高稳定度平顶长脉冲强磁场电源系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常用的稳态强磁场和脉冲强磁场具有各自的优势及其局限性:稳态强磁场波动小、持续时间长,但场强通常低于50 T,且运行费用高昂;脉冲强磁场场强高,运行费用较低,但持续时间短,且磁场随时间变化。具有高稳定度平顶的长脉冲强磁场,能够较好地综合稳态和脉冲强磁场的优势,可以满足材料比热测试、高参数核磁共振等科学实验对磁场高场强和高稳定度的双重要求,其研究具有重要的科学意义。
     电源系统是产生强磁场的核心部件之一,其类型一般包括电容器型电源、电感储能型电源、脉冲发电机型电源、电网整流型电源等等。脉冲磁体供电方案的设计、电源参数的选型、控制策略的实施,将决定磁场的波形和质量,从而对科学实验研究产生直接的影响。因此,本文将针对一些科学实验对强磁场高场强和高稳定度的双重要求,以高稳定度平顶长脉冲强磁场电源系统的设计与实现作为主要研究内容。
     在由电动机和发电机共轴组成的脉冲发电机型电源研究方面:建立了基于定子磁链定向的异步电动机等效模型,提出了将双闭环解耦控制策略应用于转子侧变频器的方案,较好地解决了脉冲发电机由于达不到额定转速而不能充分释放能量的问题;分析了交流侧系统阻抗对脉冲发电机型电源相控整流器的影响;针对交流侧电缆等值电路特性可能引起的系统谐振问题,提出了并联RC滤波支路以改变系统参数的方法来消除谐振;分析了相控整流器的输入输出特性,结合消除高频谐振的要求,提出了一种分时段投切单调谐滤波器组的措施,既能够改善相控整流器交流侧电流波形,又较好地解决了仅并联单调谐滤波器可能引起的无功倒送问题。
     在平顶长脉冲强磁场纹波抑制研究方面:针对同轴电缆杂散电容引起的高频谐振现象,提出了并联RC滤波支路的方法来消除该谐振;针对相控整流器给直流侧负载带来的纹波电流,在对直流侧无源电力滤波器的方案设计、参数选择详细介绍的基础上,结合消除高频谐振的要求,提出了一种能够有效衰减纹波的改进型组合滤波器方案;为了进一步提高磁场的稳定度,提出了直流侧并联有源电力滤波器的滤波方案,对检测方法、控制策略进行了详细阐述;仿真分析验证了该滤波方案的正确性。
     在由单线圈磁体产生的平顶长脉冲强磁场研究方面:首先借助专业磁体设计软件设计了两套单线圈准稳态磁体;在充分考虑磁体电阻随温升而上升的因素上,将重复控制应用于触发角开环、磁体电流(或磁场)闭环的复合控制策略,通过逐次减小相控整流器跟踪误差来实现高稳定度平顶强磁场;在此基础上,提出了一种将蓄电池组和相控整流器串联给单线圈准稳态磁体供电的新型供电拓扑结构,来产生平顶更宽的平顶长脉冲强磁场。
     在由双线圈磁体产生的平顶长脉冲强磁场研究方面:结合准稳态磁体的设计要点,设计了一套双线圈准稳态磁体,阐述了双线圈准稳态磁体互感耦合问题;提出了采用去耦变压器来实现双线圈准稳态磁体互感解耦的方法,在此基础上,提出了多种与双线圈准稳态磁体配套的组合供电方案,包括相控整流器和电容器组合供电方案,相控整流器和蓄电池组合供电方案和两组相控整流器的组合供电方案;提出了一种双线圈平顶长脉冲磁场控制方法,该方法不需要串联去耦变压器,而是将重复控制策略应用于两组相控整流器,使其分别输出一个与互感压降大小相等的电压来抵消互感作用,从而实现内线圈和外线圈各自的平顶磁场;建立了仿真模型,比较分析了各种方案的特点以及优缺点,为双线圈准稳态磁体的工程实施提供了理论指导。
There are separate characteristics while only using traditional continuous magnetic field or traditional pulsed magnetic field. Continuous magnetic field is featured by its low ripple and long duration. But there are several drawbacks, such as the field lower than 50 T and the high cost. Pulsed magnetic field is featured by its high field and low cost. But the duration is always short and the field changes with time. Considering aspects of the field and the stability, the long-pulse magnetic field with high-stability flat-top, can combine the advantages of the two fields above. So that it can meet the requirements of these extreme experiments, such as material specific heat test and nuclear magnetic resonance. Therefore, it is important to realize the high-stability flat-top of the long-pulse magnetic field.
