宽带与二维阵列测向的几个关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列测向技术经过四十多年广泛的研究得到了大量的成果。其基本理论架构和算法日趋成熟,但是依然有许多问题尚未解决,原来的经典算法大部分是在普遍的意义上进行测向,而目前随着信号与天线理论的发展,信号和天线结构表现出很强的应用与结构特征,比如宽带、低信噪比、某些特殊的天线结构等。对这些信号源以及天线几何结构特征的应用会对信号测向技术有很大的影响,因此对于一些信号源与天线几何结构特征的充分利用成为当前研究的一大热点。另外阵列信号个数估计技术是高分辨阵列测向技术的一个重要组成部分。实际中,对信号个数的正确估计关系到测向技术的有效使用。随着现在阵列系统越来越接近实际应用,阵列信号个数估计技术逐渐成为一个研究热点。
     本论文结合上面的研究热点深入探讨了其中的一些问题,获得不少研究成果。主要工作包括研究了低信噪比信号个数估计、宽带信号个数估计与测向方法、二维波达方向估计中的配对问题,阵列扩展以及快速算法问题、如何利用特定的阵列结构和信号源时域特征来提升算法的性能。并进行了大量的仿真实验和理论分析。主要创新之处概括如下:
     针对高分辨阵列信号个数估计算法进行了详细的研究,利用多通道数据联合估计的思想改进了一种盲波束信号个数估计技术。与原算法相比该改进算法提升了在低信噪比以及不等功率信号入射时的性能,最后的仿真表明改进算法比原算法具有更好的性能,尤其是在低信噪比不等功率信号入射时这个优势更加明显。
     针对宽带的高分辨阵列处理进行了深入研究,提出了一种具有阵列扩展的宽带信号个数估计与测向方法。该方法主要通过宽带信号各子带对应的波长不同,有意识的构造伪相关矩阵。其信号个数估计方法具有普遍意义。因为从数学上看该方法主要是对盖氏圆盘法做了改进,使噪声与信号圆盘分开的技术适用于非Hermite的Toeplitz矩阵。而现在广泛使用的利用特定阵列结构和数据特征来构造的伪相关矩阵有些是非Hermite的Toeplitz矩阵,同时专门研究对这类矩阵信号个数估计的文献还很少,一般都是假设已知的。但是本文提出算法可以直接用于这一大类矩阵,或者稍加修改即可用于这类矩阵。弥补这方面的一些不足。其测向部分具有很强的阵列扩展性,信号带宽越宽扩展性越强。最后通过一个半实物实验对这个算法做了一些验证。
     针对L阵二维来波方向估计算法进行了深入的研究,主要研究了天线的物理结构与时空数据的如何利用。创新成果包括结合天线的物理结构特性提出了一种快速算法,该算法主要通过利用伪相关矩阵的降维构造来达到快速运算的目的,同时这种算法还具有自动配对的特点。另外在L阵的基础上结合天线物理结构与信号彼此之间的关系,提出了一种具有自动配对同时兼顾阵列扩展的算法,该算法使用Kronecker积,利用一些数学推导对矩阵进行有意识的重排,从而获得自动配对与阵列扩展的优点。同时还结合特定的阵列结构与信号相关时间比噪声相关时间长这一特点,针对时间色噪声提出了具有阵列扩展特性的算法,由于天线的物理结构信息的引入,该算法还具有自动配对的能力。另外上述三种算法的精度在同类算法表现优异。
A number of the superresolution direction-finding (DF) techniques have been proposed during 40 years and the basic theoretical framework has been formed. However, there are still many issues to be solved. Most of classic algorithms only pay attention to estimate DF under general situations. At present, with the development of the signal and antenna techniques, the signal and the antenna structure are showing a very strong application and structural characteristics, Such as wideband, signal-to-noise ratio (SNR), some special antenna structure and so on. The application of the characteristics of the antenna geometry structure and the signal sources will have a great effect to the superresolution DF techniques. Therefore, how to take full advantage of some signal sources and antenna geometry features is a hot topic in current research for DF techniques. Additionally, Sources number estimation is one of the important steps for exploiting DF techniques. The success of DF strongly depends on the correct estimation of sources number. So estimating the number of signals is also a hot topic of high resolution array direction finding technology.
     Along the hot topics mentioned above, this dissertation carries in-depth research to obtain a lot of results. The main work of this dissertation include studying the estimation of the sources number at low SNR, the sources number and DOA estimation for wideband signals, pair-matching, fast algorithm, array extension in two-dimensional (2-D) DOA estimation, how to make use of the structure of the array sensors together with the data properties for improving the performance of algorithm. The estimation performance of these methods is demonstrated, and the theoretical analysis is confirmed through numerical examples. The main innovation and creation are concluded as follows:
     Studying the array-based high resolution sources number estimation techniques. Using multi-channel data joint estimation idea to modify a sources number estimation technique based on blind beamforming methods. The simulation shows that the improved algorithm has better performance than the original algorithm, especially in low SNR and incident of unequal power signals.
     Studying the sources number estimation and DOA techniques for wideband signals. A novel algorithm with array extension properties is proposed. The proposed constructs pseudo-correlation matrix from this property, which is the each sub-narrowband in wideband signal corresponding to the different wavelengths. The sources number estimation part of the algorithm is of universal significance. Because from the mathematical point of view, the mainly idea of this method is to improve the Gerschgorin disk method, adapting the Gerschgorin disk method to toeplitz matrix without the hermite property. Owen to the current widely exploitation of the technology on constructing pseudo-correlation matrix based on making use of the features of the array structure and data, some of which are toeplitz matrix without the hermite property, this method could or make a little modification adapt this situation. So it makes up for some shortcomings in this area. The DOA estimation part of the algorithm has a strong array extension capability, the wider signal bandwidth, the stronger the ability of the array extension. At last, the algorithm was verified by a semi-physical simulation.
