山羊△2△FosB基因的克隆及重组腺病毒的制备和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙是家畜体内最重要的常量矿物元素之一,在体内发挥着重要功能。动物体内流通的钙浓度始终保持相对恒定,这种恒定是由家畜体内钙代谢平衡机制精细调控实现的。泌乳期母畜为了保证乳汁中具有充足的Ca2+并保护自己不至于患低血钙症,机体钙代谢机制发生变化,母畜的骨钙流向血液,并通过乳腺上皮细胞分泌到乳汁,以此补充乳汁中的钙离子。这个过程的调控机制国外已有许多研究报道。近年来研究表明Δ2ΔFosB基因(FosB双截短亚型)与动物骨钙的吸收、转运与沉积密切相关,但是Δ2ΔFosB基因是否与乳腺上皮细胞向乳汁中转运钙离子有关,尚未见报道,GenBank中已登录了人、牛、犬、鼠等物种的FosB基因序列,但至今山羊Δ2ΔFosB基因仍未被克隆。因此,本试验旨在克隆得到山羊的Δ2ΔFosB基因cDNA全长,并构建其重组腺病毒,从而为研究Δ2ΔFosB基因在乳腺上皮细胞中的功能提供理论基础。
     主要研究方法:
     1、本研究以山羊Δ2ΔFosB基因为研究对象,通过提取山羊乳腺组织总RNA,应用逆转录PCR(RT-PCR)的方法,合成cDNA第一条链。根据GenBank上已发表的牛FosB基因序列,设计特异性引物,采用Long and Acute PCR扩增的方法从山羊cDNA中扩增目的产物,1.0 %的琼脂糖凝胶电泳检测,回收目的产物。将目的基因经过T-A克隆,构建中间载体pMD-19T-FosB,将质粒送往TaKaRa公司测序。采用DNASTAR、Lasergene-Protean、ncbi-ORF Finder等软件对测序结果进行生物信息学分析。
     2、根据序列分析结果,设计带有EcoRV/HindIII酶切位点及HA标签序列的引物,以质粒DNA pMD-19T-FosB为模板, PCR扩增Δ2ΔFosB ,构建克隆载体pMD-19T-Δ2ΔFosB,用EcoRV/HindIII双酶切已构建好的pMD-19T-Δ2ΔFosB载体。回收小片段Δ2ΔFosB。同时用EcoRV/HindIII双酶切商品化的穿梭质粒pAdTrack-CMV,并回收片断AdTrack-CMV。然后将小片段Δ2ΔFosB与AdTrack-CMV用T4DNA连接酶连接,从而构建穿梭质粒pAdTrack-CMV-Δ2ΔFosB。以EcoRV/HindIII双酶切穿梭载体,并进行鉴定、测序。穿梭质粒经PmeI酶切线性化后在BJ5183菌内与pAdeasy-2进行同源重组,筛选阳性克隆,酶切鉴定。
     3、将重组腺病毒质粒pAd-Δ2ΔFosB用PacI酶切线性化后,回收病毒骨架。将纯化的病毒骨架采用脂质体LipofectamineTM2000介导法转染HEK293细胞,进行病毒的包装、扩增与鉴定,并根据报告基因GFP来测定含有Δ2ΔFosB基因重组腺病毒的病毒滴度。
     主要研究结果:
     1、成功克隆山羊Δ2ΔFosB基因,获得长度为734 bp的目的片段,提交GenBank(登录号为FJ 493226),生物信息学分析表明其中包含由489个碱基组成的完整开放读码框,编码163个氨基酸,其为FosB的第二个转录本即Δ2ΔFosB。山羊Δ2ΔFosB基因与牛、人、犬及小鼠的Δ2ΔFosB基因的同源性分别为98 %、92 %、91 %和86 %。这说明Δ2ΔFosB基因在不同物种间具有高度同源性。
     2、获得携带有HA标签的重组穿梭载体pAdTrack-CMV-Δ2ΔFosB、重组腺病毒载体pAd-Δ2ΔFosB,分别经EcoRV/HindIII双酶切鉴定以及PacI线性化检测后,证明山羊Δ2ΔFosB腺病毒载体构建成功。
     3、pAd-Δ2ΔFosB经脂质体介导法转染HEK293细胞后,倒置荧光显微镜下观察到大量绿色荧光蛋白表达。经病毒DNA的PCR鉴定,可以扩增出Δ2ΔFosB基因目的条带。这说明Δ2ΔFosB基因已经重组进入腺病毒,从而为研究Δ2ΔFosB基因在乳腺上皮细胞中的功能奠定了基础。
Calcium is the most important constant mineral elements in animal , playing an important function. The circulating calcium concentration in terrestrial organisms remains relatively constant, Such stability relies on the mechanism of calcium metabolism. In order to ensure adequate Ca2+ and protect lactating mother from hypocalcemia, large quantities of calcium transfers from the skeleton and released into the milk through mammary epithelial cells as a supplement to breast milk calcium. Many studies have been reported the regulatory mechanism of this process abroad. In recent yearsΔ2ΔFosB Gene studies show thatΔ2ΔFosB (FosB double truncated subtype) is closely related to calcium absorption, transport and deposition, but it is unknown in the field of breast biology whetherΔ2ΔFosB gene regulates calcium level in the milk. GenBank have logged in the FosB gene sequences of human, cattle, dogs, rats and other species, butΔ2ΔFosB gene of goat has not yet been cloned. Therefore, this test was aimed at cloning full-length of goatΔ2ΔFosB cDNA and constructing its recombinant adenovirus, so as to provide test and theoretical basis for the regulation ofΔ2ΔFosB gene in milk calcium level.