     The power supply system is one of the core elements to realize the high magnetic fields. There are many types of the power supply systems, such as pulse capacitors, storage coils, pulse generators, rectifiers powered by the grid and etc. The design of the power supply, the selection of parameters, and the control strategy implementation, directly determine the quality of the magnetic field waveform, whereas scientific experiments related may be impacted. Therefore, the design and implementation of the power supply to realize the high-stability flat-top of the long-pulse magnetic field, will be the main contents of this thesis.
     The pulse generator is composed of an induction motor and a synchronous generator. The equivalent model of the induction motor is established oriented by the stator flux. To accelerate the speed of the motor-generator, a double-loop decoupling control strategy for the converter at the rotor side is proposed. Thus, the energy stored can be released in full. To guarantee the operation of the phase-controlled rectifier, the effect of the AC side impedance is analyzed. A RC filter solution is proposed to deal with the oscillation which might be caused by the AC side cable. Based on the analyses of the input and output characteristics of the phase-controlled rectifier, a solution to switch a group of single-tuned filters on different time is adopted. Therefore, the AC side power quality may be improved without reactive-power reversing.
     To suppress the high-frequency oscillations caused by the stray capacitance of the coaxial cable, a paralleled RC filter branch is adopted. In order to attenuate the even ripple in the DC side brought by the phase-controlled rectifier, a combined passive filter scheme is proposed. Meanwhile, the oscillations can be also eliminated. To better the performance, a DC-side shunt active power filter scheme, is proposed to attenuate the DC current ripple in an effective way. The detection method and the control strategy are detailed. Simulation results verify the feasibility of the active filtering scheme.
     Two single-coil quasi-continuous magnets are designed with the efficient design software respectively. Taking account of the resistance rise of the coils, the repetitive control is utilized in the composite control strategy which is composed of the firing angle open-loop and the magnet current (or magnetic field) closed-loop. The tracking error can be minimized, whereas the high-stability flat-top of the long-pulse magnetic field could be realized. Based on the research above, a novel topology of the power supply is proposed, which combines the battery bank and the phase-controlled rectifier in series. The novel topology can provide a wider flat-top than the normal topology.
     Taking account of design factors of the quasi-continuous magnet, a two-coil magnet is designed. The coupling problem is described. One decoupling transformer is utilized to decouple the mutual inductance. Based on this method, several power supply solutions are proposed, such as the supply combination with the phase-controlled rectifier and the pulse capacitor, the supply combination with the phase-controlled rectifier and the battry bank, and the supply combination with two phase-controlled rectifiers. A digital control method is presented without the decoupling transformer. The repetitive control strategy is applied, so that the phase-controlled rectifiers output an extra voltage to offset the mutual inductance effect. Simulation results are presented to validate the effectiveness of the methods proposed, and characteristics of the combination supplies are compared, which can guide the implementation of the project.
引文
[1]高秉钧.强磁场技术及其在科学研究中的应用.物理,1984,13(3):162~168.
    [2]张裕恒.强磁场下的科学研究.物理,2009,38(5):320~327.
    [3]彭涛,辜承林.强磁场发展动态与趋势.物理,2004,33(8):570~573.
    [4]彭涛,辜承林.脉冲强磁场发展技术.核技术,2003,26(3):185~188.
    [5]J. R. Sims, M. A. Hill, R. P. Walsh. Developments in Materials for High-Field Magnets. IEEE Trans, on Magnetics,1994,30(4):2211~2213.
    [6]K. V. Klitzing, G. Dorda, M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters,1980,45(6):494~497.
    [7]H. L. Stumer, A. Chang D. C. Tsui, et al. Fractional Quantization of the Hall Effect. Physical Review Letters,1983,50:953~956.
    [8]S.T. Hannahs, E. C. Palm. The National High Magnetic Field Laboratory. Low Temperature Physics,2010,159:366~369.
    [9]T. Peng, L. Li, J. Vanacken et al. Efficient Design of Advanced Pulsed Magnets. IEEE Trans, on Applied Superconductivity,2008,18(2):1509~1512.
    [10]L. Li, H. F. Ding, T. Peng, et al. The Pulsed High Magnetic Field Facility at HUST, Wuhan, China and Associated Magnets. IEEE Trans. on Applied Superconductivity, 2008,18(2):596~599.
    [11]H. F. Ding, C. X. Jiang, T. H. Ding, et al. Prototype Test and Manufacture of a Modular 12.5 MJ Capacitive Pulsed Power Supply. IEEE Trans. on Applied Superconductivity,2010,20(3):1676~1680.
    [12]T. H. Ding, H. F. Ding, T. Peng, et al. Design of Multipulse Power Supply for Small Pulsed High Magnetic Field Device. IEEE Trans. on Applied Superconductivity,2010,20(3):1689~1692.