     Making an in-depth study on joint estimation of 2-D DOA for L-shape arrays, main researching how to utilize the structure of the array sensors and the data to improve performance. A fast algorithm based on the structure of the array sensors is proposed, which primarily through the use of pseudo-correlation matrix of the reduced-dimensional structure to achieve the purpose of quickly computing. the algorithm also has the automatic matching features. Also in L antenna array, a novel algorithm is proposed, which utilizes the physical structure and the relationship between signals to achieve automatic matching and array extension. This algorithm use Kronecker product and make use of some mathematical derivation of the matrix to conscious rearrange data. At last, an algorithm, which utilizes the array structure and the signal correlation time longer than the noise, is proposed. This algorithm can deal with colored noise and has the capability of array extension. Since the introduction of information on the physical structure of the antenna, the algorithm also has the ability to automatically match. In addition the accuracy of the three algorithms mentioned above performs well in similar algorithms.
引文
[1] H. L. Van Trees. Optimum Array Processing, Part IV: Detection, Estimation, and Modulation Theory. New York: Wiley, 2002.
    [2] W. Wirth. Radar Techniques Using Array Antennas. New York. IET, 2001.
    [3] S. Haykin. Adaptive Radar Signal Processing. John Wiley & Sons, 2007.
    [4] M. L Skolnik.. Introduction to Radar Systems. New York: McGraw-Hill,, 1980.
    [5] D. L. Adamy. EW102: A Second Course in Electronic Warfare. Horizon house publications, Inc. 2004.
    [6] A. Mileant, S. Hinedi. Overview of arraying techniques in the deep space network, TDA Progress Report 42-104, 1991, 2: 109-139.
    [7] T. S.Rappaport. Smart Antennas. New York: IEEE Press, 1998.
    [8] F. B. Gross. Smart antenna for wireless communications. New York: McGraw-Hill, 2005.
    [9] L. C. Codara. Application of antenna arrays to mobile communications, Part II: Beamforming and direction-of-arrival considerations. Proc. IEEE, 1997, 85(8): 1195-1245.
    [10] L. C. Codara. Application of antenna arrays to mobile communications, Part I: Performance improvement, feasibility, and system considerations. Proc. IEEE, 1997, 85(7): 1031-1060.
    [11] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57(8):1408-1418.
    [12] T. Yamazaki, B. W. van Dijk, H. Spekreijse. The accuracy of localizing equivalent dipoles and the spatio-temporal correlations of background. EEG. IEEE Trans. Biomed. Eng., 1998, 45(9): 1114-1121.
    [13]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社, 2004.
    [14] R. O. Schmidt. A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation. [Ph.D. Thesis], Stanford: Stanford University, 1982.
    [15] R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 1986, 34(5): 276-280.
    [16] S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice Hall, 2002.
    [17] R Roy and T Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. 1989, IEEE Trans. Acoust., Speech, Signal Process., 7(37): 984-995
    [18] L.Ziskind, M.Wax. Maximum likelihood localization of mutiple sources by alternating projection. IEEE Trans. ASSP., 1988, 36(10): 1553-1560
    [19] P. Stoica, A. Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound. IEEE ASSP, 1989, 37(5): 720-741.
    [20] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai. Exact and large sample ML Techniques for parameter estimation and detection in array processing. Radar Array Processing. New-York: Springer-Verlag, 1993, 99-151.
    [21] V. Nagsha and S. Kay, On frequency estimation with the IQML algorithm, IEEE Trans. Signal Process., 1994, 42 (9): 2509-2513.
    [22] P. Stoica and K.C. Sharman, Maximum likelihood methods for direction-of-arrival estimation, IEEE Trans. Acoust., Speech, Signal Process., July 1990, 38: 1132-1143.
    [23] M. Viberg and B. Ottersten, Sensor array signal processing based on subspace fitting, IEEE Trans. Signal Process., May 1991, 39(5): 1110-1121.
    [24]许建华,张学工.统计学习理论.北京:电子工业出版社, 2004.
    [25] S. M. Kay, Modern Spectral Estimation: Theory and Application, Englewood Cliffs, NJ: Prentice Hall, 1988.
    [26] P. Stoica and R. Moses, Introduction to Spectral Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [27] Special issue on underwater acoustic signal processing, IEEE J. Oceanic Eng., vol. OE-10, July 1987.
    [28] L. C. Godara, Smart Antennas, CRC Press, Boca Raton, Florida, 2004.
    [29] S. Haykin, J. P. Reilly, V. Kezys and E. Vertatschitsch, Some aspects of array signal processing, IEE Proceedings-F, Feb. 1992, 139(1): 1-26.
    [30] S. Haykin, Advances in Spectrum Analysis and Array Processing, Englewood Cliffs, NJ: Prentice Hall, 1991.
    [31] H. Krim and M. Viberg, Two decades of array signal processing research, IEEE Signal Process. Mag., July 1996, 67-94.
    [32] P. S. Naidu, Sensor Array Signal Processing, CRC Press LLC, Boca Raton, Florida, 2001.
    [33] A. J. van der Veen, E.F. Deprettere, and A.L. Swindlehurst, Subspace-based signal analysis using singular value decomposition, Proc. IEEE, 1993, 81(9): 1277-1308.
    [34] M. D. Zoltowski and D. Stavrinides, Sensor array signal processing via a procrustes rotations based eigenanalysis of the ESPRIT data pencil, IEEE Trans. Acoust. Speech. Signal Process. , June 1989, 37: 832-861.