     The main methods:
     1. In this study, through the extraction of goat mammary tissue total RNA and reverse transcript PCR (RT-PCR) method, we get the first chain of goat cDNA. Using self-designed primers, Long and Acute PCR amplification method, we amplifiedΔ2ΔFosB gene from goat cDNA, confirmed the purpose product by 1.0% agarosegel electrophoresis and recycled the product,Δ2ΔFosB gene. Then we insertedΔ2ΔFosB gene into pMD19-T Simple cloning vector construction of intermediate vector pMD19-T-Δ2ΔFosB. After sequencing, the sequencing results carried out bioinformatics analysis.
     2. According to the results of sequence analysis, we designed EcoRV/HindIII restriction site and HA tag sequence primer, and digested the pMD19-T-Δ2ΔFosB vector by EcoRV and HindIII, recycled small fragmentsΔ2ΔFosB. At the same time, the commercialization of the shuttle plasmid pAdTrack-CMV was digested by EcoRV and HindIII, and recover fragments AdTrack-CMV.Δ2ΔFosB small fragments connected with AdTrack-CMV by T4DNA ligase, thereby building a shuttle plasmid pAdTrack-CMV-Δ2ΔFosB. Shuttle vector double-digested with EcoRV/HindIII , and identificated, sequencing. Shuttle plasmid linearized by PmeI digestion, then homologous recombinated with pAdeasy-2 in BJ5183 bacteria, screened of positive clones, confirmed by restriction enzyme digestion.
     3. The recombinant plasmid pAd-Δ2ΔFosB linearized with PacI enzyme digestion and recovered of virus skeleton. Using liposome-mediated method, the purified virus skeleton transfected of HEK293 cells for virus packaging, amplification and identification, and we measured recombinantΔ2ΔFosB adenovirus titer in accordance with GFP reporter gene.
     The main results:
     1. GoatΔ2ΔFosB gene was successfully cloned a length of 734 bp fragment submitted GenBank (accession number for the FJ 493226), which contains 489 base pairs from the composition of the complete open reading frame encoding 163 amino acids, It is justΔ2ΔFosB the second transcript of FosB. Bioinformatics analysis showed that the homologous genes of goat between cattle, people, dog and mice inΔ2ΔFosB gene were 98%, 92%, 91% and 86%, respectively. This shows thatΔ2ΔFosB genes in different species are highly homologous.
