泄漏同轴电缆在半闭域及闭域空间无线通信中的应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泄漏同轴电缆(简称漏缆,也称连续天线)是实现半闭域及闭域空间双工无隙移动通信的重要信息载体,它兼备远距离无线及有线通信的功能,以此弥补了单纯采用传统天线通信方式所存在的不可避免的通信盲区问题,可广泛应用于诸如地铁、隧道、矿井、高速公路及高速铁路沿线等半闭域或闭域空间的移动通信。本文围绕漏缆在各种复杂电磁环境中的辐射特性展开系统的理论分析,重点研究漏缆的传播特性在各种适用通信系统中的数学模型、分析计算方法与技术解决方案,为漏缆的工程应用提出具有一定参考价值的理论和技术支持。
     针对诸如室内等半闭域空间的移动通信盲区问题,本文设计了一种新型耦合型漏缆,并且采用FDTD方法分析了该漏缆在开槽口处的电磁场分布状态,利用射线追踪法推导了室内空间无线电波的反射、折射及绕射系数,实现了半闭域空间中电磁波传播的跟踪与预测,验证了该设计的合理性与可行性,同时给出了具有典型代表意义的半闭域空间漏缆传播特性的分析方法和实现技术。
     为了提高和不断完善闭域空间漏缆辐射特性的基础理论与计算分析方法,本文以地铁和矿井为例,在系统地分析了处于复杂恶劣环境中的漏缆传播路径及其特点的基础上建立了实用精确的数学模型。采用FDTD与射线追踪相结合的方法详细地研究和分析了典型闭域空间中漏缆的辐射特性,提出了具体的理论分析与计算方法及技术解决方案。针对地铁中同时存在的站台与隧道,设计了一种具有异地不同辐射方向的漏缆;针对矿井中宽区域场强覆盖需求,设计了一种全向辐射漏缆。
     针对未来智能高速公路建设问题,本文提出了一种包含漏缆在内的无线通信系统构成设想,结合公路上机动车自身的通信功能,实现了通信系统各组成部分相互之间的数据传输,确保了智能高速公路沿线的电磁波无盲区覆盖,并采用FDTD方法与射线追踪法分别研究和分析了漏缆在智能高速公路通信系统中各部分的功能及辐射特性等问题。
Leaky coaxial cable (LCX) is also called continuous antenna, and it is the important information carrier to realize the duplex gapless mobile communication in confined zones, which both has the functions of wire and wireless communication in a long distance, so it can make up the disadvantage of the blind zone that is unavoidable in the traditional antenna communication, consequently LCX can be widely used in the mobile communication of many kinds of confined areas such as subway, tunnels, coals and highway, etc.. The radiation characteristics of LCX in every complex electromagnetic environment is analyzed and discussed theoretically in this dissertation, and the transmission characteristics of electromagnetic wave in confined zones are studied by building the exact simulation models, analyzing method and solution scheme. The simulation results of the dissertation provide some worthy theoretical and technological support for the engineering application.
     Aiming at the blind zone of mobile communication in indoor space, a kind of coupling leaky coaxial cable is presented and desgined, and the field distribution of it is analyzed by using FDTD method, then propagation path of electromagnetic wave in indoor space is traced and forecasted by using ray-tracing method, and the coefficients of reflection, refraction and diffraction are deduced, the feasibility of the designed leaky coaxial cable is verified, and the representative analyzing method and technology of LCX transmission characteristcs in semi-confined zones are obtained.
     To enhance and consummate the basic theory and analyzing method of LCX in confined zones, take the subway and coal mobile communication system for example, the dissertation analyzes the transmission path and characteristics of LCX in complex electromagnetic environment by the numbers. The radiation characteristics of LCX in the representative confined zones are studied using the hybrid method of FDTD and ray-tracing, and the material analyzing method and solution scheme are presented. For the co-existence of platform and tunnels in subway, a kind of leaky coaxial cable with different radiation directions at different part is designed; for the required wide coverage in coal mine, a kind of omni-direction radiation leaky coaxial cable is designed.
     Aiming at the highway building problems in the future, an intelligent highway mobile communication system involves leaky coaxial cable is presented, combining the communication function of vehicles on the road, the information transmission between every parts of the communication system is realized, which ensures the electromagnetic wave coverage along the roadside, and the radiation characteristics of leaky coaxial cable at every part of intelligent highway mobile communication system are investigated by using FDTD and ray-tracing method.
引文
[1]岸本利彦,佐佐木伸著.LCX通信システム[M].日本:日本电子通信学会,1982年.
    [2]冯琳琳,杨晓冬,谢红等.使用FDTD方法求解泄漏同轴电缆辐射场[J].哈尔滨工业大学学报,2008,40:126-129页.
    [3]彭桂利,葛万成.漏泄同轴电缆在建筑物内无线通信中的应用[J].光纤与电缆及其应用技术,2005,2:37-39页.
    [4]舒琳,施华,王均宏.铁路隧道中漏泄同轴电缆辐射场分布的计算[J].铁道学报,2002,24(2):69-73页.
    [5]ALFRED G. EMSLIE, ROBERT L. LAGACE, NEMBER, IEEE, AND PETER F. STRONG. Theory of the Propagation of UHF Radio Waves in Coal Mine Tunnels[J]. IEEE Transactions in Antennas and Propagation, AP-23(2):192-205P.
    [6]黄伟,姚善化.矿井移动通信技术难题及解决方案探讨[J].煤矿机械,2003,12:33-37页.