    [35] J.-F. Gu, P. Wei, and H.-M. Tai, Detection of the number of sources at low signal-to-noise ratio, IET Signal Process., 2007, 1: 2-8.
    [36] S. U. Pillai and B. H. Kwon, Forward/Backward spatial smoothing techniques for coherent signal identification, IEEE Trans. Acoust., Speech, Signal Process., Jan. 1989, 37: 8-15.
    [37] T. J. Shan, M. Wax, and T. Kailath, On spatial smoothing for estimation of coherent signals, IEEE Trans. Acoust., Speech, Signal Process., Aug. 1985, ASSP-33: 806-811.
    [38] J. Li, Improved angular resolution for spatial smoothing techniques, IEEE Trans. Signal Process., Dec. 1992, 40: 3078-3081.
    [39] R. J. Kozick and S. A. Kassam, A unified approach to coherent source decorrelation by autocorrelation matrix smoothing, Signal Process., 1995, 45: 115-130.
    [40] S. S. Reddi and A. B. Gershman, An alternative approach to coherent source location problem, Signal Process., 1997, 59: 221-233.
    [41] D. Grenier and E. Bosse, A new spatial smoothing scheme for direction-of- arrivals of correlated sources, Signal Process., 1996, 54: 153-160.
    [42] B. Friedlander and A. J. Weiss, Direction finding using spatial smoothing with interpolated arrays, IEEE Trans. Aerosp. Electro. Syst., Apr. 1992, 28(2): 574-587.
    [43] H. Wang and K. J. R. Liu, 2-D spatial smoothing for multipath coherent signal separation, IEEE Trans. Aerosp. Electro. Syst., Apr. 1998, 34(2): 391-405.
    [44] A. B. Gershman and V. T. Ermolaev, Optimal subarray size for spatial smoothing, IEEE Signal Process. Lett., Feb. 1995, 2: 28-30.
    [45] J. C. Chen, Wideband Source Localization Using Passive Sensors Arrays, Ph.D. Thesis, UCLA, Los Angeles, CA, 2002.
    [46] Y.-S. Yoon, Direction-of-Arrival Estimation of Wideband Sources Using Sensor Arrays, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 2004.
    [47] M. Agrawal and S. Prasad, Estimation of directions of arrival of wideband and wideband spread sources, Signal Process., April 2007, 87(4): 614-622.
    [48] J. Dmochowski, J. Benesty, and S. Affes, Direction of arrival estimation using the parameterized spatial correlation matrix, IEEE Trans. Audio, Speech, Language Process., May 2007, 14(4): 1327-1339.
    [49] A. J. Weiss, M. A. Doron, and H. Messer, Maximum likelihood direction finding for wideband sources, IEEE Trans. Signal Process., Jan. 1993, 41: 411-414.
    [50] K. M. Buckley and L. J. Griffiths, Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation, IEEE Trans. ASSP, July 1988, 36(7): 953-964.
    [51] H. Hung and M. Kaveh, Focussing matrices for coherent signal-subspace processing, IEEE Trans. ASSP, Aug. 1988, 36(8): 1272-1281.
    [52] J. Krolik and D. Swingler, Multiple broad-band source location using steered covariance matrices, IEEE Trans. ASSP, Oct. 1989,37(10): 1481-1494.
    [53] J. Krolik and D. Swingler, Focused wide-band array processing by spatial resampling, IEEE Trans. ASSP, Feb. 1990, 36(2): 1272-1281.
    [54] M. A. Doron and A. J. Weiss, On focusing matrices for wide-band array processing, IEEE Trans. Signal Process., June 1992, 40(6), pp: 1295-1302.
    [55] S. Valaee and P. Kabal, Wideband array processing using a Two-sided correlation transformation, IEEE Trans. Signal Process., Jan. 1995, 43(1):160-172,.
    [56] M. Agrawal and S. Prasad, DOA estimation of wideband sources using a harmonic source model and uniform linear array, IEEE Trans. Signal Process., Mar. 1999, 47(3), pp:619-629.
    [57] Y. W. Wang, J. Li, P. Stoica, M. Sheplak and T. Nishida, Wideband relax and wideband clean for aeroacoustic imaging, J. Acoust. Soc. Am. Feb. 2004, 115(2): 757-767.
    [58] W. Ng, J. P. Reilly, T. Kirubarajan and J-R Larocque, Wideband array signal processing using MCMC methods, IEEE Trans. Signal Process., Feb. 2005, 53(2): 411-426.
    [59] H. Yan and H. H. Fan, Wideband cyclic MUSIC algorithms, Signal Processing, 2005, 85: 643-649.
    [60] M. Wax, T-J. Shan, and T. Kailath, Spatio-temporal spectral analysis by eigenstructure methods, IEEE Trans. ASSP, Aug. 1984, ASSP-32(4): 817-827.
    [61] H. Wang and M. Kaveh, Coherent signal subspace processing for detection and estimation of angle of arrival of multiple wideband sources, IEEE Trans. ASSP, Aug. 1985, ASSP-33: 823-831.
    [62] T.-S. Lee, Efficient wideband source localization using beamforming invariance technique, IEEE Trans. Signal Process., Jun. 1994, 42(6): 1376-1387.
    [63] D. B. Ward, Z. Ding and R. A. Kennedy, Broadband DOA estimation using frequency invariant beamforming, IEEE Trans. Signal Process., May 1998, 46(5): 1463-1469.
    [64] E. D. Di Claudio and R. Parisi, WAVES: Weighted average of signal subspaces for robust wideband direction finding, IEEE Trans. Signal Process., Oct. 2001, 49(10): 2179-2191.