     2. After subcloningΔ2ΔFosB gene, we obtained recombinant shuttle vector pAdTrack-CMV-Δ2ΔFosB and recombinant adenovirus vector pAd-Δ2ΔFosB carrying the HA tag. The EcoRV/HindIII double digestion and linearization PacI post-test proved that adenovirus vector was constructed successfully.
     3. After pAd-Δ2ΔFosB transfection of HEK293 cells mediated by liposome, the observed green fluorescent cells were infected with high titer of recombinant adenovirus. Identified by PCR, It amplifiedΔ2ΔFosB gene. This suggests thatΔ2ΔFosB gene has been recombined into the adenovirus vector, which lay the foundation for studying the mechanism in the regulation and expression ofΔ2ΔFosB gene expression in mammary epithelial cells .
引文
[1] Arun Seth. Transcription factors in cancer [J]. European Journal of Cancer. 2005, 41: 2379–2380.
    [2].Karin Milde-Langosch. The Fos family of transcription factors and their role in tumourigenesis[J]. European Journal of Cancer. 2005, 41 : 2449-2461.
    [3].朱赴东,赵士芳.成骨细胞中激活剂蛋白-1家族成员对流体剪切力的响应[J].华西口腔医学杂志. 2005, 23(5): 380-384
    [4]周长春,刘芝华,齐军, AP-1和肿瘤的关系研究进展[J].世界华人消化杂志. 2006, 14(1): 1-5.
    [5] Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins[J]. Science. 1988, 240: 1759-1764.
    [6] Glover JN, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA [J]. Nature. 1995, 373: 257-261.
    [7] Alber T. Structure of the leucine zipper. Curr Opin Genet Dev 1992; 2: 205-210 4 Ryder K, Lanahan A, Perez-Albuerne E, Nathans D.jun-D: a third member of the jun gene family [J]. Proc Natl Acad Sci USA 1989, 86: 1500-1503.
    [8] Hartl M, Hutchins JT, Vogt PK. The chicken junD gene and its product [J]. Oncogene. 1991, 6: 1623-1631.
    [9] Hirai SI, Ryseck RP, Mechta F, Bravo R, Yaniv M.Characterization of junD: a new member of the jun proto-oncogene family [J]. EMBO. 1989, 8: 1433-1439.
    [10] Nishina H, Sato H, Suzuki T, et al. Isolation and characterization of fra-2, an additional member of the fos gene family [J]. Proc Natl Acad Sci USA. 1990, 87: 3619-3623.
    [11] Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions [J]. Mol Cell Biol. 1997, 17: 3094-3102.
    [12] Herdegen T, Skene P, Bahr M. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration [J]. Trends Neurosci. 1997, 20: 227-231.
    [13] Lasham A, Lindridge E, Rudert F, et al. Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors [J]. Gene. 2000, 252: 1-13.
    [14] Baumann S, Hess J, Eichhorst ST, et al. An unexpected role for FosB in activation-induced cell death of T cells [J]. Oncogene. 2003, 22: 1333-1339.
    [15] Lei K, Nimnual A, Zong WX, et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase [J]. Mol Cell Bio.l 2002, 22: 4929-4942.
    [16] Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration [J]. Neuron. 2004, 43: 57-67.
    [17] Kalra N, Kumar V. c-Fos is a mediator of the c-mycinduced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway [J]. Biol Chem. 2004, 279: 25313-25319.
    [18] Zhang J, Zhang D, McQuade JS, et al. c-fos regulates neuronal excitability and survival [J]. Nat Genet. 2002, 30: 416-420.
    [19] Behrens A, Haigh J, Mechta-Grigoriou F, et al. Impaired intervertebral disc formation in the absence of Jun [J]. Developmen.t 2003, 130: 103-109
    [20] Vogt PK. Jun, the oncoprotein [J]. Oncogene. 2001, 20: 2365-2377.
    [21] Piu F, Aronheim A, Katz S, et al. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation [J]. Mol Cell Biol. 2001, 21: 3012-3024.