    [7]Nakamura, Makoto, Tsunomachi, Hiroshi, Fukui, Ryotaro. Road vehicle communication system for vehicle control using leaky coaxial cable[J]. IEEE Communications Magazine,1996,34(10):84-89P.
    [8]黄满兴,林海燕.漏泄同轴电缆的新近发展[J].光纤与电缆及其应用技术,1994,6:14-17页.
    [9]郭士毅.准微波宽频带泄漏同轴电缆[J].电信工程技术与标准化.1995,4:57-63贝.
    [10]J. R. Wait and D. A. Hill. Propagation Along a Braided Coaxial Cable in a Circular Tunnel[J]. IEEE Transactions on Microwave Theory and Techniques,1975,23, 401-405P.
    [11]D. B. Seidel and J. R. Wait. Transmission Modes in a Braided Coaxial Cable and Coupling to a Tunnel Environment[J]. IEEE Transactions on Microwave Theory and Techniques,1978,26:494-405P.
    [12]J. R. Wait. Electromagnetic Theory of the Loosely Braided Coaxial Cable:Part I[J]. IEEE Transactions on Microwave Theory and Techniques,1976,24,547-553P.
    [13]D. A. Hill and J. R. Wait. Propagation Along a Coaxial Cable with a Helical Shield[J]. IEEE Transactions on Microwave Theory and Techniques,1980,28:84-89P.
    [14]E. E. Hassan. Field Solution and Propagation Characteristics of Monofilar-Bifilar Modes of Axially Slotted Coaxial Cable[J]. IEEE Transactions on Microwave Theory and Techniques,1989,37:553-557P.
    [15]P. P. Delogne and A. A. Laloux. Theory of the Slotted Coaxial Cable[J]. IEEE Transactions on Microwave Theory and Techniques,1980,28:1102-1107P.
    [16]D. A. Hill and J. R. Wait. Electromagnetic Characteristics of a Coaxial Cable with Periodic Slots[J]. IEEE Transactions on Electromagnetic Compatibility,1980,22: 303-307P.
    [17]J. H. Richmond, N. N. Wang, and H. B. Tran. Propagation of Surface Waves on a Buried Coaxial Cable with Periodic Slots[J]. IEEE Transactions on Electromagnetic Compatibility,1981,23:139-146P.
    [18]S. T. Kim, G. H. Yun, and H. K. Park. Numerical Analysis of the Propagation Characteristics of Multiangle Multislot Coaxial Cable Using Moment Method[J]. IEEE Transactions on Microwave Theory and Techniques,1998,46:269-279P.
    [19]S. T. Kim, K. J. Kim, Y. J. Yoon, and H. K. Park. New Design Technique for 22mm Ultra-Wideband LCX[J].1995 Asia Pacific Microwave Conference,1995:514-516P.
    [20]Xin Zhang, Zixin Zhao. Research on the Radiation Characteristics of Leaky Coaxial Cable and Spiral Antenna in the Blind Zone[A].4th International Conference on Communications, Circuits and Systems[C], Guilin,2006,2:811-815P.
    [21]C. T. Tai. Dyadic Green Function in Electromagnetic Theory[J]. Piscataway, NJ: IEEE,1994, ch.7.
    [22]Zhang, Yu, Zhao, Xun-Wang, Donoro, Daniel Garcia, Ting, Sio-Weng, Sarkar, Tapan K.. Parallelized hybrid method with higher-order mom and po for analysis of phased array antennas on electrically large platforms[J]. IEEE Transactions on Antennas and Propagation,2010,58(12):4110-4115P.
    [23]McCowen, A.. Modelling perfect electric conductor thin-wires that penetrate finite-size dielectric interfaces[J]. IET Microwaves, Antennas and Propagation,2010, 4(11):1863-1689P.
    [24]Tong, Mei Song, Chew, Weng Cho. A novel approach for evaluating hypersingular and strongly singular surface integrals in electromagnetics[J]. IEEE Transactions on Antennas and Propagation,2010,58(11):3593-3601P.
    [25]Chen, M., Zhao, X.-W., Zhang, Y, Liang, C.-H.. Analysis of antenna around NURBS surface with iterative MoM-PO technique[J]. Journal of Electromagnetic Waves and Applications,2006,20(12):1667-1680P.
    [26]Saeedfar, Amin, Sato, Hiroyasu, Sawaya, Kunio. Impedance analysis of printed antenna on three-dimensional high-permittivity dielectric substrate using mixed-domain MoM[J]. IEICE Transactions on Communications,2009, E92-B(6): 2352-2355P.
    [27]Shin, Ho-Sub, Jang, Yong-Woong. The characteristic analysis of opened print slot antenna using FDTD[J]. Microwave and Optical Technology Letters,2010,52(11): 2459-2461P.
    [28]Penney, Christopher W., Luebbers, Raymond J.. Radiation and scattering of a square Archimedean spiral antenna using FDTD[J]. Electromagnetics,1994,14(1):87-97P.
    [29]Li, Xue-Shi, Hu, Bin-Jie. FDTD analysis of a magneto-plasma antenna with uniform or nonuniform distribution[J]. IEEE Antennas and Wireless Propagation Letters,2010, 9:175-178P.
    [30]Yang, S.W., Chen, Y.K., Nie, Z.P.. Simulation of time modulated linear antenna arrays using the FDTD method[J]. Progress in Electromagnetics Research,2009,98: 175-190P.
    [31]Shum, Shiu-Ming, Luk, Kwai-Man. FDTD analysis of probe-fed cylindrical dielectric resonator antenna[J]. IEEE Transactions on Antennas and Propagation,1998,46(3): 325-333P.