    [13]H. Krug, M. Doerr, D. Eckert, et al. The Dresden High-Magnetic Field Laboratory-Overview and First Results. Physica B,2001,294-295:605~611.
    [14]T. Herrmannsdorfer, H. Krug, F. Pobell, et al. The High Field Project at Dresden/Rossendorf:A Pulsed 100 T/10 ms Laboratory at an Infrared Free-Electron-Laser Facility. Journal of Low Temperature Physics,2003, 133(1-2):41~59.
    [15]O. Portugall, F. Lecouturier, J. Marquez, et al. Pulsed Magnetic Fields in Toulouse-Past, Present and Future. Physica B,2001,294-295:579~584.
    [16]J. Wosnitza, A. D. Bianchi, J. Freudenberger, et al. Dresden Pulsed Magnetic Field Facility. Journal of Magnetism and Magnetic Materials,2007,310(2):2728~2730.
    [17]J. Wosnitza, A. D. Bianchi, T. Herrmannsdorfer, et al. Status quo of the Dresden High Magnetic Field Laboratory. Journal of Physics:Conference Series,2006,51 (1):619~622.
    [18]http://www.hzdr.de/db/Cms?pOid=33768&pNid=473
    [19]邱立,吕以亮,宋运星,等.武汉强磁场中心脉冲强磁场试验装置的设计与测试.湖北工业大学学报,2010,25(1):95~98.
    [20]刘克富,王少荣,钟和清,等.脉冲强磁场高功率脉冲电源系统研制.核技术,2008,31(11):864~868.
    [21]L. J. Campbell, J. B. Schillig. Controlled Waveform Magnets, in High Magnetic Fields:Science and Technology, F. Herlach and N. Miura, Eds. Singapore:World Scientific,2003, vol.1.153~202.
    [22]G. Aubert, L. van Bockstal, E. Fernandez, et al. Quasi-Stationary Magnetic Fields of 60 T Using Inductive Energy Storage. IEEE Trans. on Applied Superconductivity, 2002,12(1):703~706.
    [23]M. Jaime, A. Lacerda, Y. Takano, et al. The National High Magnetic Field Laboratory. in:Journal of Physics:Conference Series. UK:IOP Publishing,2006. 643~646.
    [24]J. Singleton, C. H. Mielke, A. Migliori, et al. The National High Magnetic Field Laboratory Pulsed-Field Facility at Los Alamos National Laboratory. in:7th International Symposium on Research in High Magnetic Fields. Toulouse, France: Elsevier,2004.614~617.
    [25]D. W. Scudder, S. A. Archuleta, E. O. Ballard, et al. Atlas-A New Pulsed Power Tool at Los Alamos National Laboratory. in:28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Piscataway, NJ, USA:IEEE,2001.294~297.
    [26]C. L. Rousculp, J. E. Hammerberg, D. M. Oro, et al. Dynamic Friction Experiments at the Atlas Pulsed Power Facility. in:2007 IEEE Pulsed Power Plasma Science Conference. Piscataway, NJ, USA:IEEE,2007.656.
    [27]H. J. Boenig, C. H. Mielke, R. A. Robinson, et al. Design of a 16 kV,100 kA,2 Hz Power Supply for High-Field, Repetitively Pulsed, Split-Pair Magnets, in: Proceedings of the 12th International Pulsed Power Conference. Monterey, CA, USA:IEEE,1999.532~535.
    [28]H. J. Boenig, J. D. Rogers, G. R. McLelland, et al. Transportation of a 451 Ton Generator Stator and a 234 Ton Generator Rotor from Hartsville, TN, to Los Alamos, NM. in:Proceedings, IEEE Thirteenth Symposium on Fusion Engineering. New York, NY, USA:IEEE,1990.432~435.
    [29]J. B. Schillig, H. J. Boenig, J. A. Ferner, et al. Design and Testing of a 320 MW Pulsed Power Supply. in:Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting. New Orleans, LA, USA:IEEE,1997.1600~1607.
    [30]H. J. Boenig, R. F. Gribble, C. F. Hammer, et al. Design and Construction Status of the Energy System for the ZTH Experiment. in:Proceedings, IEEE Thirteenth Symposium on Fusion Engineering. New York, NY, USA:IEEE,1990.561~564.
    [31]H. J. Boenig. The Los Alamos 600 MJ,1500 MW Inertial Energy Storage and Pulsed Power Unit. in:8th IEEE International Pulsed Power Conference. New York, NY, USA:IEEE,2002.719~722.
    [32]J. B. Schillig, H. J. Boenig, J. D. Rogers, et al. Design of a 400 MW Power Supply for a 60 T Pulsed Magnet. IEEE Trans. on Magnetics,1994,30(4):1770~1773.