    [65] F. Sellone, Robust auto-focusing wideband DOA estimation, Signal Process., Jan. 2006, 86(1): 17-37.
    [66] Y-S Yoon, L. M. Kaplan, and J. H. McClellan, TOPS: New DOA estimator for wideband signals, IEEE Trans. Signal Process., June 2006, 54(6): 1977-1989.
    [67] M. Agrawal and S. Prasad, Broadband DOA estimation using“Spatial-Only”modeling of array data, IEEE Trans. Signal Process., Mar. 2000, 48: 663-670.
    [68]黄磊.快速子空间估计方法研究及其在阵列信号处理中的应用:[博士论文].西安:西安电子科技大学,2005.
    [69] C. C. Yeh, Projection approach to bearing estimations, IEEE Trans. Acoust. Speech, Signal Process., Oct. 1986, ASSP-34(10): 1347-1349.
    [70] S. Marcos and M. Benidir, On a high resolution array processing method based on the eigenanalysis approach, in Proc. IEEE Int.Conf. Acoust., Speech, Signal Process., Albuquerque, NM, Apr. 1990, 2955-2958.
    [71] Y. Wu, G. Liao, and H. C. So. A fast algorithm for 2-D direction-of arrival estimation. Signal Process., 2003, 83: 1827-1831.
    [72] N. Tayem and H. M. Kwon. L-Shape 2-Dimensional arrival angle estimation with propagator method. IEEE Trans. Antennas Propag., May 2005, 53(5): 1622-1630.
    [73] J. Xin and A. Sano. Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition. IEEE Trans. Signal Process., Apr. 2004, 52: 876-893.
    [74] J. Xin, N. Zheng, and A. Sano, Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition, IEEE Trans. Signal Process., Apr. 2007, 55(4): 1405-1420.
    [75] A. Eriksson, P. Stoica, and T. S?derstr?m, On-line subspace algorithms for tracking moving sources, IEEE Trans. Signal Process., Sept. 1994 , 42: 2319-2330.
    [76] C. H. Gierull, Angle estimation for small sample size with fast eigenvector-free subspace method, IEE Proc. Radar, Sonar, Navig., June 1999, 146(3): 126-132.
    [77] J. S. Araujo and S. Marcos, Statistical analysis of the propagator method for DOA estimation without eigendecomposition, in Proc. 8th IEEE Signal Process. Workshop, June1996, 570-573.
    [78] N. Wang, P. Agathoklis and A. Antoniou, A new DOA estimation technique based on subarray beamforming, IEEE Trans. Signal Process., 2006, 54 (9): 3279-3291.
    [79] S. Marcos, A. Marsal, and M. Benidir. The propagator method for source bearing estimation. Signal Process., 1995, 42: 121-138.
    [80] Wang, B. -h. Array calibration in the presence of multipath based on CODE criterion. In Antennas and Propagation Society International Symposium, 2004.
    [81] See, C.M.S. Method for array calibration in high-resolution sensor array processing. Radar, Sonar and Navigation, IEE proceedings-, 1995, 142(3):90-96
    [82] Levi M. and H. Messer. Sufficient conditions for array calibration using sources of mixed tapes. In Acoustics, Speech and SignalProcessing. 1990.
    [83] Solomon, I.S.D., etal. Receiver array calibration using disparate sources. Antennas and propagation, IEEE Transactions. 1999, 47(3):496-505.
    [84] Huan, W., J. Yongkang, and B. Zheng. Direction finding and array calibration based on maximal set of nonredundant cumulants. ICASSP-96. Conference Proceedings.
    [85] Wang, B-H., Y-L. Wang and H. Chen. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors. In Phased Array Systems and Technology, 2003.
    [86] Scarano G., A. G. Mattioli and G. Jacovitti. On DOA estimation based on higher order statistics. in Higher-Order Statistics, 1993.
    [87] Leyman, A.R. and T.S. Duwani. Signal subspace techniques for DOA estimation using higher order statistics. ICASSP-95., 1995.
    [88] Shi, Z. and F. W. Fairman. DOA estimation via higher-order cumulants: a generalized approach. ICASSP-92., 1992.
    [89] Yuan-Hwang C. and L. Yih-Sheng. Direction finding with nonuniform arrays via higher-order statistics. in Antennas and Propagation Society International Symposium, 1994.
    [90] Liu H. and F. Li. Statistical evaluation of beam-space direction-of-arrival estimators. ICASSP-92, 1992.
    [91] Radich W. and K. M. Buckley. Analysis of effect of non-ideal beam-space preprocessors on eigenspace DOA estimators. in Statistical Signal and Array Processing, 1992.
    [92] Fu L. and L. Hui. Statistical analysis of beam-space estimation for direction-of-arrivals. Signal Processing, IEEE Transactions. 1994, 42(3):604-610.
    [93] Jouny LI. and M.G. Amin. Direction of arrival estimation using wavelet based beam-space MUSIC. in Antennas and Propagation Society International Symposium, 1997.
    [94]顾建峰.阵列信号处理中的若干问题研究: [博士论文].成都:电子科技大学, 2008年.
    [95] H. B. Ghobad, C. D. McGillen. A chaotic direct-sequences spread-spectrum communication system. IEEE Trans. Commun., 1994, 42(2) :1524-1527
    [96] U, Parlitz, S. Ergezinger. Robust communication based on chaotic spreading sequences. Phys. Lett. A, 1994, 188(2): 146-150.
    [97] L. Cong, S. Songgeng, Chaotic frequency hopping sequences. IEEE Trans. Commun. 1998, 46(11): 1433-1437.