    [32]Yu, Wenhua, Yang, Xiaoling, Liu, Yongjun, Mittra, Raj, Lu, Yongquan, Wang, Pai, Che, Qing, Lu, Rui. Input impedance calculation of dipole antenna using FDTD method[J]. Microwave and Optical Technology Letters,2008,50(9):2335-2337P.
    [33]Hikage, Takashi, Omiya, Manabu, Itoh, Kiyohiko. FDTD analysis of mutual coupling of cavity-backed slot antenna array[J]. IEICE Transactions on Electronics,2008, E81-C(12):1838-1844P.
    [34]Li, Xue-Shi, Luo, Fan, Hu, Bin-Jie. FDTD analysis of radiation performance of a cylinder plasma antenna[J]. IEEE Antennas and Wireless Propagation Letters,2009,8: 756-758P.
    [35]Padhi, S.K., Fhager, A., Persson, M., Howard, J.. Measured antenna response of a proposed microwave tomography system using an efficient 3-D FDTD model[J]. IEEE Antennas and Wireless Propagation Letters,2008,7:689-692P.
    [36]Misra, Iti Saha, Chowdhury, S.K.. Study of impedance and radiation properties of a concentric microstrip triangular-ring antenna and its modeling techniques using FDTD method[J]. IEEE Transactions on Antennas and Propagation,1998,46(4): 531-537P.
    [37]Jang, Y. W.. Characteristic analysis of large bandwidth dual-offset microstrip-fed printed slot antenna using FDTD method[J]. IEICE Transactions on Communications, 2001,E84-B(11):3072-3074P.
    [38]Chen, Min, Houshmand, Bijan, Itoh, Tatsuo. FDTD analysis of a metal-strip-loaded dielectric leaky-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 1997,45(8):1294-1301P.
    [39]Ma, Weili, Rayner, Mark R., Parini, Clive G. Discrete green's function formulation of the FDTD method and its application in antenna modeling[J]. IEEE Transactions on Antennas and Propagation,2005,53(1):339-346P.
    [40]Li, J., Guo, L. X., Zeng, H.. FDTD method investigation on the polarimetric scattering from 2-D rough surface[J]. Progress in Electromagnetics Research,2010, 101:173-188P.
    [41]Zheng, Hong-Xing, Leung, Kwok Wa. A nonorthogonal ADI-FDTD algorithm for solving two dimensional scattering problems[J]. IEEE Transactions on Antennas and Propagation,2009,57(12):3891-3902P.
    [42]Ohtani, Tadao, Taguchi, Kenji, Kashiwa, Tatsuya, Kanai, Yasushi, Cole, James B.. Scattering analysis of large-scale coated cavity using the complex nonstandard FDTD method with surface impedance boundary condition[J]. IEEE Transactions on Magnetics,2009,45(3):1296-1299P.
    [43]Sarabandi, Kamal, Dehmollaian, Mojtaba, Mosallaei, Hossem. Hybrid FDTD and single-scattering theory for simulation of scattering from hard targets camouflaged under forest canopy[J]. IEEE Transactions on Geoscience and Remote Sensing,2006, 44(8):2072-2081P.
    [44]Penney, Christopher W., Luebbers, Raymond J.. Radiation and scattering of a square Archimedean spiral antenna using FDTD[J]. Electromagnetics,1994,14(1):87-97P.
    [45]Su, Zhiguo, Brazil, Thomas J.. Direct incorporation of scattering parameters into the FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation,2009,57(4 PART 2):1186-1190P.
    [46]Cerri, G., Russo, P., Schiavoni, A., Tribellini, G.1; Bielli, P.. MoM-FDTD hybrid technique for analyzing scattering problems[J]. Electronics Letters,1998,34(5): 438-440P.
    [47]Yang, Fan, Chen, Ji, Qiang, Rui, Elsherbeni, Atef. A simple and efficient FDTD/PBC algorithm for scattering analysis of periodic structures[J]. Radio Science,2007,42(4): RS4004.
    [48]Faghihi, F., Heydari, H.. Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects[J]. Progress in Electromagnetics Research,2009,95:87-102P.
    [49]Li, Xul, Taflove, Allen, Backman, Vadim. Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects[J]. IEEE Antennas and Wireless Propagation Letters,2005,4(1):35-38P.
    [50]Wang, Yong, Yung, Edward K.N., Ding, Hanyi, Chen, Weidong. FDTD analysis of scattering by a magnetized ferrite sphere[J]. Microwave and Optical Technology Letters,1998,17(5):297-300P.
    [51]Kim, Hyun, Koh, Il-Suek, Yook, Jong-Gwan. Enhanced total-field/scattered-field technique for isotropic-dispersion FDTD scheme[J]. IEEE Transactions on Antennas and Propagation,2010,58(10):3407-3411P.
    [52]Shibata, Tsugumichi, Itoh, Tatsuo. Generalized-scattering-matrix modeling of waveguide circuits using FDTD field simulations[J]. IEEE Transactions on Microwave Theory and Techniques,1998,46(11 pt 1):1742-1751P.
    [53]Martin, Torleif. On the FDTD near-to-far-field transformations for weakly scattering objects[J]. IEEE Transactions on Antennas and Propagation,2010,58(8): 2794-2795P.
    [54]Willis, K.J., Ayubi-Moak, J.S., Hagness, S.C., Knezevic, I.. Global modeling of carrier-field dynamics in semiconductors using EMC-FDTD[J]. Journal of Computational Electronics,2009,8(2):153-171 P.
