Res, 2003, 9 (3):931-946.
    [100] Kamath R S, Fraser A C S, Dong Y, et al. Systmatic functional analysis of the Caenorhabditis eleans genome using RNAi [J]. Nature, 2003, 421:231-237.
    [101] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391: 806-811.
    [102] Brimingham A, Anderson E M, Reynolds A, et al. 3’UTR seed matches, but not overall identity,are associated with RNAi off-targets [J]. Nature methods, 2006, 3(3): 199-204.
    [103] Jackson A L, Burchard J, Leake D et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing [J]. RNA, 2006, 12: 1-9.
    [104] McIntyre G, Fanning G. Design and cloning strategies for constructing shRNA expression Vectors [J]. BMC Biotechnology, 2006, 6(1): 1-8.
    [105] Naito Y, Yamada T, Matsumiya T et al. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference [J]. Nucleic Acids Research, 2005, 33: 589-591.
    [106] Peng Y, Lu J X, Shen X F. shRNA driven by Pol II/T7 dual-promoter system effectively induce cell-specific RNA interference in mammalian cells [J]. Biochemical and Biophysical Research Communications, 2007, 360: 496-500.
    [107] Sano M, Kato Y, Taira K. Sequence-specific interference by small RNAs derived from adenovirus VAI RNA [J]. FEBS Letters, 2006, 580: 1553-1564.
    [108] Taxman D, Livingstone L R, Zhang J H et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors [J]. BMC Biotechnology, 2006, 6(7): 1-18.
    [109]宋尔卫,苏逢锡,欧阳能勇等. RNA干扰的生物学原理与应用.北京:高等教育出版社, 2005: 166-196.
    [110] Negrete A, Ling T C, Lyddiatt A. Production of adenoviral vectors and its recovery [J]. Process Biochemistry, 2007, 42: 1107–1113.
    [111] Majhen D, Andreja A R. Adenoviral vectors-How to use them in cancer gene therapy [J]. Virus Research, 2006, 119: 121–133.
    [112] Bodnar A G, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells [J]. Science, 1998,279:349-352.
    [113] Kim D H, Rossi J J. Strategies for silencing human disease using RNA interference [J]. Nature Reviews Genetics, 2007, 8(3): 173-184.
    [114] Fei Z L, Chen Z, Wang Z G, et al. Conditional RNA interference achieved by Oct-1 POU/rtTA fusion protein activator and a modified TRE-mouse U6 promoter [J]. Biochemical and Biophysical Research Communications, 2007, 354: 906-912.
    [115] Fulvio M D, Henkels K M, Gomez-Cambronero J. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis [J]. Biochemical and Biophysical Research Communications, 2007, 357: 737-742.
    [116]欧阳五庆,钱菊汾.山羊乳腺上皮细胞培养体系的建立[J].中国兽医学报, 1999, 19(6): 559,562.
    [117]李向臣,任芳丽,张涌.山羊乳腺上皮细胞的分离、培养与超微结构观察[J].畜牧兽医学报, 2005, 36(2), 121-126.
    [118]宋红芹,孙怀昌,许益民等. SV40 T基因转化的山羊乳腺上皮细胞系及其生物学特性[J].2003, 11(4): 203-206.
    [119] Pantschenko A G, Woodcock-Mitchell, Bushmich S L, et al. Establishment and characterization of a caprine mammary epithelial cell line [J]. In Vitro Cell DeV, 2000, 36: 26-36.
    [120] O’Connell M J, McInerey J O. Adaptive evolution of the human fatty acid synthase gene: Support for the cancer selection and fat utilization hypotheses [J]. Gene, 2005, 360: 151-159.
    [121] Roy R, Taourit S, Zaragoza P, et al. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species [J]. Cytogenet Genome Res, 2005, 111(1):65-73.
    [122] Zhang S, Knight T J, Reecy J M, et al. DNA Polymorphisms in the Thioesterase Domain of Fatty Acid Synthase are Associated with Fatty Acid Composition of Longissimus Dorsi Muscle of Angus Cattle [J]. Animal Genetics, 2008, 39:62-70.
    [123] Schmid B, Rippmann J F, Tadayyon M, et al. Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochemical and biophysical research communication [J], 2005, 328:1073-1082.
    [124] Knowles L M, Smith J W. Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer [J]. BMC genomics, 2007, 8:168.
    [125] Cheema S K, Aqarwal-Mawal A, Murray C M, et al. Lack of stimulation of cholesterol ester transfer protein by cholesterol in the presence of a diet high in monounsaturated fatty acids [J]. J lipids Res, 2005, 46(11): 2356-2366.
    [126] Ramirez I, Llober M, Herrara E. Circulating triacylglycerols, lipoproteins and tissue lipoprotein lipase activities in rat mothers and offspring during the perinatal period: effect of postmaturity [J]. Metubolism, 1983, 32: 333-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700