    [22] Hu E, Mueller E, Oliviero S, et al. Targeted disruption of the c-fos gene demonstrates c-fos-dependent and–independent pathways for gene expression stimulated by growth factors or oncogenes [J]. EMBO. 1994, 13: 3094-3103.
    [23] Parfitt AM. Targeted and nontargeted bone remodeling:Relationship to basic multicellular unit origination and progression [J].Bone. 2002, 30:5-7.
    [24] George Sabatakos, Glenn C Rowe, Marie Kveiborg. Doubly Truncated FosB Isoform (Δ2ΔFosB) Induces Osteosclerosis inTransgenic Mice and Modulates Expression and Phosphorylation of Smads in Osteoblasts Independent of Intrinsic AP-1 Activity [J]. Journal of Bone and Mineral Research. 2008, 23(5): 584-595.
    [25]郑惠玲,袁超,包黎娟等.过表达Δ2ΔFosB蛋白促进小鼠原代前成骨细胞的分化[J].分子细胞生物学. 2008, 41(3):222-225.
    [26] Yoshinori N, Ohnishi, Kunihiko Sakumi, et al. Antagonistic Regulation of Cell-Matrix Adhesion by FosB andΔFosB/Δ2ΔFosB Encoded by Alternatively Spliced Forms of fosB Transcripts [J]. Molecular Biology of the Cell. 2008, 19: 4717-4729.
    [27] Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis [J]. Med Pediatr Oncol. 2003, 41:182-185.
    [28] Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system.[M]. Immunol Rev. 2008: 126-140.
    [29] Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation [J]. Biochim Biophys Acta. 1991, 1072: 129-157.
    [30] Karin M, Liu Z, Zandi E. AP-1 function and regulation [J]. Curr Opin Cell Biol. 1997 9: 240-246.
    [31] Shaulian E, Karin M. AP-1 as a regulator of cell life and death [J]. Nat Cell Biol. 2002, 4: 131-136.
    [32] Kenner L, Hoebertz A, Beil T, et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects [J]. Cell Biol. 2004, 164: 613-623.
    [33] Johnson RS, Spiegelman BM, Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene [J]. Cell. 1992, 71:577-586.
    [34] Wang Z-Q, Ovitt C, Grigoriadis AE, et al. Bone and haematopoietic defects in mice lacking c-fos [J]. Nature. 1992, 360: 741-745.
    [35] Grigoriadis AE, Schellander K, Wang ZQ, et al. Osteoblasts are target cells for transformation in c-fos transgenic mice [J]. Cell Biol. 1993, 122: 685-701.
    [36] Jochum W, David J-P, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1 [J]. Nat Med. 2000, 6: 980-984.
    [37] Hoebertz A, Eferl R, Karreth F, et al. Fra-2:A novel regulator of bone remodeling [J]. Bone Miner Res. 2003, 18: 2-3.
    [38] Brown JR, Ye H, Bronson RT, et al. A defect in nurturing in mice lacking the immediate early gene fosB [J]. Cell. 1996, 86: 297-309.
    [39] Gruda MC, van Amsterdam J, Rizzo CA, et al. Expression of FosB during mouse development:Normal development of FosB knockout mice [J]. Oncogene. 1996, 12: 2177-2185.
    [40] Nakabeppu Y, Nathans D. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity [J].Cell. 1991, 64: 751-759.
    [41] Sabatakos G, Sims NA, Chen J, et al. Overexpression ofΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis [J]. Nat Med. 2000, 6: 985-990.
    [42] Sims NA, Sabatakos G, Chen J-S, et al. RegulatingΔFosB expression in adult Tet-Off-ΔFosB transgenic mice alters bone formation and bone mass [J]. Bone. 2002, 30: 32-39.
    [43] Kveiborg M, Sabatakos G, Chiusaroli R, et al.ΔFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms [J]. Mol Cell Biol. 2004, 24: 2820- 2830.
    [44] Sciaudone M, Gazzerro E, Priest L, et al. Notch 1 impairs osteoblastic cell differentiation. Endocrinology [J]. 2003, 144: 5631-5639.