    [55]Lei, J.-Z., Liang, C.-H., Ding, W., Zhang, Y.. EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method[J]. Progress in Electromagnetics Research,2008,84:205-220P.
    [56]Kantartzis, Nikolaos V., Zygiridis, Theodoros T., Tsiboukis, Theodoros D.. An unconditionally stable higher order ADI-FDTD technique for the dispersionless analysis of generalized 3-D EMC structures[J]. IEEE Transactions on Magnetics, 2004,40(2):1436-1439P.
    [57]Ryan, Nick J., Chambers, Barry, Stone, D.A.. FDTD modeling of heatsink RF characteristics for EMC mitigation[J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(3):458-465P.
    [58]Kantartzis, Nikolaos V., Tsiboukis, Theodoros D.. A higher order nonstandard FDTD-PML method for the advanced modeling of complex EMC problems in generalized 3-D curvilinear coordinates [J]. IEEE Transactions on Electromagnetic Compatibility,2004,46(1):2-11P.
    [59]Kantartzis, Nikolaos V., Tsiboukis, Theodoros D.. A hybrid lattice-adaptable FDTD/PSTD method for the design of composite bi-isotropic absorbers in EMC anechoic chambers[J]. IEEE Transactions on Magnetics,2009,45(3):1642-1645P.
    [60]Faghihi, F., Heydari, H.. Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects[J]. Progress in Electromagnetics Research,2009,95:87-102P.
    [61]Ye, X., Drewniak, J.L.. Incorporating two-port networks with S-parameters into FDTD[J]. IEEE Microwave and Wireless Components Letters,2001,11(2):77-79P.
    [62]Chen, Juan, Wang, Jianguo. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots[J]. IEEE Transactions on Electromagnetic Compatibility,2007,49(2):354-360P.
    [63]Yuan, Weiliang, Liang, Changhong, Shi, Xiaowei, Wang, Baikuan. Effects of current source models on numerical performances in FDTD simulations[J]. Microwave and Optical Technology Letters,2000,27(1):4-7P.
    [64]Hagness, S.C., Rafizadeh, D., Ho, S.T., Taflove, A.. FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators[J]. Journal of Lightwave Technology,1997, 15(11):2154-2165P.
    [65]Yu, Zhiyuan. Simple and effective method for the reflection coefficient extraction in rectangular waveguide discontinuity analysis by the FDTD[J]. Microwave and Optical Technology Letters,1997,15(1):57-59P.
    [66]Hadi, Mohammed F., Mahmoud, Samir F.. A high-order compact-FDTD algorithm for electrically large waveguide analysis[J]. IEEE Transactions on Antennas and Propagation,2008,56(8):2589-2598P.
    [67]Kantartzis, Nikolaos V, Tsiboukis, Theodoros D.. Higher order FDTD schemes for waveguide and antenna structures [J]. Synthesis Lectures on Computational Electromagnetics,2006,3:1-226P.
    [68]Jiang, Hao, Sabarinathan, Jayshri, Manifar, Touraj, Mittler, Silvia.3-D FDTD analysis of gold-nanoparticle-based photonic crystal on slab waveguide[J]. Journal of Lightwave Technology,2009,27(13):2264-2270P.
    [69]Shimasaki, Hitoshi, Kodera, Toshiro, Tsutsumi, Makoto. Analysis on nonlinear characteristics of electromagnetic waves in a ferrite waveguide by FDTD method[J]. IEICE Transactions on Electronics,1998, E81-C(12):1831-1837P.
    [70]Shibayama, Jun, Nomura, Akifumi, Ando, Ryoji, Yamauchi, Junji, Nakano, Hisamatsu. A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices[J]. IEEE Journal of Quantum Electronics, 2010,46(1):40-49P.
    [71]Lavrinenko, A., Borel, P.I., Frandsen, L.H., Thorhauge, M., Harpth, A., Kristensen, M., Niemi, T., Chong, H.M.H.. Comprehensive FDTD modelling of photonic crystal waveguide components[J]. Optics Express,2004,12(2):234-248P.
    [72]Simpson, Jamesina J., Heikes, Ross P., Taflove, Allen. FDTD modeling of a novel ELF radar for major oil deposits using a three-dimensional geodesic grid of the earth-ionosphere waveguide[J]. IEEE Transactions on Antennas and Propagation, 2006,54(6):1734-1741P.
    [73]Jiunn-Nan Hwang, Fu-Chiarng Chen. Effect of the Conductivity Profile on the Stability of the ADI-FDTD Method with Split-Field PML[A]. Proceedings of Asia-Pacific Microwave Conference[C],2006.
    [74]Jun Shibayama, Junji Yamauchi. Performance Evaluation of Several Implicit FDTD Methods for Optical Waveguide Analyses[J]. Journal of Lightwave Technology,2006, 24(6):2465-2472P.
    [75]王长清.现代计算电磁学基础[M].北京:北京大学出版社,2005,1-13页.
    [76]Wang, Jun Hong. Research on the radiation characteristics of the reinforced leaky coaxial cable by FDTD and spatial harmonic expansion methods[J]. Microwave and Optical Technology Letters,2003,36(2):142-145P.
    [77]Wang, Jun Hong. Research on the radiation characteristics of patched leaky coaxial cable by FDTD method and mode expansion method[J]. IEEE Transactions on Vehicular Technology,2008,57(1):90-96P.
