准一维纳米材料力—电—耦合和功能调控的物理力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维纳米材料因为其诸多奇异的性质受到了国际科技界的普遍关注。因为量子效应,低维纳米材料往往展示出一般宏观材料难以具备的功能。准一维纳米材料因为在两个维度上存在尺度的限制,所以具有更显著的量子效应和超乎想象的功能。然而,纳米材料独特的力-电-磁耦合性质及其调控研究还处于相对初步的阶段,实际基底上有限纳米体系的功能和调控研究更为缺乏。本文基于第一原理密度泛函理论和半经验的紧束缚方法计算,对碳/氮化硼纳米管、石墨烯/氮化硼纳米带、有机金属纳米线等一系列准一维纳米材料性质进行了系统的物理力学研究。通过对这类准一维纳米材料施加各种物理场,如机械力、电场、磁场以及电荷或者基底引起的势场等,我们深入研究了它们的结构、电性和磁性的变化,得到了丰富的力电磁耦合规律。主要内容归纳如下:
     (1)碳纳米管的力电磁耦合和氮化硼纳米带能隙的电场调制研究:建立了研究碳纳米管的机电磁耦合效应的紧束缚模型。使用该模型,发现在轴向磁场和单轴/扭转应变的共同作用下,碳纳米管从半导体转变至金属的所需施加的临界磁场强度与碳纳米管所受应变成线性变化关系。碳纳米管的磁化系数随着应变增加发生明显振荡,振荡的周期与碳纳米管的手性和直径相关。尤其重要的是,应变可使碳纳米管发生顺磁-反磁性转变。
     采用第一原理计算发现无论宽度大小和边缘形状,氮化硼纳米带均为宽禁带的绝缘体,因此其功能性受到很大限制,不同于石墨烯纳米带;然而,通过施加横向电场,发现氮化硼纳米带的能隙随电场强度的增加急剧减小,而且在一定的临界电场强度下能隙可被完全关闭。纳米带越宽,能隙受电场调制越显著,使得关闭能隙所需的临界电场强度越小,因此这一发现具有诱人的应用前景。
     (2)氮化硼纳米管的稳定性和电、磁性质研究:氮化硼纳米管被普遍认为是宽禁带的绝缘体,这不利于其用作电子元件。通过系统研究小直径氮化硼纳米管的稳定性和电子性质,发现最小直径为0.267 nm的(3,0)氮化硼纳米管在室温下具有很好的稳定性,这一尺度打破了0.3 nm直径的最小纳米管记录。重要的是,氮化硼纳米管在小直径条件下变成了半导体,且它们的电子性质和功函数强烈依赖于碳纳米管手性。这些特性与一般直径的纳米管性质截然不同。我们进一步通过拓扑氟化氮化硼纳米管,发现了其存在长程的铁磁性自旋序和高自旋极化的性质,且自旋极化随管径减小而急剧增加,甚至出现半金属的性质。施加径向变形可显著调制氟化氮化硼纳米管的自旋极化,有望用于设计机械可控的自旋器件。另一方面,因为大直径的氮化硼纳米管具有很好的绝缘性而碳纳米管具有很好的导电能力,我们提出了碳纳米管@氮化硼纳米管形成的同轴电缆模型,确定了该电缆最优的层间距,发现其优异的电缆功能和突出的抗机械变形能力。但是这种异质电缆实验上不便于制备,所以有必要提出一全新的同质同轴电缆。我们通过注入电子进入双壁氮化硼纳米管,发现随着双壁氮化硼纳米管直径的减小,出现反常的静电效应:注入的电子更多地分布于内管,而外管则趋向保持电中性。施加径向应变能够有效地增加大直径双壁管中内管的电荷比例,所以双壁氮化硼纳米管可成为天然的同质同轴电缆
     (3)石墨烯纳米带的磁电效应及其在硅基底上受偏压调制的电性研究:石墨烯纳米带的研究是最近进展最为迅速的材料之一。然而实际应用中,基底是不可缺少的元素。通过系统的第一原理计算,发现当单层石墨烯纳米带吸附于Si(001)基底,纳米带宽度小于一定值时,在最稳定吸附位点纳米带可由金属性转变为半导体性,而宽度较大的石墨烯纳米带则一直保持金属性。非常有趣的是,在外加偏压的作用下,双层石墨烯纳米带吸附于Si(001)基底上会出现强烈的磁电效应。通过偏压控制顶层Z-GNR的p-n转换,发现磁电系数可正负变换,导致载体可调的磁电耦合。这是在轻元素磁体中首次发现磁电效应,与报道的过渡金属相关磁体中的磁电效应具有截然不同的物理机制。除磁性之外,顶层纳米带的能隙也可以通过偏压有效地调节,甚至可引起半导体-金属转变等重要的功能性。以上研究体系中,磁性均集中于石墨烯纳米带,是否能将磁性引入硅基底中呢?发现当单层石墨烯纳米带吸附于Si(111)基底上时,可在硅基底上引起强烈的自旋磁性。磁性显著依赖于纳米带的宽度和侧向距离以及纳米带的吸附方向,且对Z-GNR平面施加垂直的压应力可有效调控硅表面磁性。这一发现为设计硅为基元的自旋器件提供了新途径。
     (4)过渡金属萘三明治纳米线磁序的电荷调控研究:有机金属三明治纳米线在自旋电子学领域具有重要的应用价值,但如何调控这种纳米线的磁耦合是一挑战。利用第一原理计算我们首次发现钒萘三明治纳米线不仅具有高的结构稳定性,而且其磁序可通过注入电荷来调控,注入电子可使钒萘纳米线由原本的反铁磁性耦合转变为铁磁性耦合,而注入空穴能够进一步稳定原本的反铁磁性耦合。在+2电荷态下,我们还发现钒萘纳米线发生金属-绝缘体转变。另外不同的过渡金属元素组成这类三明治纳米线也会引起不同的磁序。这些发现为三明治纳米线用作可控的自旋输运元件提供了理论上的可能性。
Low-dimensional nanoscale materials have attracted a great deal of attention owing to their distinct properties. At this scale, strong quantum effect entails the materials unique functions that are not available in bulk counterparts. However, the study on coupling between material properties and external physical fields is still in infancy. Especially, the function modulation of finite nanosystems settled on substrates remains to be studied. In this thesis, using tight-binding approximation as well as first principles calculations based on density functional theory, we systematically study the physical mechanical properties of a series of quasi-one dimensional nanomaterials, including carbon and boron nitride nanotubes, graphene and boron nitride nanoribbons, and organometallic sandwich nanowires. In particular, we get deep insight into the change in structures, electronic and magnetic properties of these nanoscale materials upon the applications of external physical fields, such as mechanical field, electric field, magnetic field, and charge- or substrate-induced potential field. Ample phenomenen from the coupling of strain, electronic properties and magnetism are revealed in these materials. The findings are birefly concluded below:
     (1) Electromagnetic effect in strained carbon nanotubes and energy gap modulation in boron nitride nanoribbons by electric field. We set up the tight binding model for studying the couling effects of uniaxial and torsional strains on the electronic and magnetic properties of single-walled carbon nanotubes. The strain-induced peaks of susceptibility are found in the carbon nanotubes; especially, paramagnetic-diamagnetic transition takes place at certain strains. The critical magnetic flux for semiconductor- metal transition changes linearly with strains depending on the chiralities of the tubes and the types of strains, mainly due to the tuning of the Van Hove singularities by the coupling of strains and magnetic flux.