    [98] T. Yang, L. Chua. Chaotic impulse radio: A novel chaotic secure communication system. Int. J. Bif. and Chaos, 2000, 10:345-357.
    [99] L. Cong, W. Xiaofu. Design and realization of an FPGA-based generator for chaotic frequency hopping sequences. IEEE Trans. Circuit. Syst. I, 2001, 48(5):521-532.
    [100] Wax M, S Tie Jun and T Kailath. Spatio-temporal spectral analysis by eigenstructure methods. Acoustics, Speech, and Signal Processing, 1984, 32(4): 817-827.
    [101] Wang H and M Kaveh. coherent signal -subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. Acoustics, Speech, and Signal Processing. IEEE Transaction on, 1985, 33(4):823-831.
    [102] Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing. IEEE Trans. On ASSP, 1988, 36(8): 1272-1281.
    [103] Shaw A and R Kumaresan. Estimation of angles of arrivals of broadband signals. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’87, 1987, 12:2296-2299.
    [104] Hong W and A H Tewfik. Focusing matrices for wideband array processing with no a priori angle estimates. In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92
    [105] Friedlander B and A J weiss. Direction finding for wide-band signals using an interpolated array. Signal Processing. IEEE Transaction on, 1993, 41(4): 1618-1634.
    [106]陈洪光,余胜发,沈振康.基于一致聚焦的宽带信号波达方向估计.通信学报,2006, 27(1): 64-68.
    [107] Yeo-Sun Y, L M Kaplan and J H McClellan. New signal subspace direction-of -arrival estimator for wideband sources.2003 IEEE Transactions on, 1989,37(7): 984-995.
    [108] Xu X L and K M Buckley. Reduced-dimension beam-space broad-band source localization: preprocessor design and evaluation. 1998.
    [109] J.-F. Gu, Nan-Jun Li, P. Wei and H.-M. Tai. Wideband DOA estimation using two Sensors. 2010 International Conference on Measuring Technology and Mechatronics Automation, vol2: 914-917.
    [110] Cadalli N. and O Arikan. Wide-band maximum likelihood direction finding by using tree-structured EM algorithm. in Statistical Signal and Array Processing, 1996.
    [111] Cadalli N. and O. Arikan, Wideband maximum likelihood direction finding and signal parameter estimation by using the tree-structured EM algorithm, Signal Processing, IEEETransactions, 1999, 47(1):201-206.
    [112] Steiglitz K. and L. McBride, A technique for the identification of linear systems. Automatic Control, IEEE Transactions, 1965, 10(4): 461-464.
    [113] Bresler Y. and A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. Acoustics, Speech, and Signal Processing, IEEE Transactions, 1986, 34(5):1081-1089.
    [114] Stoica P. and K. C. Sharman, Novel eigenanalysis method for direction estimation. Radar and Signal Processing, IEE Proceedings F, 1990, 137(1):19-26.
    [115] Ng W., et al. Wideband array signal processing using MCMC methods. in Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.
    [116] Ng W., J. P. Reilly and T. Kirubarajan, Wideband array signal processing using MCMC methods, in Acoustics, Speech, and Signal Processing, 2003.
    [117] Ng W., J. P. Reilly and T. Kirubarajan. Application of particle filters for tracking moving receivers in wireless communication systems. in Signal Processing Advances in Wireless Communications, 2003.
    [118] A. Randazzo, M. A. Abou-Khousa, M. Pastorino and R. Zoughi. Direction of Arrival Estimation Based on Support Vector Regression: Experimental Validation and Comparison With MUSIC. Ieee Antennas And Wireless Propagation Letters, 2007,6:379-382.
    [119] L. Xu, P. Stoica, J. Li. Complex amplitude estimation in the known steering matrix and generalized waveform case. IEEE Trans. Signal Process., 2006, 54 (5):1716-1726.
    [120] L. Xu , P. Stoica, J. Li. A diagonal growth curve model and some signal-processing applications. IEEE Trans. Signal Process., 2006, 54(9): 3363-3371.
    [121] Y. Jiang, P. Stoica, J. Li. Array signal processing in the known waveform and steering vector case. IEEE Trans. Signal Process., 2004, 52 (1):23-35.
    [122] A. Amar, A. J. Weiss. Direct position determination in the presence of model errors-known waveforms. Digital Signal Process, 2006, 16: 52-83.
    [123] J. Li, R. T. Compton. Maximum likelihood angle estimation for signals with known waveforms. IEEE Trans. Signal Process., 1993, 41 (9): 2850-2862.
    [124] J. Li, B. Halder, P. Stioca, M. Viberg. Computationally efficient angle estimation for signals with known waveforms. IEEE Trans. Signal Process., 1995, 43, (9): 2154-2163.
    [125] Y.I. Abramovich N. K. Spencer, and A. Y. Gorokhov, DOA estimation for noninteger linear antenna arrays with more unorrelated sources than sensors, IEEE Trans. Signal Processing, 2000, 48(4): 943-955.
    [126] A. T. Moffet, Minimum-Redundancy linear arrays, IEEE Trans. Antennas and Propagat., 1968, AP-16(5): 172-175.
    [127] S.U. Pillai, Y. Bar-Ness and F. Haber. A new approach to array geometry for improved spatial spectrum estimation, Proc. IEEE, 1985, 73(10): 1522-1524.
    [128] C. Chambers T. C. Tozer K. C. Sharman and T. S. Durrani. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more, IEEE Trans. Signal Process., 1996, 44(12): 3085-3098.