    [33]L. J. Campbell, H. J. Boenig, D. G. Rickel, et al. Design and Analysis of High-Field Quasi-Continuous Magnets. IEEE Trans. on Magnetics,1994,30(4): 2222~2225.
    [34]J. R. Sims, T. Dominguez, T. E. Northington, et al. Prototype Tests and Description of a 60 Tesla Quasi-Continuous Magnet. IEEE Trans. on Magnetics,1994,30(4): 2208~2210.
    [35]L. J. Campbell, H. J. Boenig, D. G. Rickel, et al. Status of the NHMFL 60 Tesla Quasi-Continuous Magnet. IEEE Trans. on Magnetics,1996,32(4):2454~2457.
    [36]L. Li, B. Lesch, V. Cochran, et al. High Performance Pulsed Magnets with High Strength Conductors and High Modulus Internal Reinforcement. IEEE Trans. on Applied Superconductivity,2000,10(1):542~545.
    [37]J. Schillig, H. Boenig, M. Gordon, et al. Operating Experience of the United States National High Magnetic Field Laboratory 60 T Long Pulse Magnet. IEEE Trans. on Applied Superconductivity,2000,10(1):526~529.
    [38]J. R. Sims, J. B. Schillig, G. S. Boebinger, et al. The U.S. NHMFL 60 T Long Pulse Magnet Failure. IEEE Trans. on Applied Superconductivity,2002,12(1): 480-483.
    [39]C. A. Swenson, W. S. Marshall, E.L. Miller, et al. Pulse Magnet Development Program at NHMFL. IEEE Trans. on Applied Superconductivity,2004,14(2): 1233~1236.
    [40]J. A. Waynert, H. J. Boenig, C. H. Mielke, Restoration and Testing of an HTS Fault Current Controller. IEEE Trans. on Applied Superconductivity,2003,13(2): 1984~1987.
    [41]J. Sims, A. Baca, G. Boebinger, et al. First 100 T Non-Destructive Magnet. IEEE Trans, on Applied Superconductivity,2000,10(1):510~513.
    [42]J. Bacon, A. Baca, H. Coe, et al. First 100 T Non-Destructive Magnet Outer Coil Set. IEEE Trans. on Applied Superconductivity,2000,10(1):514~517.
    [43]L. Li, B. Lesch, Y. Eyssa, et al. Insert Coil Design of the First 100 T Non-Destructive Magnet. IEEE Trans. on Applied Superconductivity,2000,10(1): 518~521.
    [44]J. L. Bacon, C. N. Ammerman, H. Coe, et al. The U.S. NHMFL 100 Tesla Multi-Shot Magnet. IEEE Trans. on Applied Superconductivity,2002,12(1): 695~698.
    [45]J. R. Sims, D. G. Rickel, C. A. Swenson, et al. Assembly, Commissioning and Operation of the NHMFL 100 Tesla Multi-Pulse Magnet System. IEEE Trans. on Applied Superconductivity,2008,18(2):587~591.
    [46]http://www.magnet.fsu.edu/usershub/publications/nsfhighlights/nsf/0654118_Boebi nger_PFFl.pdf
    [47]H. J. Boenig, F. Bogdan, G. C. Morris, et al. Design and Preliminary Test Results of the 40 MW Power Supply at the National High Magnetic Field Laboratory. IEEE Trans. on Magnetics,1994,30(4):1774~1777.
    [48]H. J. Schneider-Muntau, J. Toth, H. W. Weijers. Generation of the Highest Continuous Magnetic Fields. IEEE Trans. on Applied Superconductivity,2004, 14(2):1245~1252.
    [49]H. J. Boenig, F. Cibulka. A Static VAR Compensator Using a Superconducting Coil. IEEE Trans, on Power Apparatus and Systems,1982, PAS-101(10):3988~3996.
    [50]H. J. Boenig, J. A. Ferner, F. Bogdan, et al. Design and Operation of a 40-MW, Highly Stabilized Power Supply. IEEE Trans. on Industry Applications,1996,32(5): 1146~1157.
    [51]中国科学院合肥物质科学研究院,中国科学院基础科学局.强磁场实验装置(稳态).大科学装置,2009,24(5):550~555.
    [52]王磊,刘小宁.稳态强磁场电源直流有源滤波器研究.核聚变与等离子体物理,2008,28(3):252~256.
    [53]王磊,刘小宁.稳态强磁场电源直流有源滤波技术方案的分析.高电压技术,2008,34(4):723~727.
    [54]陈滋健,刘小宁,段娟,等.强磁场电源软开关DC/DC变换器的研究.电力电子技术,2008,42(2):16~18.
    [55]L. Wang, X. N. Liu, C. Wang. A New Shunt DC Active Filter of Power Supply in a Steady High Magnetic Field Facility. Chinese Physics C,2011,35(5):494~499.