     We reveal by first-principles calculations that the BN nanoribbons remain insulators with large band gap, regardless of the ribbon width and edge structure, thereby limiting their functions for applications. However, by applying a transverse electric field, the energy gap of all BN nanoribbons can be significantly reduced and even completely closed at a critical field, which decreases with increasing ribbon width. So these findings promise practical applications.
     (2) Study of stability, electronic and magnetic properties of boron nitride nanotubes. Boron nitride nanotube (BNNT) is usually regarded as an insulator and not suitable for designing electronic devices. By semi-empirical molecular dynamics simulations and ab initio total energy calculations, we predict that a freestanding (3,0) BNNT with a diameter of 2.7 ? can be stable well over room temperature, with remarkably higher stability than the experimentally reported (2,2) carbon nanotube. Importantly, small diameter BNNTs have become semiconductor and their electronic properties and work functions strongly depend on their chirality and diameter, exhibiting distinguished electronic properties from their large insulated family members. Moreover, we find that fluorine atoms topologically adsorbed on BNNTs can induce long-ranged ferromagnetic spin ordering along the tube, offering strong spin polarization around the Fermi level. The spin polarization increases significantly with decreasing tube radius, even giving rise to half-metal when the tube diameter is reduced to 3.3 ?. Applying radial strain to the fluorinated nanotube can efficiently modulate the ferromagnetic ordering, which enables the fluorinated BNNTs to function as piezomagnetic nanotubes. As normal-sized BNNTs can behave as excellent insulators, we propose a coaxial nanocable model consisting of carbon nanotube core and boron nitride nanotube sheath by ab initio calculations. We find the optimal interwall distance to be about 0.35 nm and the conductivity of the core carbon nanotube and the insulation of the boron nitride nanotube sheath are found to be rather tolerant to mechanical deformation. As such hybrid nanocable is impractical for mass production, it would be highly desirable to find a homogenous coaxial nanocable. Using first-principles calculations, we find that double-walled BNNTs could be natural homogeneous nanocables as injected electrons prefer abnormally to concentrate on the inner tube while the outer tube remains insulating. The ratio of extra electrons on the inner tube to total electron carriers in the double-walled BNNTs can be tuned widely by changing either the tube diameter or the local tube curvature through radial deformation.
     (3) Magnetoelectric effect and bias-induced modulation of electronic properties in graphene nanoribbons on silicon substrates. Zigzag graphene nanoribbons have recently attracted much attenation, but the substrate is unavoidable in designing practical devices. By first-principles calculations, we find that the electronic properties of single-layered zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chains across their width adsorbed perpendicularly to the Si dimer rows possess an energy gap, while wider Z-GNRs are metallic due to width-dependent interface hybridization. Moreover, we predict a magnetoelectric effect in bilayer graphene nanoribbons on silicon substrates. It is shown that an applied bias voltage can produce strong linear ME effect by driving charge transfer between the nanoribbons and substrate, thus tuning the exchange splitting of magnetic edge states; moreover, the bias induced n-to-p-type transition in the ribbon layer can switch the ME coefficient from negative to positive due to the unique symmetry of band structures. Also, the band gap of the top ribbon layer can be effectively modulated by the applied bias voltage, which can lead to a semiconductor-to-metal transition in the top magnetic semiconductor layer. In all above mentioned systems, the magnetic moment is highly concentrated on the GNR, how to introduce spins in the silicon substrate remains elusive. We find that high spin-polarization can be achieved on the Si(111)-(2×1) surface via chemisorption of graphene nanoribbons. The total magnetic moment on the Si surface strongly depends on the ribbon width and is thus tunable upon controlling lateral ribbon separation. The Si surface magnetization can sustain considerable vertical compression to the ribbons but also can be functionally switched at high ribbon deformation.
     (4) Carrier-tunable magnetic ordering in vanadium-naphthaline sandwich nanowires. Organometallic sandwich nanowires (SWNs) have recently undergone a flurry of research interest due to their promising potential for future spintronic application. However, how to regulate the magnetic coupling of magnetic SWNs is little explored. We predicted from first-principles calculation the novel structures of NpTM2 SWNs (Np = naphthalene, TM = V, Mn, Ti, Nb, Sc). We show that the magnetic ordering in the NpV2 nanowire can be adjusted by changing its charge state. Its intrinsic antiferromagnetic ordering can be switched to ferromagnetic one by injecting electrons whereas injecting holes to the nanowire can further stabilize the antiferromagnetic state. In addition, the NpMn2 nanowire is ferromagnetic, the NpTi2, NpV2 and NpNb2 nanowires are antiferromagnetic, and the NpSc2 nanowire is nonmagnetic.
引文
[1]张立德,牟季美,纳米材料和纳米结构。北京,科学出版社,2001。
    [2]张立德,解思深,纳米材料和结构——国家重大基础研究新进展,北京,化学工业出版社,2005。
    [3] H. W. Kroto, J. R. Heath and S. C. OBrien, et al. C60: Buckminsterfullerene. Nature 1985, 318: 162–163.
    [4] N. F. MOTT, Metal-insulator transition. Rev. Mod. Phys. 1968, 40 (4): 677~683.
    [5] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics 1964, 32 (1): 37–49.
    [6] I. Dzyaloshinskii, On the magneto-electric effect in antiferromagnets. Soviet Phys. J. Expt. Theor. Phys. 1960, 10: 628629.
    [7] I. E. Dzialoshinskii, The problem of piezomagnetism. Soviet Phys. JETP 1958, 6: 621.
    [8] J. W. Strutt, and B. Rayleigh, The Theory of Sound, 2nd ed. Macmillan: London, 1926, 2: 226–235.
    [9] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics 1998, 61 (9): 1267–1324.
    [10] Y. Li, F. Qian, and J. Xiang, et al., Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9 (10): 18–27.
    [11] Z. Chen, Y. Lin, and M. J. Rooks, et al., Graphene nanoribbon electronics. Phys. E: Low-dimensional Systems and Nanostructures 2007, 40 (2): 228–232.
    [12] J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79 (2): 677–732.
    [13] S. Iijima, Helical microtubules of graphitic carbon. Nature 1991, 354: 56-58.
    [14] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605.
    [15] D. S. Bethune, C. H. Kiang, and M. S. Devries, et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363: 605–607.
    [16] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon 1995, 33(7): 883–891.
    [17] E. T. Thostensona, Z. Ren, and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Comput. Sci. Techol. 2001, 61: 1899–1912.