    [129] Y.I. Abramovich N. K. Spencer, and A. Y. Gorokhov. Detection-Estimation of more uncorrelated gaussian sources than sensors in nonuniform linear antenna arrays—Part I: Fully augmentable arrays, IEEE Trans. Signal Processing, 2001, 49(5): 959-971.
    [130] L. Gan, J. F. Gu, P. Wei. Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique. IEEE Antennas Wireless Propag. lett., 2008, 7: 385 -388.
    [131] J. Liu, Z. T. Huang, Y. Y. Zhou. Azimuth and elevation estimation for noncircular signals. IET Electronics Lett., 2007, 43(20): 1117-1118.
    [132] F. Roemer, M. Haardt. Efficient 1-D and 2-D DOA estimation for non-circular sources with hexagonal shaped espar arrays. 2006 IEEE Int. Conf. Acoustics, Speech, Signal Processing vol. 1: 881-884.
    [133] A. Leshem, A. J van der Veen. Direction-of-Arrival Estimation for Constant Modulus signals. IEEE Trans. Signal Process., 1999, 47(11): 3125-3129.
    [134] R. Gooch, J. Lundell. The CMarray: An adaptive beamformer for constant modulus signals. 1986 Int. Conf. Acoustics, Speech, Signal Processing, 1986, Vol.4:2523-2526.
    [135] A. J. van der Veen, A. Paulraj. An analytical constant modulus algorithm, IEEE Trans. Signal Process., 1996, 44(5): 1136-1155.
    [136] M. Cedervall, R. L. Moses. Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath. IEEE Trans. Signal Process., 1997, 45 (3): 808-811.
    [137] J. F. Gu, P. Wei, H. M. Tai. Fast direction-of-arrival estimation with known waveforms and linear operators. IET Signal Processing, 2008, 2(1): 27-36.
    [138] G. Xu, T. Kailath. Direction-of-arrival estimation via exploitation of cyclostationarity—a combination of temporal and spatial processing. IEEE Trans. Signal Process., 1992, 40(7): 1775-1786.
    [139] Y. Lee, J. Lee. Direction-finding methods for cyclostationary signals in presence of coherent sources. IEEE Trans. Antennas and Propagat., 2001,.49(12): 1821-1826.
    [140] W. A. Gardner, A. Napolitano, L. Paura. Cyclostationarity: Half a century of research. Signal Processing, 2006, 86: 639-697.
    [141] A. J. van der veen. An adaptive version of the algebraic constant modulus algorithm. 2005 IEEE Int. Conf. Acoustics, Speech, Signal Processing vol. 1: 873-876.
    [142] Nan-Jun Li, Jian-Feng Gu and Ping Wei. 2-D DOA Estimation via Matrix Partition and Stacking Technique. Journal on Advances in Signal Processing, 2009.
    [143] Nan-Jun Li, Jian-Feng Gu and Ping Wei. Simple and Efficient Cross-Correlation Method for Estimating 2-D Direction of Arrival. The 5th International Conference on Wireless Communications, Networking and Mobile Computing. WiCOM’09, 2009.
    [144]李南君,顾建峰,魏平.基于伪数据矩阵的二维自动配对角度估计方法.电波科学学报, 2009, 42(3):482-487.
    [145] M. Martinez-Ramon, N. Xu, and C. G. Christodoulou. beamforming Using Support Vector Machines. IEEE Antennas and Wireless Propagation Letters, Nov. 2005.
    [146] A.Y.J. Chan, J. Litva. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array, IEE Proceedings Radar, Sonar and Navig., 1995, 142(3): 105-114.
    [147] M. Xia, C. Liu, R. Du, J. Li. An effective array for 2-D direction-of-arrival estimation. 2006 First International Conference on Innovative Computing, Information and Control, vol. 2: 370-373.
    [148] C.P. Mathews, M.D. Zoltowski. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays, IEEE Trans. on Signal Process., 1994, 42(9):2395-2407.
    [149] M.D. Zoltowski, M. Haardt, C.P. Mathews. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans. On Signal Process., 1996, 44(2): 316-322.
    [150] S. Kikuchi, H. Tsuji, A. Sano. Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix. IEEE Antennas Wireless Propag. lett., 2006, 5: 35-40.
    [151] N. Tayem, H.M. Kwon, Yong Hoon Lee. Azimuth and elevation angle estimation with no failure and no eigen decomposition. Signal Processing, 2006, 86(1) :8-16
    [152]金梁,殷勤业.时空DOA矩阵方法.电子学报, 2000, 7(28): 8-12.
    [153]金梁,殷勤业.时空DOA矩阵方法的分析和推广.电子学报, 2001,3(39): 300-303.
    [154] L. Gan, P. Wei, J. F. Gu. Automatic pair-matching method for estimating 2-D angle of arrival. 2008 International Conference on Communication, Circuits and Systems (ICCCAS2008) vol2 :914-917.
    [155] L. Gan, P. Wei. Comments on "pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix". IEEE Antennas Wireless Propag. lett., 2008, 7: 807-807.
    [156] M. Li, L. Gan, P. Wei. Improvement of 2-D direction finding algorithm based on two L-shape arrays, 2008 International Conference on Signal Processing, (ICSP2008), vol.1: 366-369.
    [157] Y. Hua, T. K. Sarkar, and D. D. Weiner, An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans. Antennas Propag., Feb. 1991, 39: 143-146.
    [158]陶建武,石要武,常文秀.一般阵列误差情况下信号二维方向角估计.电波科学学报. 2006, 4(21): 606-611.
    [159]陶建武,石要武,常文秀.基于均匀圆阵的信号二维方向角高精度估计.航空学报. 2006, 4(27): 687-691.