    [78]Jun Hong Wang. Leaky Coaxial Cable with Adjustable Coupling Loss for Mobile Communications in Complex Environments[J]. IEEE Microwave and Wireless Components,2001,11(8):346-348P.
    [79]王均宏,简水生.漏泄同轴电缆耦合损耗的计算[J].铁道学报,1996,12,18(6):17-22页.
    [80]舒琳,施华,王均宏.漏泄同轴电缆电感的数值法求解[J].铁道学报,2003,6,25(3):65-68页.
    [81]施华,舒琳,裴涛,王均宏.漏泄同轴电缆电容的有限差分法求解[J].铁道学报,2002,6,24(3):36-39页.
    [82]张洪欣,吕英华,包永芳.基于FDTD/MoM方法的同轴电缆孔缝辐射效应研究[J].北京邮电大学学报,2004,27(2):61-65页.
    [83]张洪欣,吕英华,黄永明,于学萍.基于FDTD方法的同轴电缆孔缝辐射效应研究[J].电波科学学报,2003,18(2):161-165页.
    [84]Hassan, E.E.. Simple solution of dispersion characteristics of shielded stripline[J]. IEE Proceedings H (Microwaves, Antennas and Propagation),1987,12,134(6): 566-8P.
    [85]Hassan, E.E.. Field solution, polarization, and eigenmodes of shielded microstrip transmission line[J]. IEEE Transactions on Microwave Theory and Techniques, 1986,8, MTT-34(8):845-52P.
    [86]Addamo, G., Orta, R., Tascone, R.. Bloch wave analysis of long leaky coaxial cables[J]. IEEE Transactions on Antennas and Propagation,2008,56(6):1548-54P.
    [87]欧宗琼WCDMA无线传播模型校正[J].邮电设计技术,2004,3:5-8页.
    [88]李毅WCDMA无线传播模型校正与分析[J].电信工程技术与标准化,2006,19(9):45-49页.
    [89]刘伟宏.特大城市密集城区3G核心频段传播模型的测试与校正[J].邮电设计技术.2006,(1):26-30页.
    [90]宰听宇,洪伟.迭代不变性测试方程法在城市微小区电波传播预测中的应用[J].通信学报,1999,20(3):9-14页.
    [91]Schuster, J.W., Luebbers, R.J.. Comparison of GTD and FDTD predictions for UHF radio wave propagation in a simple outdoor urban environment[A]. IEEE Antennas and Propagation Society International Symposium 1997[C].1997,3:2022-5P.
    [92]Mei, K.K., Pous, R., Zhaoqing Chen, Yao-Wu Liu, Prouty, M. D.. Measured equation of invariance:a new concept in field computations[J]. IEEE Transactions on Antennas and Propagation,1994,3,42(3):320-328P.
    [93]陈军,洪伟.MEI方法分析介质光栅对平面波的绕射.通信学报.1997,18(6):25-30页.
    [94]Chen, J., Hong, W.. Iterative procedure in matrix form based on MEI for scattering by multi-cylinders[J]. Electronics Letters,1996,6,32(12):1072-1074P.
    [95]Brown, P.G., Constantinou, C.C.. Investigations on the prediction of radio wave propagation in urban microcell environments using ray-tracing methods[J].IEE Proceedings:Microwaves, Antennas and Propagation.1996,2,143(1):36-42P.
    [96]周力,柴舜连,毛钧杰.基于三维的射线跟踪八叉树算法的城市微区电波传播预测算法模型[J].电子学报,2002,30(12):1-3页.
    [97]刘海涛,黎滨洪,谢勇,戚冬生.并行射线跟踪算法及其在城市电波预测的应用[J].电波科学学报.2004,19(5):581-585页.
    [98]姚翠萍,冯林.加速多镜像法对城市微小区电波传播的分析计算[J].电子科技,2005,12:2-4页.
    [99]Chen, Shin-Hon, Jeng, Shyh-Kang. SBR/image approach for indoor radio propagation in a corridor[J]. IEICE Transactions on Electronics,1995,8, E78-C(8): 1058-1062P.
    [100]Villanese, F., Scanlon, W.G., Evans, N.E., Gambi, E.. Hybrid image/ray-shooting UHF radio propagation predictor for populated indoor environments[J]. Electronics Letters,1999,10,35(21):1804-1805P.
    [101]Chen, Shin-Hon, Jeng, Shyh-Kang. SBR/image approach for indoor radio propagation in large empty building[J]. IEICE Transactions on Communication,1996, 9, E79-B(9):1184-1191P.
    [102]Perez, Silvestre Rodriguez, Jimenez, Rafael Perez, Hernandez, Oswaldo B. Gonzalez. Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm[J]. Microwave and Optical Technology Letters,2003,2,36(4):262-267P.
    [103]De Adana, Francisco Saez, Blanco, Oscar Gutierrez, Diego, Ivan Gonzalez, Arriaga, Jesus Perez, Catedra, Manuel F.. Propagation model based on ray tracing for the design of personal communication systems in indoor environments[J]. IEEE Transactions on Vehicular Technology,2000,11,49(6):2105-2112P.
    [104]Yun, Zhengqing, Lim, Sungkyun, Iskander, Magdy F.. An integrated method of ray tracing and genetic algorithm for optimizing coverage in indoor wireless networks[J]. IEEE Antennas and Wireless Propagation Letters,2008,7:145-148P.
    [105]龚克,赵伟国.个人通信的传播特性研究[J].电子学报,1995,23(10):76-80页.
    [106]李彤,娄媚.利用射线跟踪方法进行微蜂窝电波传播预测[J].通信学报,1997,18(11):1-7页.