    [18] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381: 678–680.
    [19] J. P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79: 1297–1300.
    [20] M. F. Yu, O. Lourie, and M. J. Dyer, et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287: 637–640.
    [21] O. Lourie, D. M. Cox, and H. D. Wagner, Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81: 1638–1641.
    [22] N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68 (10): 1579~1581.
    [23] X. Blase, L. X. Benedict, and Eric L. Shirley, et al., Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. 1994, 72 (12) 1878–1881.
    [24] C. L. Kane and E. J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78 (10): 1932–1935.
    [25] L. Yang and J. Han, Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85 (10), 154–157.
    [26] C. Kilic, S. Ciraci, and O. Gülseren, et al., Variable and reversible quantum structures on a single carbon nanotube. Phys. Rev. B 2000, 62 (24): R16345–R16348.
    [27] C. J. Park, Y. H. Kim, and K. J. Chang, Band-gap modification by radial deformation in carbon nanotubes. Phys. Rev. B 1999, 60 (15): 10656–10659.
    [28] J. Q. Lu, J. Wu, and W. Duan, et al., Metal-to-Semiconductor Transition in Squashed Armchair Carbon Nanotubes. Phys. Rev. Lett. 2003, 90 (15): 156601.
    [29] D. Tekleab, D. L. Carroll, and G. G. Samsonidze, et al., Strain-induced electronic property heterogeneity of a carbon nanotube. Phys. Rev. B 2001, 64 (3): 035419.
    [30] S. Paulson, M. R. Falvo, and N. Snider, et al., In situ resistance measurements of strained carbon nanotubes. Appl. Phys. Lett. 1999, 75 (19): 2396-2398.
    [31] J. Cao, Q. Wang, and H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev.Lett. 2003, 90 (15): 157601.
    [32] E. D. Minot, Y. Yaish, and V. Sazonova, et al., Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 2003, 90 (15): 156401.
    [33] L. J. Li, R. J. Nicholas, and R. S Deacon, et al., Chirality assignment of single-walled carbon nanotubes with strain. Phys. Rev. Lett. 2004, 93 (15): 156104.
    [34] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Magnetic energy bands of carbon nanotubes. Phys. Rev. B 1994, 50 (19): 14698–14701.
    [35] J. P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 1995, 74(7): 1123–1126.
    [36] M. Szopa, M. Marga?ska, and E. Zipper, et al., Coherence of persistent currents in multiwall carbon nanotubes. Phys. Rev. B 2004, 70 (7): 075406.
    [37] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115 (3): 485–491.
    [38] J. O. Leea, J. R. Kima, and J. J. Kima, et al., Observation of magnetic-field-modulated energy gap incarbon nanotubes. Solid State Comm. 2000, 115: 467–471
    [39] S. Zaric, G. N. Ostojic, and J. Kono, et al., Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes. Science 2004, 304: 1129–1131.
    [40] U. C. Coskun, T. C. Wei, and S. Vishveshwara, et al., h/e Magnetic flux modulation of the energy gap in nanotube quantum dots. Science 2004, 304: 1132–1134.
    [41] S. Roche and R. Saito, Magnetoresistance of carbon nanotubes: from molecular to mesoscopic fingerprints. Phys. Rev. Lett. 2001, 87(24): 246803.
    [42] J. Z. Cai, L. Lu, and W. J. Kong, et al., Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97 (2): 026402.
    [43] E. D. Minot, Y. Yaish, and V. Sazonova, et al., Determination of electron orbital magnetic moments in carbon nanotubes. Nature 2004, 428: 536–539.
    [44] A. Rubio, J. L. Corkill, and M. L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49 (7): 5081–5084.
    [45] X. Blase, A. Rubio, and S. G. Louie, et al., Stability and band gap constancy ofboron nitride nanotubes. Europhys. Lett. 1994, 28: 335–340.
    [46] N. G. Chopra, R. J. Luyken, and K. Cherrey, et al., Boron nitride nanotubes. Science 1995, 269: 966–967.
    [47] A. Loiseau, F. Willaime, and N. Demoncy, et al., Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76: 4737–4740.
    [48] W. Q. Han, Y. Bando, and K. Kurashima, et al., Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 1998, 73: 3085–3090.
    [49] D. P. Yu, X. S. Sun, and C. S. Lee, et al., Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 1998, 72: 1966–1968.
    [50] E. Bengu and L. D. Marks, Single-walled BN nanostructures. Phys. Rev. Lett. 2001, 86(11): 2385–2388.
    [51] D. Golberg, Y. Bando, and L. Bourgeois, et al., Insights into the structure of BN nanotubes. Appl. Phys. Lett. 2000, 77 (13):1979-1981.
    [52] A. P. Suryavanshi, M.-F. Yu, and J. G. Wen, et al., Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 2004, 84: 2527–2529.
    [53] E. Hernández, C. Goze, and P. Bernier, et al., Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 1998, 80 (20): 4502–4505.
    [54] T. Dumitric?, H. F. Bettinger, and G. E. Scuseria, et al., Thermodynamics of yield in boron nitride nanotubes. Phys. Rev. B 2003, 68 (8): 085412–085419.
    [55] C. Zhi, Y. Bando, and C. Tang, et al., Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21: 2889.
    [56] Y. Chen, J. Zou, and S. J. Campbell, et al., Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84 (13): 2430–2432.
    [57] C. Y. Zhi, Y. Bando, C. Tang, et al., Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc. 2005, 127 (46): 15996–15997.
    [58] C. Y. Zhi, Y. Bando, C. Tang, et al., characteristics of boron nitride nanotube- polyaniline composites. Angew. Chem. Int. Ed. 2005, 44: 7929–7932.
    [59] R. Arenal, O. Stephan, and M. Kociak, et al., Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled andmultiwalled nanotubes. Phys. Rev. Lett. 2005, 95 (12): 127601.
    [60] L. Wirtz, A. Marini, and A. Rubio, Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 2006, 96 (12): 126104.
    [61] Y. H. Kim, K. J. Chang, and S. G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes. Phys. Rev. B 2001, 63: 205408–205412.
    [62] M. Ishigami, J. D. Sau, and S. Aloni, et al., Observation of the giant stark effect in boron-nitride nanotubes. Phys. Rev. Lett. 2005, 94 (5): 056804.
    [63] C. W. Chen, M. H. Lee, and S. J. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field. Nanotechnology 2004, 15 (12): 1837–1843.
    [64] S. S. Dana, Mater. Sci. Forum 1990, 54–55: 229.
    [65] C. H. Park, C. D. Spataru, and S. G. Louie, Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes. Phys. Rev. Lett. 2006, 96 (12): 126105.
    [66] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 2004, 3: 404–409.
    [67] M. Radosavljevic, J. Appenzeller, and V. Derycke, et al., Electrical properties and transport in boron nitride nanotubes. Appl. Phys. Lett. 2003, 82 (23): 4131–4133.