    [160]王建英,陈天麒.频率、二维到达角和极化联合估计.电子学报, 2000, 11(27): 74-76.
    [161] V. S. Kedia, B. Chandna. A new algorithm for 2-D DOA estimation. Signal Processing, 1997, 60(2): 325-332.
    [162]吕泽均,肖先赐.一种在冲击噪声环境中基于协变异的二维波达方向估计算法.声学学报, 2004(2):149-154.
    [163] L. Jin, M.L. Yao, Q.Y. Yin, 2D angle and array response estimation with arbitrary array configuration. 1999 ISCAS Vol. 4, 507-510.
    [164] Liu Tsung-Hsien, J.M.Mendel. Azimuth and elevation direction finding using arbitrary array geometries. IEEE Trans. Signal Process., 1998, 46(7): 2061-2065.
    [165] Y. Hua, K. Abed-Meraim. Techniques of eigenvalues estimation and association. Digital Signal Process., 1997, 7: 253-259.
    [166] M.C.Do?an, J.M. Mendel. Applications of Cumulants to array processing—Part I: Aperture extension and array calibration. IEEE Trans. Signal Process., 1995, 43(5): 1200-1216.
    [167] E. Gonen, J. M. Mendel. Applications of cumulants to array processing. III. Blind beamforming for coherent signals. IEEE Trans. Signal Process., 1997, 45(9): 2252-2264.
    [168] E. Gonen J.M. Mendel, M.C.Do?an. Applications of cumulants to array processing—Part IV: Direction finding in coherent signals case. IEEE Trans. Signal Process., 1997, 45(9): 2265-2276.
    [169]刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计,电波科学学报, 2006, 21(1):126-130.
    [170]金梁,殷勤业,汪仪林.广义子空间拟合DOA估计原理.电子学报, 2000, 1(28):60-63.
    [171] T. H. Liu, J. M. Mendel. Application of cumulants to array signal processing .V. Sensitivity issues. IEEE Trans. on Signal Process., 1999, 47(3): 746-759.
    [172]张贤达.矩阵分析与应用.北京:清华大学出版社, 2004.
    [173]谢处方,饶克谨.电磁场与电磁波.高等教育出版社, 1999.
    [174] J. F. GU, P. Wei. Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems. IEEE Antennas and Wireless Propagation lett., 2007, 6: 553-556.
    [175] R. Kumaresan and D.W.Tufts. Estimation the angles of arrivals of multiple plane waves. IEEE Trans.AES, 1983, Vol.AES-19:134-139.
    [176] Q.T.Zhang and K.M.Wong. Information theoretic criteria for the determination of the number of signals in spatially correlated noise. IEEE Trans.SP., Apr.1993, 41(4):1652-1663.
    [177] M.Wax. Detection and localization of multiple sources in noise with unknown covariance. IEEE Trans.SP., Jan. 1992, 40(1): 245-249.
    [178] P.Stoica, K.M.Wong and Q. Wu. On a nonparametric detection method for array signal processing in correlated noise fields. IEEE Trans.SP., Apr. 1996, 44(4):1030-1032.
    [179] G.H.Xu, R.H.Roy and T.Kailath. Detection of number of sources via exploitation of centro-symmetry property. IEEE Trans. SP., Jan. 1994, 42(1):102-112.
    [180] M.Wax and I.Ziskind., Detection of the number of coherent signals by the MDL principle. IEEE Trans.ASSP., Aug. 1989, 37(8):1190-1196.
    [181] M.Viberg, B.Ottersten and T.Kailath. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans.SP., Nov.1991, 39(11):2436-2449.
    [182] J.S.Jiang and M.A.Ingram. Robust detection of number of sources using the transformed rotational matrix. WCNC 2004/IEEE Communication Society, 2004:501-506.
    [183] J.H.Cozzens and M.J.Sousa. Source enumeration in a correlated signal environment. IEEE Trans. SP., Feb. 1994, 42(2):304-316.
    [184] A.Di and L.Tain. Multiple source location--A matrix decomposition approach. IEEE Trans. ASSP., Oct.1985, 33(4):1086-1091.
    [185] A.Di and L.Tain. Matrix decomposition and multiple source location. IEEE ICASSP’84 , San Diego,CA, 33.4.1-33.4.4.
    [186] M.E.Kotanchek and J.E.Dzielski. Subspace stability in high resolution direction finding and signal enumeration. ICASSP, 1996:192-199.
    [187] S.Valaee and P.Kabal. An information theoretic approach to source enumeration in array signal processing. IEEE trans. SP., May 2004, 52(5):1171-1178.
    [188] T W Anderson. An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, 1984.
    [189] R.F.Brcich, A.M.Zoubir and P.Pelin. Detection of sources using bootstrap techniques. IEEE Trans. SP., Feb. 2002, 50(2):206-215.
    [190] H-T Ong and A M Zoubir. Bootstrap-based detection of signals with unknown parameters in unspecified correlated interferce. IEEETrans. SP.,2003, 51(1):135-141.
    [191] D.B.Williams and D.H.Johnson. Using the sphericity test for source detection with narrow-band passive arrays. IEEE Trans. ASSP., Nov. 1990, 38(11):2008-2014.
    [192] W.G.Chen, K.M.Wong and J.P.Reilly. Detection of the number of signals: a predicted eigen-threshold approach. IEEE Trans. SP., May 1991, 39(5):1088-1098.
    [193] H.Akaike. A new look at the statistical model identification. IEEE Trans. AC., Dec. 1974, 19(6):716-723.