    [56]肖国春.直流有源电力滤波器的理论及应用研究:[博士论文].西安:西安交通大学图书馆,2002.
    [57]王丙元.高精度大功率稳流电源系统的研究:[博士论文].天津:天津大学图书馆,2002.
    [58]L. W. Roeland, R. Gersdorf, W. C. M. Martens. The 40-T Facility of the University of Amsterdam. Physica B,1989,155(1-3):58~60.
    [59]J. J. M. Franse, F. R. de Boer, P. H. Frings, et al. Research in Semi-Continuous High Magnetic Fields. Physica B,1994,201:217~226.
    [60]R. Grossinger, H. Krichmayr, H. Sassik, et al. Austromag-a New High-Field Facility. Journal of Magnetism and Magnetic Materials,1999,196-197: 927~929.
    [61]J. Klamut, T. Palewski, W. Suski, et al. International Laboratory of High Magnetic Fields and Low Temperatures in Wroclaw (Poland). Physica B,2001,294-295: 547~550.
    [62]W. Suski, T. Palewski, V. I. Nizhankovskii, et al. Research Facilities of International Laboratory of High Magnetic Fields and Low Temperatures at Wroclaw. Journal of Physics:Conference Series,51(1):603~606.
    [63]G. Zhuang, Y. H. Ding, M. Zhang, et. al. Reconstruction of the TEXT-U Tokamak in China. Plasma Science and Technology,2009,11(4):439~442.
    [64]张明.J-TEXT托卡马克装置脉冲电源系统的实现及运行分析:[博士论文].武汉:华中科技大学图书馆,2008.
    [65]邱胜顺.J-TEXT托卡马克极向场控制策略及等离子体放电运行控制的研究和实现:[博士论文].武汉:华中科技大学图书馆,2011.
    [66]张明,庄革,于克训,等.J-TEXT装置纵场电源系统及其调试.核聚变与等离子体物理,2008,28(3):238~241.
    [67]杨州军,庄革,胡希伟,等.J-TEXT装置中央控制系统的设计与实现.核聚变与等离子体物理,2009,29(2):161~165.
    [68]邱胜顺,庄革,张明,等.J-TEXT装置纵场电源控制系统的实现.核聚变与等离子体物理,2009,29(3):244~247.
    [69]许大中,贺益康.电机控制.(第一版).杭州:浙江大学出版社,1995.94~105.
    [70]P. C. Krause, O. Wasynczuk, and S. D. Sudhoff. Analysis of Electric Machinery and Drive Systems. (Second Edition). USA:IEEE Press,2002:141~190.
    [71]陈伯时.电力拖动自动控制系统.(第三版).北京:机械工业出版社,2005.218~224.
    [72]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006,30(8):21~26.
    [73]杨顺昌,梁志翔.异步化汽轮发电机励磁故障后运行行为的仿真研究.中国电机工程学报,2002,22(8):104~108.
    [74]李辉,杨顺昌.基于CMAC的双馈水轮发电机系统控制策略研究.中国电机工程学报,2004,24(12):187~192.
    [75]李辉,杨顺昌.可调速双馈水轮发电机组控制系统的稳定性分析.中国电机工程学报,2004,24(6):152~156.
    [76]刘刃,马渝,杨顺昌.异步化汽轮发电机励磁系统局部故障后稳态运行性能的仿真研究.中国电机工程学报,2004,24(5):137~140.
    [77]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略.中国电机工程学报,2006,26(3):164~170.
    [78]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报,2006,26(10):130~135.
    [79]李华俊,杜沧,宣伟民,等.2500 kW双馈电机超同步调速装置研制.核聚变与等离子体物理,2007,27(1):34~38.
    [80]王芬,王树锦,李华俊.125 MVA交流脉冲发电机组双馈调速仿真模型研究.核聚变与等离子体物理,2007,27(1):39~43.
    [81]V. K. Sood著.高压直流输电与柔性交流输电控制装置—静止换流器在电力系统中的应用.(第一版).徐政译.北京:机械工业出版,2008.13~29.
    [82]E. H. Song, B. H. Kwon. A Direct Digital Control for the Phase-Controlled Rectifier. IEEE Trans. on Industrial Electronics,1991,38(5):337~343.
    [83]A. I. Maswood, G. Joos, P. D. Ziogas, et al. Problems and Solutions Associated with the Operation of Phase-Controlled Rectifiers under Unbalanced Input Voltage Conditions. IEEE Trans. on Industry Applications,1991,27(4):765~772.
    [84]国家脉冲强磁场科学中心(筹).脉冲强磁场实验装置扩初设计报告.未发表.