    [68] X. Wu, J. Yang, and J. G. Hou, et al., Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes. J. Chem. Phys. 2004, 121 (17): 8481–8485.
    [69] C. Zhi, Y. Bando, and C. Tang, et al., Covalent functionalization: Towards soluble multiwalled boron nitride nanotubes. Angew. Chem. Int. Ed. 2005, 44 (48): 7932- 7935.
    [70] C. Zhi, Y. Bando, and C. Tang, et al., Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. Phys. Rev. B 2006, 74 (15): 153413.
    [71] C. Tang, Y. Bando, and Y. Huang, Fluorination and electrical conductivity of BN nanotubes. J. Am. Chem. Soc. 2005, 127 (18): 6552–6553.
    [72] H. J. Xiang, J. Yang, and J. G. Hou, et al., Are fluorinated boron nitride nanotubes n-type semiconductors? Appl. Phys. Lett. 2005, 87 (24): 243113.
    [73] R. Q. Wu, L. Liu, and G. W. Peng, et al., Magnetism in BN nanotubes induced by carbon doping. Appl. Phys. Lett. 2005, 86 (12): 122510.
    [74] C. S. Guo, W. J. Fan, and R. Q. Zhang, Diameter-dependent spin polarization of injected carriers in carbon-doped zigzag boron nitride nanotubes. Appl. Phys. Lett. 2006, 89 (12): 123103.
    [75] R. F. Liu and C. Cheng, Ab initio studies of possible magnetism in a BN sheet by nonmagnetic impurities and vacancies. Phys. Rev. B 2007, 76 (1): 014405.
    [76] M. S. Si and D. S. Xue, Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations. Phys. Rev. B 2007, 75 (19): 193409.
    [77] Jia Li, Gang Zhou, and Ying Chen, Magnetism of C adatoms on BN nanostructures: implications for functional nanodevices. J. Am. Chem. Soc. 2009, 131 (5): 1796–1801.
    [78] B. Tian, X. Zheng, and T. J. Kempa, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449: 885–889.
    [79] A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279 (5348): 208–211.
    [80] W. S. Shi, H. Y. Peng, and L. Xu, et al., Coaxial three-layer nanocables synthesized by combining laser ablation and thermal evaporation. Adv. Mater. 2001, 12 (24): 1927–1930.
    [81] X. L. Fu, Y. J. Ma, and P. G. Li, et al., Fabrication of CdS/Si nanocable heterostructures by one-step thermal evaporation. Appl. Phys. Lett. 2005, 86 (14): 143102.
    [82] K. Suenaga, Y. Zhang, and S. Iijima, Coiled structure of eccentric coaxial nanocable made of amorphous boron and silicon oxide. Appl. Phys. Lett. 2000, 76 (12): 1564–1566.
    [83] H. F. Zhang, C. M. Wang, and L. S. Wang, Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett. 2002, 2 (9): 941–944.
    [84] H. Z. Zhang, X. H. Luo, and J. Xu, et al., Synthesis of TiO2/SiO2 core/shell nanocable arrays. J. Phys. Chem. B 2004, 108 (39): 14866–14869.
    [85] L. Dai, X. L. Chen, and X. Zhang, et al., Coaxial ZnO/SiO2 nanocables fabricated by thermal evaporation/oxidation. Appl. Phys. A 2004, 78 (4), 557–559.
    [86] Q. Li and C. R. Wang, Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 2003, 82 (9): 1398–1400.
    [87] Y. Wong and Q. Li, Study of the crystallinity of ZnO in the Zn/ZnO nanocableheterostructures. J. Mater. Chem. 2004, 14: 1413–1418.
    [88] J. H. He, Y. Y. Zhang, and J. Liu, ZnS/Silica Nanocable field effect transistors as biological and chemical nanosensors. J. Phys. Chem. C 2007, 111 (33): 12152– 12156.
    [89] K. Suenaga, C. Colliex, and N. Demoncy, et al., Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 1997, 278 (5338): 653–655.
    [90] Y. Zhang, K. Suenaga, and C. Colliex, et al., Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 1998, 281 (5379): 973–975.
    [91] W. Han, P. Redlich, F. Ernst, et al., Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 1999, 75 (13): 1875–1877.
    [92] L. Chen, H. Ye, and Y. Gogotsi, Carbothermal synthesis of boron nitride coatings on silicon carbide. J. Am. Ceram. Soc. 2003, 86 (11): 1830–1837.
    [93] Y. C. Zhu, Y. Bando, and D. F. Xue, et al., Insulating tubular BN sheathing on semiconducting nanowires. J. Am. Chem. Soc. 2003, 125 (47): 14226–14227.
    [94] W. Mickelson, S. Aloni, and W. Q. Han, Packing C60 in boron nitride nanotubes. Science 2003, 300 (5618): 467–469.
    [95] K. S. Novoselov, A. K. Geim, and S. V. Morozov, et al., Electric field effect in atomically thin carbon films. Science 2004, 306: 666–669.
    [96] A. K. Geim and K. S. Novoselov, The rise of graphene. Nature Mater. 2007, 6: 183–191.
    [97] A. H. Castro Neto, F. Guinea, and N. M. R. Peres, et al., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1): 109–162.
    [98] P. R. Wallace, The band theory of graphite. Phys. Rev. 1947, 71 (9): 622–634.
    [99] K. S. Novoselov, A. K. Geim, and S. V. Morozov, et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438: 197–200.
    [100] K. S. Novoselov, Z. Jiang, and Y. Zhang, et al., Room-temperature quantum hall effect in graphene. Science 2007, 315: 1379–1379.
    [101] Y. Zhang, Y. W. Tan, and H. L. Stormer, et al., Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438: 201–204.
    [102] X. Wu, X. Li, and Z. Song, et al., Weak antilocalization in epitaxial graphene:Evidence for chiral electrons. Phys. Rev. Lett. 2007, 98 (13): 136801.
    [103] A. Calogeracos and N. Dombey, History and physics of the Klein paradox. Contemp. Phys. 1999, 40 (5): 313–321.
    [104] P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems. Rev. Mod. Phys. 1985, 57 (2): 287-337.
    [105] J. C. Meyer, A. K. Geim, and M. I. Katsnelson, et al., The structure of suspended graphene sheets. Nature 2007, 446: 60–63.
    [106] Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97 (21): 216803.
    [107] M. Y. Han, B. Ozyilmaz, and Y. Zhang, et al., Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98 (20): 206805.
    [108] M. Fujita, K. Wakabayashi, K. Nakada, et al., Peculiar localized edge states at zigzag graphite edges. J. Phys. Soc. Jpn. 1996, 65 (7): 1920–1923.
    [109] H. Lee, Y. W. Son, and N. Park, et al., Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 2005, 72 (17): 174431.
    [110] Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons. 2006, 444: 347–349.
    [111] E. Kan, Z. Li, and J. Yang, Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 131 (5): 1796–1801.