    [45] Inoue D, Kido S, Matsumoto T. Transcriptional induction of FosB/ΔFosB gene by mechanical stress in osteoblasts [J]. Biol Chem. 2004, 279: 49795-49803.
    [46] Wisdom R, Yen J, Rashid D, et al. Transformation by FosB requires a trans-activation domain missing in FosB that can be substituted by heterologous activation domains [J]. Genes Dev. 1992, 6: 667-675.
    [47]杨竹青,陈从英,任军. FosB基因在白色杜洛克×二花脸资源家系中的遗传变异及其与分娩母猪母性行为的相关性.畜牧兽医学报[J]. 2008, 39(10): 1306-1311.
    [48] Stewart PL, Fuller SD, Burnett RM. Difference imaging of adenovirus: bridging the resolution gapbetween X-ray crystallography and electron microscopy [J]. Embo Journal. 1993, 12: 2589-2599.
    [49] Rekosh D M, Russell W C, Bellet A J, et al. Identification of a protein linked to the ends of adenovirus DNA [J]. Cell. 1977, 11: 283-295.
    [50] Anderson SC, Johnson DE, Harris MP, et al. p53 gene therapy in a rat model of hepatocellular carcin oma: intra-arterial delivery of a recombinant adenovirus [J]. Clinical Cancer Research. 1998, 4: 1649-1659.
    [51] Matthews DA, Russell WC. Adenovirus protein–protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease [J]. J Gen Virol. 1995, 76: 1959-1969.
    [52] Weber J. Genetic analysis of adenovirus type 2. Temperature sensitivity of processing viral proteins [J]. Journal of Virology, 1976, 17: 462-471.
    [53] Webster A, Russell S, Talbot P, et al. Characterization of the adenovirus proteinase: substrate specificity [J]. Journal of General Virology. 1989, 70: 3225-3234.
    [54] Benk? M, Harrach B, Russell W C. Adenoviridae In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses [M]. San Diego: Academic Press. 1999, 227-238.
    [55] Lukashok S A, Horwitz M S. New perspectives in adenoviruses [J]. Current Clinical Topics in Infectious Diseases. 1998, 18: 286-305.
    [56] Mautner V, Adenoviridae. In Andrewes’Viruses of Vertebrates [M]. London: Ballière Tindall. 1989, 249-282.
    [57] Hroboczek J, Ruigrok R WH, Cusack S. In The Molecular Repertoire of Adenoviruses [M]. Berlin:Springer. 1995, 163-200.
    [58] Tomko RP, Xu R, Philipson L: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses [J]. Proc Natl Acad Sci USA. 1997, 94(7): 3352-3356.
    [59] Wang X, Bergelson JM. Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection [J]. Journal of Virology. 1999, 73: 2559-2562.
    [60] Roelvink PW, Lizonova A, Lee JG, et al.The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E and F [J]. Journal of Virology. 1998, 72: 7909-7915.
    [61] Stevenson SC, Rollence M, White B, et al. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain [J]. Journal of Virology. 1995, 69: 2850-2857.
    [62] Mentel R, Dopping G., Wegner U, et al. Adenovirus-receptor interaction with human lymphocytes [J]. Journal of Medical Virology. 1997, 51: 252-257.
    [63] Han J, Sabbatini P, Perez D, et al. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein [J]. Genes & Development. 1996, 10: 461-477.
    [64] Hillemann MR,Werner JR. Recovery of a new agent from patients with acute respiratory illness [J]. Proceedings of the Society for Experimental Biology and Medicine. 1954, 85: 183-188.
    [65] Rowe WP,Huebner RJ,Gilmore LK, et al. Isolation of a cytopathic agent from human adenoids undergoing spontaneous degradation in tissue culture [J]. Proceedings of the Society for Experimental Biology and Medicine. 1953, 84: 570-573.