    [85]辜承林,陈乔夫,熊永前.电机学.(第二版).武汉:华中科技大学出版社, 2005.118-173.
    [86]E. V. Larsen, M. Sublich, S. C. Kapoor. Impact of Stray Capacitance on HVDC Harmonics. IEEE Trans. on Power Delivery,1989,4(1):637~645.
    [87]肖后秀,丁洪发,彭涛,等.脉冲强磁场电源尖峰电压的消除.电工技术学报,2009,24(1):14~17.
    [88]X. N. Liu, J. F. Jiang, L. W. Xu, et al. Power Supply for the Superconducting TF Magnet System of EAST. Nuclear Fusion,2006,46(3):S90~S93.
    [89]L. C. Cadwallader, T. Pinna, P. I. Petersen. Power Supply Reliability Estimates for Experimental Fusion Facilities. Fusion Science and Technology,2007,52(4): 979-984.
    [90]A. Roshal, B. Bareyt, I. Benfatto, et al Status of ITER Coil Power Supply Design. Plasma Devices and Operations,1998,6(1-3):193~202.
    [91]W. Y. Zhang, G. Asplund, A. Aberg, et al. Active DC Filter for HVDC System-A Test Installation in the Konti-Skan DC Link at Lindome Converter Station. IEEE Trans, on Power Delivery,1993,8(3):1599~1606.
    [92]Z. C. Zhang, J. B. Kuang, X. Wang, et al. Force Commutated HVDC and SVC Based on Phase-Shifted Multi-Converter Modules. IEEE Trans. on Power Delivery,1993,8(2):712~718.
    [93]B. H. Kwon, J. H. Suh, S. H. Han. Novel Transformer Active Filters. IEEE Trans. on Industrial Electronics,1993,40(3):385~388.
    [94]C. X. Pang, M. Z. Trnawecky. Generator Winding I2R Losses and Harmonic Interference under Variable Frequency Operation of an HVDC Unit-Connection Scheme. IEEE Trans. on Energy Conversion,1995,10(1):133~139.
    [95]N. L. Shore, K. Adamson, P. Bard, et al. DC Side Filters for Multiterminal HVDC Systems. IEEE Trans. on Power Delivery,1996,11(4):1970~1984.
    [96]R. S. Burton, C. F. Fuchshuber, D. A. Woodford, et al. Prediction of Core Saturation Instability at an HVDC Converter. IEEE Trans. on Power Delivery,1996, 11(4):1961~1969.
    [97]W. Enright, J. Arrillaga, A. R. Wood, et al. The Smoothing Transformer, a New Concept in dc Side Harmonic Reduction of HVdc Schemes. IEEE Trans. on Power Delivery,1996,11(4):1941~1947.
    [98]L. H. Hu, R. E. Morrison. The Use of Modulation Theory to Calculate the Harmonic Distortion in HVDC Systems Operating on an Unbalanced Supply. IEEE Trans, on Power Systems,1997,12(2):973~980.
    [99]W. Y. Zhang, A. J. Isaksson, A. Ekstrom. Analysis on the Control Principle of the Active DC Filter in the Lindome Converter Station of the Konti-Skan HVDC Link. IEEE Trans. on Power Systems,1998,13(2):374~381.
    [100]H. Pang, Z. J. Wang, J. Y. Chen. Study on the Control of Shunt Active DC Filter for HVDC Systems. IEEE Trans. on Power Delivery,2008,23(1):396~401.
    [101]N. Mohan, T. M. Undeland, W. P. Robbins. Power Electronics:Converters, Applications and Design. (Second Edition). New York:John Wiley & Sons, Inc., 1989:45-62.
    [102]王兆安,黄俊.电力电子技术.(第四版).北京:机械工业出版社,2005.43~90.
    [103]F. C. De La Rosa著.电力系统谐波.(第一版).赵琰,孙秋野译.北京:机械工业出版社,2009.74~106.
    [104]G. J. Wakileh著.电力系统谐波—基本原理、分析方法和滤波器设计.(第一版).徐政译.北京:机械工业出版社,2003,87~113.
    [105]S. B. Dewan, A. Straughen. Power Semiconductor Circuits. (First Edition). New York:John Wiley & Sons,1975.80~95.
    [106]姜宁,王春宁,董其国.无功电压与优化技术问答.(第一版).中国电力出版社,2006.1~40.
    [107]许遐.公用电网谐波的评估和调控.(第一版).北京:中国电力出版社,2008.169-248.
    [108]丁士圻.模拟滤波器.(第一版).北京:哈尔滨工程大学出版社,2004.72~75.
    [109]H. B. Jiang, A. Ekstrom. Harmonic Cancellation of a Hybrid Converter. IEEE Trans. on Power Delivery,1998,13(4):1291~1296.