    [112] S. Dutta, A. K. Manna, and S. K. Pati, Intrinsic half-metallicity in modified graphene nanoribbons. Phys. Rev. Lett. 2009, 102 (9): 096601.
    [113] E. Kan, X. Wu, and Zhenyu Li, et al., Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys. 2008, 129 (8): 084712.
    [114] W. Y. Kim and K. S. Kim, Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotech. 2008, 3: 408–412.
    [115] K. Sawada, F. Ishii and M. Saito, et al., Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism. Nano Lett. 2009, 9 (1): 269-272.
    [116] M. Y. Han, B. Ozylmaz, and Y. Zhang, et al., Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98 (20): 206805.
    [117] Z. Chen, Y. M. Lin, and M. J. Rooks, et al., Graphene nano-ribbon electronics. Phys. E 2007, 40: 228–232.
    [118] X. Li, X. Wang, and Li Zhang, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319 (5867): 1229–1232.
    [119] L. Tapasztó, G. Dobrik, and P. Lambin, et al., Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 2008, 3: 397–401.
    [120] L. Jiao, Li Zhang, and X. Wang, et al., Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458: 877–880.
    [121] D. V. Kosynkin, A. L. Higginbotham, and A. Sinitskii, et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458: 872–876.
    [122] J. Bai, X. Duan, and Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 2009, 9 (5): 2083–2087.
    [123] L. C. Campos, V. R. Manfrinato, and J. D. S. Yamagishi, et al., Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9 (7): 2600– 2604.
    [124] J. Cai1, P. Ruffieux, and R. Jaafar, et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466: 470–473.
    [125] K. S. Novoselov, D. Jiang, and F. Schedin, et al., Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 2005, 102 (30): 10451–10453.
    [126] C. Jin, F. Lin, and K. Suenaga, et al., Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102 (19): 195505.
    [127] H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 1994, 162: 665–685.
    [128] H. Schmid, Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2. Ferroelectrics 1994, 161: 1–28.
    [131] J. P. Rivera, On definition, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 1994, 161: 165–180.
    [132] I. Dzyaloshinskii, On the magneto-electric effect in antiferromagnets. Soviet Phys. J. Expt. Theor. Phys. 1960, 10: 628629.
    [133] D. Astrov, The magnetoelectric effect in antiferromagnetics. Soviet Phys. J. Expt. Theor. Phys. 1960, 11: 708709.
    [134] G. Srinivasan, E. T. Rasmussen, and J. Gallegos, et al., Magnetoelectric bilayerand multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 2001, 64 (21): 214408.
    [135] S. Dong, J. Cheng, and J. F. Li, et al., Enhanced magnetoelectric effects in laminate composites of terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 2003, 83 (23): 4812-4814.
    [136] C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 2006, 97 (4): 047201.
    [137] J. Rondinelli, M. M. Stengel, and N. A. Spaldin, Carrier-mediated magneto- electricity in complex oxide heterostructures. Nature Nanotech. 2008, 3: 46–50.
    [138] C. G. Duan, J. P. Velev, and R. F. Sabirianov, et al., Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 2008, 101: 137201.
    [139] Y. H. Chu, L. W. Martin, and M. B. Holcomb, et al., Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 2008, 7: 478–482.
    [140] T. Lottermoser, T. Lonkai, and U. Amann, et al., Magnetic phase control by an electric field. Nature 2004, 430: 541–544.
    [141] M. Weisheit, S. F?hler, and A. Marty, et al., Electric field–induced modification of magnetism in thin-film ferromagnets. Science 2007, 315 (5810): 349–351.
    [142] M. Tsujikawa and T. Oda, Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A first-principles study. Phys Rev Lett. 2009, 102 (24): 247203.
    [143] T. Maruyama, Y. Shiota, and T. Nozaki, et al., Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 2009, 4: 158–161.
    [144] D. Chiba, M. Sawicki, and Y. Nishitani, et al., Magnetization vector manipulation by electric fields. Nature 2008, 455: 515–518.
    [145] D. Cahen, G. L. Frey and A. Zaban, A one-cent room-temperature magneto- electric sensor. Nature Mater. 2008, 7: 93–94.
    [146] P. Borisov, A. Hochstrat, X. Chen, Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 2005, 94 (11): 117203.
    [147] V. Laukhin, V. Skumryev, and X. Martí, et al., Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 2006, 97 (22):227201.
    [148] E. Y. Tsymbal and H. Kohlstedt, Tunneling across a ferroelectric. Science 2006, 313 (5784): 181-183.
    [149] M. Y. Zhuravlev, R. F. Sabirianov, and S. S. Jaswal, et al., Giant electro- resistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 2005, 94 (24): 246802.
    [150] M. Gajek, M. Bibes, and S. Fusil, et al., Tunnel junctions with multiferroic barriers. Nature Mater. 2007, 6: 296–302.
    [151] R. Ramesh, Thin films: Theory leads the way to new devices. Nature Nanotech. 2008, 3: 7-8.
    [152] W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials. Nature 2006, 442: 759–765.
    [153] M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 2005, 38: R123–R152.
    [154] B. Trauzettel, D. V. Bulaev, and D. Loss, et al., Spin qubits in graphene quantum dots. Nature Phys. 2007, 3: 192–196.
    [155] M. Born and K. Huang, Dynamical theory of crystal lattices. Oxford University Press, 1954.
    [156] D. R. Hartree, The wave-mechanics of an atom with a non-coulomb central field. Part I. Theory and Methods. Proceedings of the Cambridge Philosophical Society 1928, 24: 89.
    [157] J. C. Slater, Note on Hartree's Method. Phys. Rev. 1930, 35(2): 210.
    [158] V. Fock, Noherungsmethode zur losung des quantenmechanischen mehrkorper- problems. Z. Phys. 1930, 61: 126.
    [159] H. Thomas, Proceedings of the Cambridge Philosophical Society 1927, 23: 542.
    [160] E. Fermi, Accad. Naz. Lincei, 1927, 6: 602.
    [161] P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 1964, 136: B864.
    [162] W. Kohn and L J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140: A1133.
    [163] J. Kohanoff and N. I. Gidopoulos, Density functional theory: Basics, new trends and applications. Stephen Wilson. 2003. 532–568.
    [164] D. Ceperley. Ground state of the fermion one-component plasma: A monte carlostudy in two and three dimensions. Phys. Rev. B 1978, 18 (7): 3126–3138.
    [165] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45 (7): 566.
    [166] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23 (10): 5048.
    [167] D. C. Langreth and J. P. Perdew, Theory of nonuiform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B 1980, 21 (12): 5469–5493.
    [168] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6): 3098-3100.
    [169] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45 (23): 13244–13249.
    [170] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18): 3865–3868.
    [171] C. Lee, W. Yang, and R. C. Parr, Development of the colle-salvetti correlation- energy formula into a functional of the electron density. Phys. Rev. B 1988, 37 (2): 785–789.
    [172] J. D. Jackson, Classical Electrodynamics. Wiley: New York, 1998.