    [107]Zhong Ji, Bin-Hong Li, Hao-Xing Wang, Hsing-Yi Chen, Yaw-Gen Zhau. An improved ray-tracing propagation model for predicting path loss on single floors[J]. Microwave and Optical Technology Letters,1999,6,22(1):39-41P.
    [108]季忠,黎滨洪.用射线跟踪法对室外至室内的电波传播进行预测[J].通信学报,2001,22(3):114-119页.
    [109]江晖,潘子一.基于时域射线追踪的UWB室内信道仿真[J].电脑知识与技术:学术交流,2010,6(1):37-38页.
    [110]Yang, Xiao Peng, Chen, Qiang, Sawaya, Kunio. Investigation of wall effect on indoor MIMO channel capacity by using MoM-FDTD hybrid technique[J]. IEICE Transactions on Communications,2007,5, E90-B(5):1201-1207P.
    [111]Mitilineos, Stelios A., Panagiotou, Stylianos C., Varlamos, Pantelis K., Capsalis, Christos N.. Indoor environments propagation simulation using a hybrid MoM and UTD electromagnetic method[J]. Annals of Telecommunications,2005,9,60(9-10): 1231-1243P.
    [112]Schaubach, K.R., Davis, N.J., Rappaport, T.S.. A ray tracing method for predicting path loss and delay spread in microcellular environments[A]. Vehicular Technology Society 42nd VTS Conference[C].1992,2:932-935P.
    [113]Homayoun Hashemi, David Tholl. Statistical Modeling and Simulation of the RMS Delay Spread of Indoor Radio Propagation Channels[J]. IEEE Transactions on Vehicular Technology,1994,2,43(1):110-120P.
    [114]McKown, John W., Hamilton Jr., R.Lee. Ray tracing as a design tool for radio networks[J]. IEEE Network.1991,11,5(6):27-30P.
    [115]Seidel, S.Y., Rappaport, T.S.. A ray tracing technique to predict path loss and delay spread inside buildings[A]. IEEE Global Telecommunications Conference[C],1992,2: 649-653P.
    [116]Erceg, V, Michelson, D.G., Ghassemzadeh, S.S.. A model for the multipath delay profile of fixed wireless channels[J].IEEE Journal on Selected Areas in Communications,1999,3,17(3):399-410P.
    [117]成凌飞,孙继平.矩形隧道中电磁波传播模式的分析[J].电波科学学报,2005,20(4):522-525页.
    [118]Deryck, L. Natural propagation of electromagnetic waves in tunnels[J]. IEEE Transactions on Vehicular Technology,1978,8, vt-27(3):145-150P.
    [119]Delogne, Paul. EM propagation in tunnels[J]. IEEE Transactions on Antennas and Propagation,1991,3:401-406P.
    [120]Delogne, Paul漏泄馈线和地下无线电通信[M].北京:人民邮电出版社,1998,2:30-35页.
    [121]Emslie, A.G., Lagace, R.L., Strong, P.F.. Theory of the propagation of UHF radio waves in coal mine tunnels[J]. IEEE Transactions on Antennas and Propagation,1975, 3,Ap-23(3):192-205P.
    [122]Yin Shi, Shuqi Wang. Application of TD-SCDMA in monitoring systems in coal mine[A].2009 Third International Symposium on Intelligent Information Technology Application[C],2009,3:48-50P.
    [123]David Tacconi, Daniele Miorandi, Iacopo Carreras, Francesco Chiti, and Romano Fantacci. Using wireless sensor networks to support intelligent transportation systems[J]. Ad Hoc Networks,2010,8:462-473P.
    [124]Rua Qin, Zi Li, Yanfei Wang, Xuejia Lu, Wen sheng Zhang, and Guiling Wang. An integrated network of roadside sensors and vehicles for driving safety:Concept, design and experiments [A].2010 IEEE International Conference on Pervasive Computing and Communications[C],2010:79-87P.
    [125]Yizhi-WANG, Jianming-HU, and Qi-WANG. A simulation study of dynamic route guidance based on inter-vehicle communication[A].2010 WRI International Conference on Communications and Mobile Computing[C],2010:397-403P.
    [126]Nakaoka, Ken, Yokota, Mamoru, Sasaki, Kunihiko, Horimatsu, Tetsuo. A feasibility study on inter-vehicle communication system for practical use in urban area based on multi-vehicle experiment[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2010,4, E93-A(4):689-699P.
    [127]Nakamura, Makoto, Tsunomachi, Hiroshi, Fukui, Ryotaro. Road vehicle communication system for vehicle control using leaky coaxial cable[J]. IEEE Communications Magazine,1996,10,34(10):84-89P.
    [128]Haag, Helmut G, Thoennessen, Guenter, Schulze-Buxloh, Karl. Leaky coaxial cables for mobile communication[A]. Proceedings of International Wire and Cable Symposium[C], Nov.1989,286-294P.
    [129]姚善化,朱宗玖.漏泄同轴电缆的性能分析及应用[J].煤矿机械,2003,7:29-31页
    [130]李奇文,虞春,刘湘荣.辐射型漏泄同轴电缆的设计[J].光纤与电缆及其应用技术,2004,4:30-36页
    [131]肖远强,张武军.漏泄电缆的性能分析[J].移动通信.2002,26(6):40-42页
    [132]王均宏,简水生.漏泄同轴电缆辐射模式分析及高次模抑制[J].通信学报,2000,21(12):17-22页.