    [110]K. Sadek, M. Pereira. Harmonic Transfer in HVDC Systems under Unbalanced Conditions. IEEE Trans. on Power Systems,1999,14(4):1394~1399.
    [111]W. F. Praeg. A High-Current Low-Pass Filter for Magnet Power Supplies. IEEE Trans. on Industrial Electronics and Control Instrumentation,1970, IECI-17(1): 16~22.
    [112]K. Watanabe, S. Awaji, N. Kobayashi, et al. Development of a 40 T Compact Hybrid Magnet. IEEE Trans. on Magnetics,1996,32(4):2470~2473.
    [113]K. Inoue, T. Kiyoshi, M. Kosuge, et al. First Test Operation of 40 Tesla Class Hybrid Magnet System. IEEE Trans. on Magnetics,1996,32(4):2450~2453.
    [114]K. Inoue, T. Takeuchi, K. Itoh, et al. Power Supply and Control System for 40 T Class Hybrid Magnet System. IEEE Trans. on Magnetics,1996,32(4): 2490~2494.
    [115]Y. Wang, G. Joos, H. Jin. DC-Side Shunt-Active Power Filter for Phase-Controlled Magnet-Load Power Supplies. IEEE Trans. on Power Electronics, 1997,12(5):765~771.
    [116]吴隆辉,卓放,张鹏博,等.一种用于配电系统谐振抑制及谐波治理的新型PAPF控制方法.中国电机工程学报,2008,28(27):70~77.
    [117]L. Asiminoaei, P. Rodriguez, F. Blaabjerg. Application of Discontinuous PWM Modulation in Active Power Filters. IEEE Trans. on Power Electronics,2008,23(4): 1692~1706.
    [118]V. Verma, B. Singh. Design and Implementation of a Current-Controlled Parallel Hybrid Power Filter. IEEE Trans. on Industry Applications,2009,45(5): 1910~1917.
    [119]R. I. Bojoi, G. Griva, V. Bostan, et al. Current Control Strategy for Power Conditioners Using Sinusoidal Signal Integrators in Synchronous Reference Frame. IEEE Trans. on Power Electronics,2005,20(6):1402~1412.
    [120]丁洪发,段献忠,朱庆春.混合型电能质量调节器及其控制策略.中国电机工程学报,2006,26(8):33~38.
    [121]乐江源,谢运祥,张志,等.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制.中国电机工程学报,2010,30(15):32~39.
    [122]H. Akagi, E. H. Watanabe, M. Aredes. Instantaneous Power Theory and Applications to Power Conditioning. (First Edition). New Jersey:John Wiley & Sons Inc,2007:1~17.
    [123]H. Akagi, E. H. Watanabe, M. Aredes.瞬时功率理论及其在电力调节中的应用.徐政译.北京:机械工业出版社,2009:1~17.
    [124]H. Jin, S. B. Dewan. A Combined Feedforward and Feedback Control Scheme for Low-Ripple Fast-Response Switchmode Magnet Power Supplies. IEEE Trans. on Magnetics,1994,30(4):1801~1804.
    [125]H. Jin, Y. Wang, G. Joos. A Hybrid Structure Using Phase-Controlled Rectifiers and High-Frequency Converters for Magnet-Load Power Supplies. IEEE Trans. on Industrial Electronics,1996,43(1):126~131.
    [126]J. Kaugerts, A. Grefenstein, K. P. Juengst, et al. Magnet and Superconductor Develpment for a High Power SMES Based Power Modulator. IEEE Trans. on Applied Superconductivity,2000,10(1):824~827.
    [127]T. Ise, K. Furukawa, Y. Kobayashi, et al. Magnet Power Supply with Power Fluctuation Compensating Function Using SMES for High Intensity Synchrotron. IEEE Trans. on Applied Superconductivity,2003,13(1):1814~1817.
    [128]R. Carcagno, S.Feher, J. Garvey, et al. New 30 kA Power System at Fermilab and Its Use for Measuring the Effects of Ripple Current on the Performance of Superconducting High Field Magnets. IEEE Trans. on Applied Superconductivity, 2005,15(2):1520~1523.
    [129]R. Cassel. A Multiple Flattop Control System for the Fermilab Main Accelerator Power Supplies. IEEE Trans. on Nuclear Science,1975, NS-22(3):1247~1278.
    [130]T. Kubo, A. Kabe, K. Kitagawa, et al. Computer Control System of Main Ring Magnet Power Supply for the KEK 12 GEV PS. IEEE Trans. on Nuclear Science, 1979, NS-26(3):3322~3324.
    [131]R. J. Yarema. Subharmonic Ripple Reduction in SCR-Type Magnet Power Supplies. IEEE Trans. on Nuclear Science,1979, NS-26(3):3986~3988.