    [173]谢希德,陆栋.固体能带理论.上海:复旦大学出版社, 1998.
    [174] M. C. Payne, M. P. Teter and D. C. Allan, et al., Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64 (4): 1045–1097.
    [175] http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node33.html.
    [176] D. R. Hamann, M. Schlüter and C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43 (20): 1494–1497.
    [177] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41 (11): 7892–7895.
    [178] P. E. Bl?chl, Projector augmented-wave method. Phys. Rev. B 1994, 50 (24): 17953–17979.
    [179] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47 (1): 558–561.
    [180] G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B1994, 49 (20): 14251–14269.
    [181] G. Kresse and J. Furthmüller, VASP the Guide. Vienna, 2005.
    [182] L. F. Chibotaru, S. A. Bovin, and A. Ceulemans, Bend-induced insulating gap in carbon nanotubes. Phys. Rev. B 2002, 66 (16): 161401(R).
    [183] W. Guo and Y. Guo, Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 2003, 91 (11): 115501.
    [184] A. Maiti, A. Svizhenko, and M. P. Anantram, Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Phys. Rev. Lett. 2002, 88 (12): 126805.
    [185] F. Tsui, L. Jin, and O. Zhou, Anisotropic magnetic susceptibility of multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 76 (11): 1452–1454.
    [186] H. Ajiki and T. Ando, Magnetic properties of carbon nanotubes. J. Phys. Soc. Jpn. 1993, 62: 2470–2480.
    [187] B. Arnaud, S. Lebegue, and P. Rabiller, et al., Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett. 2006, 96 (2): 026402.
    [188] X. Blase, A. Rubio, and S. G. Louie, et al., Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 1995, 51 (11): 6868– 6875.
    [189] J. Nakamura, T. Nitta, and A. Natori, Electronic and magnetic properties of BNC ribbons. Phys. Rev. B 2005, 72 (20): 205429.
    [190] K. H. Khoo, M. S. C. Mazzoni, and S. G. Louie, Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect. Phys. Rev. B 2004, 69 (20): 201401R.
    [191] C. Chen, M. Lee and S. J. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field. Nanotech. 2004, 15 (12): 1837–1843.
    [192] S. M. Nakhmanson, A. Calzolari, and V. Meunier, et al., Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. B 2003, 67 (23): 235406.
    [193] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of graphene tubules based on C60. Phys. Rev. B 1992, 46 (3): 1804–1811.
    [194] W. A. Harrison, Electronic structure and the properties of solids: The physics of the chemical bond. Freeman, San Francisco, 1990.
    [195] C. Priester, G. Allan and M. Lannoo, Band-edge deformation potentials in a tight-binding framework. Phys. Rev. B 1988, 37 (14): 8519–8522.
    [196] T. B. Boykin, R. C. Bowen, and G. Klimeck, Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B 2001, 63 (23): 245314.
    [197] R. Heyd, A. Charlier and E. McRae, Uniaxial-stress effects on the electronic properties of carbon nanotubes. Phys. Rev. B 1997, 55 (11): 6820–6824.
    [198] S. Roche, G. Dresslhaus, M. S. Dresselhaus and R. Saito, Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes. Phys. Rev. B 2000, 62 (23): 16092–16099.
    [199] J. W. Mintmire and C. T. White, Universal density of states for carbon nanotubes. Phys. Rev. Lett. 1998, 81 (12): 2506–2509.
    [200] M. Marganska, M. Szopa and E. Zipper, Collective phenomena in multiwall carbon nanotubes. Acta Phys. Polonica A 2004, 106 (5): 609–616.
    [201] T. Ozaki, Y. Iwasa, and T. Mitani, Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 2000, 84 (8): 1712–1715.
    [202] J. Neugebauer and M. Scheffler, Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46 (24): 16067–16080.
    [203] M. Posternak and A. Baldereschi, Prediction of electronic surface states in layered materials: Graphite. Phys. Rev. Lett. 2001, 87 (10): 863–866.
    [204] Z. M. Li, Z. K. Tang, and H. J. Liu, et al., Polarized absorption spectra of single-walled 4 ? carbon nanotubes aligned in channels of an AlPO4-5 single crystal. Phys. Rev. Lett. 2001, 87 (12): 127401.
    [205] Y. F. Mei, G. G. Siu, and R. K. Y. Fu, et al., Visible cathodoluminescence of 4 ? single-walled carbon nanotubes. Appl. Phys. Lett. 2005, 87 (21): 213114.
    [206] Z. K. Tang, L. Zhang, and N. Wang, et al., Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001, 292 (5526): 2462–2465.
    [207] D. Connétable, G. M. Rignanese, J. C. Charlier, and X. Blase, Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 2005, 94 (1): 015503.
    [208] H. J. Xiang, J. Yang, J. G. Hou, and Q. Zhu, First-principles study of small-radius single-walled BN nanotubes. Phys. Rev. B 2003, 68 (3): 035427.
    [209] B. Baumeier, P. Kruger, and J. Pollmann, Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 2007, 76 (8): 085407.
    [210] J. Yu, D. Yu, and Y. Chen, et al., Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes. Chem. Phys. Lett. 2009, 476 (4): 240–243.
    [211] P. M. Ajayan, and S. Iijima, Smallest carbon nanotube. Nature 1992, 358: 23–23.
    [212] L. F. Sun, S. S. Xie, and W. Liu, et al., Materials: Creating the narrowest carbon nanotubes. Nature 2000, 403: 384–384.
    [213] N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Materials science: Single-walled 4 ? carbon nanotubearrays. Nature 2000, 408, 50–50.
    [214] L. C. Qin, X. Zhao, and K. Hirahara, et al., Materials science: The smallest carbon nanotube. Nature 2000, 408, 50–51.
    [215] X. Zhao, Y. Liu, and S. Inoue, et al., Smallest carbon nanotube is 3 ? in diameter. Phys. Rev. Lett. 2004, 92 (12): 125502.
    [216] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107 (13): 3902–3909.
    [217] L. M. Peng, Z. L. Zhang, and Z. Q. Xue, et al., Stability of carbon nanotubes: How small can they be? Phys. Rev. Lett. 2000, 85 (15): 3249-3252.
    [218] S. Okada, S. Saito, and A. Oshiyama, Interwall interaction and electronic structure of double-walled BN nanotubes. Phys. Rev. B 2002, 65 (16): 165410.
    [219] T. Dumitric?, M. Hua, and B. I. Yakobson, Endohedral silicon nanotubes as thinnest silicide wires. Phys. Rev. B 2004, 70 (24): 241303(R).
    [220] V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6 (12): 2748–2754.
    [221] C. L. Kane and E. J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78 (10): 1932–1935.
    [222] Bin Shan and K. Cho, First principles study of work functions of single wall carbon nanotubes. Phys. Rev. Lett. 2005, 94 (23): 236602.
    [223] T. L. Makarova, B. Sundqvist, and R. Hohne, et al., Retraction: Magnetic carbon. Nature 2001, 413: 716–718.