    [133]谢处方,邱文杰.天线原理与设计[M].西安:西北电讯工程学院出版社,1989.
    [134]Ikeda Y, Xiaodong Y. Characteristics of Leaky Waveguide Developed for Automated Highway System[C]. Proceedings of IEEE Conference on Intelligent Transportation Systems[A],1997:64-69P.
    [135]赵姚同,周希朗.微波技术与天线.南京:东南大学出版社,1995:59-60页.
    [136]闫润卿.微波技术基础.北京:北京理工大学出版社,2004:397-398页.
    [137]KOICHI MIKOSHIBA, YOSHIHIRO NURITA. Guided Radiation by Coaxial Cable for Train Wireless Systems in Tunnels[J]. IEEE Transactions on Vehicular Technology, 1969,VT-18(2):66-69P.
    [138]I. sakabe等VHF-UHF超宽带漏泄同轴电缆[J].光纤与电缆及其应用技术,1995,6:41-45页
    [139]R. E. Collin. Foundations for Microwave Engineering[M]. New York:Mc-Graw-Hill, 1992, ch.5 and 8.
    [140]K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media[J]. IEEE Transactions on Antennas Propagation,1966,14:302-307P.
    [141]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002.
    [142]张循例,张洪欣,宋丰洪,刘津PML-FDTD在三维柱坐标下的实现[J].哈尔滨工业大学学报,2005,37(11):1549-1551页.
    [143]张洪欣,吕英华,黄永明.柱坐标系下PML—FDTD及总场一散射场区连接条件[J].重庆邮电学院学报,2003,15(3):4-8页.
    [144]Allen Taflove, Susan C. Hagness. Computational Electrodynamice:The Finite-Difference Time-Domain Method[M]. Boston·London:Artech House,2000.
    [145]D. M. Sullivan. Electromagnetic Simulation Using the FDTD Method[M]. IEEE PRESS:IEEE Microwave Theory and Technique Society,2000.
    [146]W.C. Chew, J.M. Jin, and E. Michielsse. Complex Coordinate System as a Generalized Absorbing Boundary Condition[J]. IEEE Press,1996:2060-2063P.
    [147]Anna-Karin Tornberg, Bjorn Engquist. Consistent Boundary Conditions for the Yee Scheme[J]. Journal of Computational Physics.2008,227:6922-6943P.
    [148]张子俊,高本庆.柱坐标系下FDTD算法的吸收边界条件[J].微波学报,1995,11(3):170-175页.
    [149]F. L. Teixeira, W. C. Chew. PML-FDTD in Cylindrical and Spherical Grids[J]. IEEE Microwave and Guided Wave Letters,1997,7(9):285-287P.
    [150]F. L. Teixeira, W. C. Chew. Systematic Derivation of Anisotropic PML Absorbing Media in Cylindrical and Spherical Coordinates[J]. IEEE Microwave and Guided Wave Letters,1997,7(11):371-373P.
    [151]Jun Hong Wang, Kenneth K. Mei. Theory and Analysis of Leaky Coaxial Cables With Periodic Slots[J]. IEEE Transactions on Antennas and Propagation,2001,49(12): 1723-1732P.
    [152]成凌飞,孙继平.矩形隧道围岩电参数对电磁波传播的影响[J].电波科学学报,2007,22(3):513-517页.
    [153]孙继平,张长森.圆形隧道中电磁波的传输特性[J].电波科学学报,2003,18(4):408-412页.
    [154]张会清,于洪珍,王普,高学金,任明荣.矩形隧道中电波多径传播模型的建立及仿真[J].电波科学学报,2008,2,23(1):195-200页.
    [155]吴彦文.移动通信技术及应用[M].北京:清华大学出版社,2009,4:29-47页.
    [156]H. Cao, Y. P. Zhang. Radio Propagation along a Radiated Mode Leaky Coaxial Cable in Tunnels[J]. IEEE Press.1999:270-272P.
    [157]SAMUEL P. Prediction of Indoor Wireless Coverage by Leaky Coaxial Cable Using Ray Tracing[J]. IEEE Transactions on Vehicular Technology,1999,48(6): 2005-2014P.
    [158]彭桂利,葛万成.漏泄同轴电缆在建筑物内无线通信中的应用[J].光纤与电缆及其应用技术,2005,2:37-39页.
    [159]刘斌,舒琳,王均宏.室内天线及漏缆辐射场分布的计算与比较[J].铁道学报,2004,12,26(6):44-49页.
    [160]G. Yang, K. Pahlavan, and J. F. Lee. A 3-D propagation model with polarization characteristics in indoor radio channels[A]. IEEE Globecom'93, Houston, TX[C], Nov.1993:1252-1256P.
    [161]S. Y. Seidel and T. S. Rappaport. Site-specific propagation prediction for wireless in-building personal communication system design[J]. IEEE Transactions on Vehicular Technology,1994,11,43:879-891P.
    [162]J. H. Tarng, W. R. Chang, and B. J. Hsu. Three-dimensional modeling of 900-MHz and 2.44-GHz radio propagation in corridors[J]. IEEE Transactions on Vehicular Technology,1997,5,46:519-527P.
    [163]A. J. Rustako Jr., N. Amitay, G. J. Owens, and R. S. Roman. Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications[J]. IEEE Transactions on Vehicular Technology,1991,2,40: 203-210P.
    [164]J. Horikoshi, K. Tanaka, and T. Morinaga.1.2 GHz band wave propagation measurements in concrete building for indoor radio communications[J]. IEEE Transactions on Vehicular Technology,1986,11, VT-35:146-152P.