    [194] M Wax and T Kailath. Detection of signals by information theoretic criteria. IEEE Trans. Acoust., Speech, Signal Processing, Apr. 1985, ASSP-33(4): 387-392
    [195] M.H.Hansen and B.Yu. Model Selection and the Principle of Minimum Description Length. New Jersey, 2000.
    [196] H.T.Wu, J.F.Yang and F.K.Chen. Source number estimator using Gerschgorin disks. in proc. ICASSP., Apr.1994:216-262.
    [197] H.T.Wu, J.F.Yang and F.K.Chen. Source number estimators using transformed Gerschgorin radii. IEEE Trans. SP., Jun.1995, 43(6):1325-1333.
    [198] K.M.Wong, Q.T.Zhang, J.P.Reilly and P.C.Yip. On information theoretic criteria for determining the number of signals in high resolution array processing. IEEE Trans. ASSP., Nov. 1990, 38(11):1959-1971.
    [199] Hsien. Tsai. Wu. Source number estimators using Gerschgorin radii. TENCON’99. Proceedings of the IEEE Region 10 Conference, 1999, 2:1331-1334.
    [200] J.W. Choi and Y. H. Kim. Spherical beam-forming and music methods for the estimation of location and strength of spherical sound sources. Mech. Syst. Signal Process., 1995, 9(5):569-588.
    [201] J.W. Choi and Y. H. Kim. Estimation of locations and strengths of broadband planar and spherical noise sources using coherent signal subspace. J. Acoust. Soc.Amer., Oct. 1995, 98(4):2082-2093.
    [202] Y. D. Huang and M. Barkat. Near-field multiple source localization by passive sensor array. IEEE Trans. Antennas Propagat., July 1991, 39:968-974.
    [203] Adnan S, ahin and Eric L. Miller. Object Detection Using High Resolution Near-Field Array Processing, IEEE Transactions on Geoscience and Remote sensing. january 2001, 39(1):136-141.
    [204] Cekli, E, Cirpan. H. A. Deterministic maximum likelihood method for the localization of near-field sources: algorithm and performance analysis. Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference, Sept. 2001, 2:1077-1080.
    [205] C Coviello and L H Sibul. Blind source separation and beamforming: algebraic technique analysis. IEEE Trans. Aerosp. Electron. Syst., 2004, 40 (1): 221-235
    [206] A. J. van der Veen. Algebraic methods for deterministic blind beamforming, Proc. IEEE, 1988, 86(10):1987-2008.
    [207] B G Quinn and E Hannan, The Estimation and Tracking of Frequency. Cambridge University Press, 2001
    [208] O Caspary, P Nus, T Cecchin. The source number estimation based on Gerschgorin radii. Proceedings of the 1998 IEEE International Conference on Volume 4, 12-15 May 1998 Page(s):1993-1996 vol.4.
    [209] M. C. Wicks, M. Rangaswamy, R. Adve and T. B. Hale. Space-time adaptive processing—a knowledge-based perspective for airborne radar. IEEE Signal Processing Mag, 2006:51-65.
    [210] Y. Hua, Estimation two-dimensional frequencies by matrix enhancement and matrix pencil, IEEE Trans. Signal process., Sep. 1992, 40 (9):2267-2280.
    [211] M. Viberg, P. Stoica and B. Ottersten, Array processing in correlated noise fields based on instrumental variables and subspace fitting, IEEE Trans. Signal Process., 1995, 43(5): 1187-1199.
    [212] P. Stoica, M. Cedervall and T. S?derstr?m, Adaptive instrumental variable method for robust direction-of-arrival estimation, IEE Proc. -Radar, Sonar, Navig., Apr. 1995, 142: 45-53.
    [213] P. stoica, M. viberg and B. Ottersten, Instrumental variable approach to array processing in spatially correlated noise fields, IEEE Trans. Signal Process., Jan. 1994, 42(1): 121-133.
    [214] P. Strobach, Bi-iteration recursive instrumental variable subspace tracking and adaptive filtering, IEEE Trans. Signal Process., Oct. 1998, 46(10): 2708-2725.
    [215] A.Manikas and H.R.Karimi andI.Dacos. Study of the direction and resolution capabilities of a ome-dimensional array of sensors by using differential geometry. IEE Proc.-Radar,sonar Navig. 1994,141 (2):83-92.
    [216] H.R.Karimi and A.Manikas. Manifold of a planar array and its effects on the accuracy of direction-finding systems. IEE Proc.-Radar,sonar Navig. 1996,143 (6):349-357.
    [217] A.Manikas and A.Alexiou and H.R.Karimi. Comparison of the ultimate direction- finding capabilities of a number of planar array geometries. IEE Proc.-Radar, sonar Navig. 1997, 144(6):321-329.
    [218] T. S?derstr?m and P. Stoica, Instrumental Variable Methods for System Identification, Berlin, Germany: Springer-Verlag,1983.
    [219] M.C.Do?an and J.M. Mendel. Applications of cumulants to array processing—Part II: Non-Gaussian noise suppression, IEEE Trans. Signal Process., July 1995, 43(7): 1663-1676.
    [220] Gu J F, Wei P and Tai H M. 2-D Direction-of-Arrival estimation of coherent signals using cross-correlation matrix, ELSEVIER Signal Process, 2008, 88(1):75-85.
    [221] P. Stoica and A. Nehorai, Music, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust., Speech, Signal Process., 1989,37:720-741.
    [222] T. F. Chan, An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Soft., 1982, 8:72-83.
    [223] T. F. Chan, ALGORITHM 581: An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Soft., 1982, 8:72-83.
    [224] L. Bai, C.-Y. Peng, and S. Biswas, Association of DOA estimation from two ULAs, IEEE Trans. Instru.and Meas., 2008, 57(6):1094-1101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700