    [224] Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Disordered magnetism at themetal-insulator threshold in nano-graphite-based carbon materials. Phys. Rev. Lett. 2000, 84 (8): 1744–1747.
    [225] P. Esquinazi, D. Spemann, and R. Hohne, et al., Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 2003, 91 (22): 227201.
    [226] N. Park, M. Yoon, and S. Berber, et al., Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys. Rev. Lett. 2003, 91 (23): 237204.
    [227] J. F. Rossier and J. J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99 (17): 177204.
    [228] S. Hao, G. Zhou, and W. Duan, et al., Magnetism of C adatoms on BN nanostructures: implications for functional nanodevices. J. Am. Chem. Soc. 2009, 131 (5): 1796–1801.
    [229] M. A. H. Vozmediano, M. P. L. Sancho, T. Stauber, and F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B 2005, 72 (15): 155121.
    [230] O. V. Yazyev and L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 2007, 75 (12): 125408.
    [231] P. O. Lehtinen, A. S. Foster, and A. Ayuela, et al., Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 2003, 90 (1): 026801.
    [232] A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozatonskii, Magnetic Properties of C60 Polymers. Phys. Rev. Lett. 2003, 90 (2): 026801.
    [233] P. O. Lehtinen, A. S. Foster, and Y. Ma, et al., Irradiation-induced magnetism in graphite: A density functional study. Phys. Rev. Lett. 2004, 93 (18): 187202.
    [234] Y. Zhang, S. Talapatra, and S. Kar, et al., First-principles study of defect-induced magnetism in carbon. Phys. Rev. Lett. 2007, 99 (10): 107201.
    [235] K. W. Lee and C. E. Lee, Electron spin resonance of proton-irradiated graphite. Phys. Rev. Lett. 2006, 97 (13): 137206.
    [236] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54 (24): 17954–17961.
    [237] K. Kusakabe and M. Maruyama, Magnetic nanographite. Phys. Rev. B 2003, 67 (9): 092406.
    [238] S. Okada, K. Nakada and K. Kuwabara, et al., Ferromagnetic spin ordering on carbon nanotubes with topological line defects. Phys. Rev. B 2006, 74 (12) 121412(R).
    [239] S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham, Edge states and magnetism in carbon nanotubes with line defects. Phys. Rev. Lett. 2008, 100 (14): 146801.
    [240] F. Li, Z. Zhu, and X. Yao, et al., Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. Appl. Phys. Lett. 2008, 92 (10): 102515.
    [241] M. Terauchi, M. Tanaka, and K. Suzuki, et al. Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett. 2000, 324 (5): 359–364.
    [242] G. Mills, H. Jonsson and G. K. Schenter, Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324 (2): 305–337.
    [243] G. Henkelman, B. P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22): 9901–9904.
    [244] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36 (3): 354– 360.
    [245] P. Mahadevan, A. Zunger, and D. D. Sarma, Unusual directional dependence of exchange energies in GaAs diluted with Mn: is the RKKY description relevant? Phys. Rev. Lett. 2004, 93 (17): 177201.
    [246] R. J. Jr., S. J. M. Byers, and M. S. Osofsky, et al., Measuring the spin polarization of a metal with a superconducting point contact. Science 1998, 282 (5386): 85-88.
    [247] C. K. Yang, J. Zhao, and J. P. Lu, Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys. Rev. Lett. 2003, 90 (25): 257203.
    [248] P. Dev, Y. Xue, and P. Zhang, Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys. Rev. Lett. 2008, 100 (11): 117204.
    [249] H. G. Yang, C. H. Sun, S. Z. Qiao, and J. Zou, Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453: 638–641.
    [250] Z. Zhou, J. Zhao and Z. Chen, et al., True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores. J. Phys. Chem. B 2006, 110 (6): 2529-2532.
    [251] Z. Zhou and S. Nagase, Coaxial nanocables of AlN nanowire core and carbon/BN nanotube shell. J. Phys. Chem. C 2007, 111 (50): 18533–18537.
    [252] Z. Zhang, W. Guo and Y. Dai, Stability and electronic properties of small boron nitride nanotubes. J. Appl. Phys. 2009, 105 (8): 084312.
    [253] G. Makov and M. C. Payne, Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51 (7): 4014–4022.
    [254] X. H. Yan, Y. Xiao, and J. W. Ding, et al., Density functional calculations of carbon nanotubes: Behavior of double-walled nanotubes compared to classical cylindrical capacitors. Phys. Rev. B 2007, 75 (19): 195442.
    [255] E. R. Margine and V. H. Crespi, Universal behavior of nearly free electron states in carbon nanotubes. Phys. Rev. Lett. 2006, 96 (19): 196803.
    [256] M. Posternak, A. Baldereschi, and A. J. Freeman, et al., Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands in graphite intercalation compounds. Phys. Rev. Lett. 1983, 50 (10): 761–764.
    [257] Z. H. Zhang and W. L. Guo, Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption. J. Am. Chem. Soc. 2009, 131 (19): 6874–6879.
    [258] X. Bai, D. Golberg, and Y. Bando, et al., Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 2007, 7 (3): 632–637.
    [259] Y. Kinoshita, S. Hase and N. Ohno, Flattening-induced electronic changes in zigzag single- and multi-walled boron nitride nanotubes: A first-principles DFT study. Phys. Rev. B 2009, 80 (12): 125114.
    [260] Z. Xu, D. Golberg, and Y. Bando, In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. Nano Lett. 2009, 9 (6): 2251–2254.
    [261] J. Cumings, P. G. Collins, and A. Zettl, Materials: Peeling and sharpening multiwall nanotubes. Nature 2000, 406: 586–586.
    [262] P. G. Collins, M. S. Arnold, and P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292 (5517): 706–709.
    [263] F. M. Rojas, J. F. Rossier, and J. J. Palacios, Giant magnetoresistance in ultrasmall graphene based devices. Phys. Rev. Lett. 2009, 102 (13): 136810.
    [264] K. C. Pandey, Newπ-bonded chain model for Si(111)–(2×1) surface. Phys. Rev. Lett. 1981, 47 (26): 1913–1917.
    [265] A. Mattausch and O. Pankratov, Ab initio study of graphene on SiC. Phys. Rev. Lett. 2007, 99 (7): 076802.
    [266] F. Varchon, R. Feng, and J. Hass, et al., Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99 (12): 126805.
    [267] K. Seino, W. G. Schmidt, and F. Bechstedt, Energetics of Si(001) surfaces exposed to electric fields and charge injection. Phys. Rev. Lett. 2004, 93 (3): 036101.
    [268] J. W. Lyding, T. C. Shen, and J. S. Hubacek, et al., Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 1994, 64 (15): 2010–2012.
    [269] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene. Nature Phys. 2007, 3: 36–40.
    [270] S. Y. Zhou, G. H. Gweon, and A. V. Fedorov, Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 2007, 6: 770–775.