    [165]Tam, W.K, Tran, V.N.. Propagation modelling for indoor wireless communication[J]. Electronics and Communication Engineering Journal,1995,7:221-228P.
    [166]C. Yang, B.Wu, and C. Ko. A ray-tracing method for modeling indoor wave propagation and penetration[J]. IEEE Transactions on Antennas Propagation,1998, 6,46:907-919P.
    [167]Y. Wang, S. Safavi-Naeini, and S. K. Chaudhuri. Comparative study of lossy dielectric wedge diffraction for radio wave propagation modeling using UTD and FDTD[A]. Antennas and Propagation Society International Symposium[C],1999,7,4: 2826-2829P.
    [168]J. W. H. Lee and A. K. Y. Lai. FDTD analysis of indoor radio propagation[A]. Antennas and Propagation Society International Symposium[C],1998,6,3: 1664-1667P.
    [169]C. M. P. Ho and T. S. Rappaport. Wireless channel prediction in a modern office building using an image-based ray tracing method[A]. Global Telecommunications Conference[C],1993,11:1247-1251P.
    [170]J. W. Mckown and R. L. Hamilton, Jr.. Ray tracing as a design tool for radio networks[J]. IEEE Network Magazine,1991,11,5(6):27-30P.
    [171]Wang, Ying, Safavi-Naeini, Safieddin, Chaudhuri, Sujeet K. A Hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation[J]. IEEE Transactions on Antennas and Propagation, 2000,5,48:743-754P.
    [172]季忠,黎滨洪,王豪行.用射线跟踪法对室外至室内的电波传播进行预测[J].通信学报,2001,22:114-119页.
    [173]KENT A. CHAMBERLIN, RAYMOND J. LUEBBERS. An Evaluation of Longley-Rice and GTD Propagation Models[J]. IEEE Transactions on Antennas and Propagation,1982,11, AP-30(6):1093-1098P.
    [174]谢卫浩,徐明.公众移动通信系统地铁覆盖实现方式探讨[J].广东通信技术,2004,24(5):23-27页.
    [175]张双健,吴寿庄.地面无线通信信号覆盖地铁的研究和实践[J].城市轨道交通研究,2002:68-72页.
    [176]吴招锋,周俊,林必毅.地铁无线通信技术的研究[J].现代城市轨道交通,2010,3:19-23页.
    [177]胡昌贵.地铁3G移动通信系统引入解决方案[J].铁道勘测与设计,2010,2:35-40页.
    [178]P. P. Delogne and L. Deryck. Underground Use of a Coaxial Cable with Leaky Sections[J]. IEEE Transactions on Antennas and Propagation,1980,28:875-883P.
    [179]D. J. Gale and J. C. Beal. Comparative Testing of Leaky Coaxial Cables for Communications and Guided Radar[J]. IEEE Transactions on Microwave Theory and Technology,1980,28:1006-1013P.
    [180]J. C. Beal, J. M. Josiak, and V. Rawat. Continuous-Access Guided Communication (GAGC) for Ground-Transportation Systems[J]. PIEEE,1973,61:562-568P.
    [181]郭枳彤,卢建军,王树奇,卫晨.煤矿井下有限空间无线信道特性研究[J].煤炭技术,2010,29(1):37-40页.
    [182]黄伟,姚善化.矿井移动通信技术难题及解决方案探讨[J].煤矿机械,2003,12:33-37页.
    [183]王艺华.井下漏泄电磁场强的分布及其测量[J].工矿自动化,2002,4:3-5页.
    [184]李大健,王小京.矿井漏泄移动通信系统[J].煤矿自动化,2001,1:26-29页.
    [185]赵金明,毛宝霞,奂光润.矿井无线漏泄通信系统在煤矿中的应用[J].矿山机械,2005,33(3):119页.
    [186]刘世杰.煤矿井下漏泄无线通信系统[J].东北煤炭技术,1991,4,2:37-39页
    [187]H. G. Haag. Leaky Coaxial Cable for Mobile Communication[A]. Proceedings of the 38th International Wire and Cable Symposium[C],1989:286-294P.
    [188]H. G. Haag and K. Lehan. Leaky Coaxial Cable Systems for High Speed Trains in Tunnels and Other Environmental Conditions-Theory and Experience[A]. Proceedings of the 39th International Wire and Cable Symposium[C],1990:71-79P.
    [189]Ndoh. M, Delisle, G. Y.. Underground Mines Wireless Propagation Modeling[A]. 2004 IEEE 60th Vehicular Technology Conference[C],2004:3584-8P.
    [190]朱剑.隧道内纵向导体对漏泄电缆通信中传播衰减率的影响[J].南京邮电学院学报,1996,6,16(2):39-42页.
    [191]David Tacconi, Daniele Miorandi, Iacopo Carreras, Francesco Chiti and Romano Fantacci. Using wireless sensor networks to support intelligent transportation systems[J]. Ad Hoc Networks,2010,7,8:462-473P.
    [192]Rua Qin, Zi Li, Yanfei Wang, Xuejia Lu, Wen sheng Zhang, and Guiling Wang. An integrated network of roadside sensors and vehicles for driving safety:Concept, design and experiments [A].2010 IEEE International Conference on Pervasive Computing and Communications[C],2010:79-87P.
    [193]Yizhi-WANG, Jianming-HU, and Qi-WANG. A simulation study of dynamic route guidance based on inter-vehicle communication [A].2010 WRI International Conference on Communications and Mobile Computing[C],2010:397-403P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700