    [66] Ma H, Liu Y, Liu S, et al. Oral adeno-associated virus-TRAIL gene therapy suppresses human hepatocellular carcinoma growth in mice [J]. Hepatology. 2005, 42(6): 1355-1363.
    [67] Horowitz MS,In Field BN,Naise DM, et al. Adenovirdae and their replication. Virology [M]. 2nd ed. New York:Raren press. 1990, 1679-1723.
    [68] Stewart PL, Fuller SD, Burnett RM. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy [J]. EMBO. 1993, 2(1): 2589-2599.
    [69] Berkner KL,Sharp PA. Generation of adenovirus bytransfection of plasmids [J]. Nucleic Acids Res, 1983, (11): 6003-6020.
    [70] Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 [J]. Proc Natl Acad Sci. 1994, 91: 8802-8806.
    [71] He TC, Zhou S, Costa LT, et al. A simplified system for generating recombinant adenoviruses [J]. Proc Natl Acad Sci. 1998, 95: 2509-2514.
    [72] Mizuguchi H, Kay MA. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method [J]. Hum Gene Ther. 1998, (9): 2577-2583.
    [73] Bramson J, Hitt M, Gallichan WS, et al. Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine:in vitro and in vivo production of biologically active interleukin-12 [J]. Hum Gene Ther. 1996, 7: 333-342.
    [74] Krougliak V, Graham FL. Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants [J]. Hum Gene Ther. 1995, 6(12): 1575-1586.
    [75]丁长根,刘惠莉.腺病毒表达载体研究进展[J].动物医学进展. 2007, 28(10): 64-67.
    [76] Majhen D, Ambriovic RA. Adenoviral vectors How to use them in cancer gene therapy [J]. Virus Research. 2006, 119(2): 122-133.
    [77] Zhang W, Imperiale MJ. Requirement of the adenovirus IVa-protein for virus assembly [J]. Virology. 2003, 77(6): 3586-3594.
    [78]莫武宁,唐安洲,周玲. Ad5F35重组腺病毒载体研究进展[J].病毒学报. 2006, 22(6): 480-483.
    [79] Hedley SJ. Targeted and shielded adeno-vectors for cancer therapy [J]. Cancer Immunol Immunot her. 2006. 55(11): 1412-1419.
    [80] Hammond JM,McCoy RJ, Jansen ES, et al. Vaccination with a single dose of a recombinant porcine adenovirusexpressing the classical swine fever virus gp55(E2)gene protects pigs against classical swine fever [J]. Vaccine. 2000, 18: 1040-1050.
    [81] Baxi MK, Babiuk LA, Mehtali M, et al. Transcription map and expression of bovine herpesvirus-1 glycoprotien D in early region 4 of bovine adenovirus-3 [J]. Virology. 1999, 261: 143-152.
    [82] Reddy PS, Idamakanti N, Chen Y, et al. Replication-defective bovine adenovirus type 3 as an expres sion vector [J]. Journal of Virology. 1999, 73: 9137-9144.
    [83] Zakhartchouk AN, Reddy PS, Baxi M, et al. Construction and characterization of E3-deleted bovine adenovirus type 3 expressing full length and truncated form of bovine herpesvirus type 1 glycoprotein gD [J]. Virology. 1998, 250: 220-229.
    [84] Vrati S, Macavoy ES, Xu ZZ, et al. Construction and transfection of ovine adenovirus genomic clones to rescue modified viruses [J]. Virology. 1996, 220(1): 200-203.
    [85]徐学武,俞卫锋.第三代腺病毒载体的研究进展[J].生物技术. 2005, 15(3): 79-82.
    [86] Sargant KL, Ng P, Evelegh C, et al. Development of a size-restricted pIX-deleted helper virus for amplification of helper-dependent adenovirus vectors [J]. Gene Therapy. 2004, 11(6): 504-511.
    [87] Dudley RW, Lu Y, Gilbert R, et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector [J]. Hum Gene Ther. 2004, 15(2): 145-156.
    [88] Wang XW, Jiang WM, Jiang P, et al. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice [J]. Vaccine. 2006, 24(16): 3374-3380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700