    [271] D. M. Edwards and M. I. Katsnelson, High-temperature ferromagnetism of sp electrons in narrow impurity bands: application to CaB6. J. Phys.: Condens. Matter 2006, 18 (31): 7209–7225.
    [272] C. Binek and B. Doudin, Magnetoelectronics with magnetoelectrics. J. Phys.: Condens. Matter 2005, 17 (2): L39–L44.
    [273] E. Rudberg, P. Salek, and Y. Luo, Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett. 2007, 7 (8): 2211–2213.
    [274] Y. Liou, M. S. Lee, and K. L. You, Magnetic coupling in Ge nanoparticles. Appl. Phys. Lett. 2007, 91 (8): 082505.
    [275] S. Okada, K. Shiraishi, and A. Oshiyama. Magnetic ordering of dangling bond networks on hydrogen-deposited Si(111) surfaces. Phys. Rev. Lett. 2003, 90 (2): 026803.
    [276] H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, One-dimensional transition metal?benzene sandwich polymers: Possible ideal conductors for spin transport. J. Am. Chem. Soc. 2006, 128 (7): 2310–2314.
    [277] V. V. Maslyuk, A. Bagrets, and V. Meded, et al., Organometallic benzene- vanadium wire: A one-dimensional half-metallic ferromagnet. Phys. Rev. Lett. 2006, 97 (9): 097201.
    [278] M. Koleini, M. Paulsson, and M. Brandbyge, Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes. Phys. Rev. Lett. 2007, 98 (19): 197202.
    [279] Y. Mokrousov, N. Atodiresei, and G. Bihlmayer, et al., The interplay of structure and spin–orbit strength in the magnetism of metal–benzene sandwiches: from single molecules to infinite wires. Nanotech. 2007, 18 (49): 495402.
    [280] N. Hosoya, R. Takegami, and J. Suzumura, et al., Geometric and electronic structures of multiple-decker one-end open sandwich clusters: Eun(C8H8)n- (n = 1?4). J. Phys. Chem. A 2005, 109 (11): 2476–2486.
    [281] L. Zhou, S. W. Yang, and M. F. Ng, et al., One-dimensional iron- cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. J. Am. Chem. Soc. 2008, 130 (12): 4023–4027.
    [282] L. Shen, S. W. Yang, and M. F. Ng, et al., Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 2008, 130 (42): 13956–13960.
    [283] L. Wang, Z. Cai, and J. Wang, et al., Novel one-dimensional organometallic half metals: vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires. Nano Lett. 2008, 8 (11): 3640–3644.
    [284] S. S. Mallajosyula and S. K. Pati, Vanadium?benzimidazole-modified sDNA: A one-dimensional half-metallic ferromagnet. J. Phys. Chem. B 2007, 111 (50): 13877–13880.
    [285] X. Wu and X. C. Zeng, Double metallocene nanowires. J. Am. Chem. Soc. 2009, 131 (40): 14246–14248.
    [286] J. Wang, P. H. Acioli, and J. Jellinek, Structure and magnetism of VnBzn+1 sandwich clusters. J. Am. Chem. Soc. 2005, 127 (9): 2812–2813.
    [287] X. Y. Zhang, J. L. Wang, Y. Gao, and X. C. Zeng, Ab initio study of structural and magnetic properties of TMn(ferrocene)n+1 (TM = Sc, Ti, V, Mn) sandwich clusters and nanowires (n=∞). ACS Nano 2009, 3 (3): 537–545.
    [288] T. Kurikawa, Y. Negishi, and F. H. Satoshi, et al., Multiple-decker sandwich complexes of lanthanide?1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); localized ionic bonding structure. J. Am. Chem. Soc. 1998, 120 (45): 11766–11772.
    [289] A. K. Kandalam, B. K. Rao, P. Jena, and R. Pandey, Geometry and electronic structure of Vn(Bz)m complexes. J. Chem. Phys. 2004, 120 (22): 10414.
    [290] S. Nagao, A. Kato, and A. Nakajima, Multiple-decker sandwich poly-ferroceneclusters. J. Am. Chem. Soc. 2000, 122 (17): 4221–4222.
    [291] H. M. Weng, T. Ozaki, and K. Terakura, Theoretical analysis of magnetic coupling in sandwich clusters Vn(C6H6)n+1. J. Phys. Soc. Jpn. 2008, 77: 014301.
    [292] J. K. Burdett and E. Canadell, Synthesis of (carbyne)metal complexes by oxide abstraction from acyl ligands. Organometallics 1985, 4 (3): 608–610
    [293] M. K. Pomije, C. J. Kurth, J. E. Ellis, and M. V. Barybin, First conventional syntheses and isolation of bis(naphthalene)metal(0) complexes. Structural characterization of V(η6-C10H8)21. Organometallics 1997, 16 (16): 3582–3587.
    [294] J. E. Ellis, D. W. Blackburn, P. Yuen, and M. Jang, Synthesis and chemistry of the first isolable bis(naphthalene)titanium complexes. Structural characterization of [Ti(.eta.4-C10H8)2(SnMe3)2]2-. J. Am. Chem. Soc. 1993, 115 (24): 11616–11617.
    [295] C. Elschenbroich, R. M?ckel, and A. Vasilkov, et al., Chromium sandwich complexes of polycyclic aromatic hydrocarbons: Triphenylene and fluoranthene asη6 ligands. Eur. J. Inorg. Chem. 1998, 1998 (10): 1391–1401.
    [296] T. Kurikawa, H. Takeda, and M. Hirano, et al., Electronic properties of organometallic metal?benzene complexes [Mn(benzene)m (M = Sc?Cu)]. Organometallics 1999, 18 (8): 1430–1438.
    [297] P. Jena and B. K. Rao, Caging of Ni clusters by benzene molecules and its effect on the magnetism of Ni clusters. J. Chem. Phys. 2002, 116 (4): 1343–1349.
    [298] A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92 (9): 5397–5403.
    [299] E. A. Kant, S. S. Lin, and B. Strauss, Dissociation energy of Mn2. J. Chem. Phys. 1968, 49 (4): 1983–1985.
    [300] P.W. Anderson, Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 1950, 79 (2): 350–356.
    [301] P. Dev and P. Zhang, Unconventional magnetism in semiconductors: Role of localized acceptor states. Phys. Rev. B 2010, 81 (8): 085207.
    [302] H. Akai, Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys. Rev. Lett. 1998, 81 (14): 3002-3005.
    [303] C. Zener, Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 1951, 82 (3): 403–405.
    [304] K. Sato, P. H. Dederichs, H. K. Yoshida, and J. Kudrnovsky, Exchangeinteractions in diluted magnetic semiconductors. J. Phys.: Condens. Matter 2004, 16 (48): S5491–S5497.
    [305] N. Atodiresei, P. Dederichs, and H. Mokrousov, et al., Controlling the magnetization direction in molecules via their oxidation state. Phys. Rev. Lett. 2008, 100 (11): 117207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700