    [132]F. F. Cilyo, F. E. Mills. Y. Miyahara, et al. Active Filter for High Current dc Magnets. IEEE Trans. on Nuclear Science,1981, NS-28(3):3014~3016.
    [133]J. Lisser, K. Bouwknegt. High-Speed High-Precision Programmable Magnet Power Supply for a Wide Range of Magnet Time Constants. IEEE Trans. on Nuclear Science,1981, NS-28(3):2859~2861.
    [134]H. Baba, H. Sato, S. Matsumoto, et al. Improved Dynamic Filters for the Main Ring Magnet Power Supply of the KEK 12 GEV PS. IEEE Trans. on Nuclear Science,1981, NS-28(3):3068~3070.
    [135]D. Wolff, H. Pfeffer, C. Briegel, et al. Improving Regulation in the Fermilab Main Ring Magnet Power Supply System. IEEE Trans. on Nuclear Science,1981, NS-28(3):3088~3090.
    [136]H. Pfeffer, R. J. Yarema. A Bipolar, High Precision, Low Ripple Power Supply. IEEE Trans, on Nuclear Science,1983, NS-30(4):2870~2872.
    [137]T. Kubo, H. Fukuma, A. Kabe, et al. Digital Simulation for TRISTAN AR Magnet Power Supply and Control System. IEEE Trans. on Nuclear Science,1983, NS-30(4):2929~2931.
    [138]T. Kubo, A. Kabe, H. Fukuma, et al. Steering Magnet Power Supply Control System for the TRISTAN AR. IEEE Trans. on Nuclear Science,1985, NS-32(5): 3772~3774.
    [139]J. McCarthy, D. Wolff, L. Farkas. Very High Precision Current Regulated Power Supplies for the Fermilab Antiproton Source. IEEE Trans. on Nuclear Science, 1985, NS-32(5):3778~3780.
    [140]J. A. Pomilio, D. Wisnivesky, A. C. Lira. A Novel Topology for the Bending Magnets Power Supply at LNLS. IEEE Trans. on Nuclear Science,1992,39(5): 1506-1511.
    [141]B. H. Kwon. Design of a Highly Stable Electromagnet Power Supply. IEEE Trans. on Industrial Electronics,1992,39(2):149~158.
    [142]D. Wisnivesky, A. C. Lira. A New High-Precision Current Supply for Magnets. IEEE Trans. on Nuclear Science,1995,42(4):1460~1465.
    [143]G. E. April, G. Olivier. A Novel Type of 12-Pulse Converter. IEEE Trans. on Industry Applications,1985, LA-21(1):180~191.
    [144]N. L. Shore, G. Andersson, A. P. Canelhas, et al. A Three-Pulse Model of DC Side Harmonic Flow In HVDC Systems. IEEE Trans. on Power Delivery,1989,4(3): 1945~1954.
    [145]D. L. Dickmander, K. J. Peterson. Analysis of DC Harmonics Using the Three-Pulse Model for the Intermountain Power Project HVDC Transmission. IEEE Trans. on Power Delivery,1989,4(2):1195~1204.
    [146]C. Wong, N. Mohan, S. E. Wright, et al. Feasibility Study of AC-And DC-Side Active Filters for HVDC Converter Terminals. IEEE Trans. on Power Delivery, 1989,4(4):2067~2075.
    [147]H. Sato, T. Sueno, T. Toyama, et al. Performance of the Main Ring Magnet Power Supply of the KEK 12 Gev Proton Synchrotron. IEEE Trans. on Nuclear Science, 1992,39(5):1490~1495.
    [148]H. Fujita, H. Akagi. Voltage-Regulation Performance of a Shunt Active Filter Intended for Installation on a Power Distribution System. IEEE Trans. on Power Electronics,2007,2(3):1046~1053.
    [149]Wiroj Tangtheerajaroonwong, T. Hatada, W. Keiji, et al. Design and Performance of a Transformerless Shunt Hybrid Filter Integrated into a Three-Phase Diode Rectifier. IEEE Trans. on Power Electronics,2007,22(5):1882~1889.
    [150]P. Mattavelli, F. P. Marafao. Repetitive-Based Control for Selective Harmonic Compensation in Active Power Filters. IEEE Trans. on Industrial Electronics,2004, 51(5):1018~1024.
    [151]L. Asiminoaei, F. Blaabjerg, S. Hansen, et al. Adaptive Compensation of Reactive Power with Shunt Active Power Filters. IEEE Trans. on Industry Applications, 2008,44(3):867~877.
    [152]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报,2002,22(2):99~102.
    [153]X. M. Yuan, W. Merk, H. Stemmler, et al. Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions. IEEE Trans. on Industry Applications,2002,38(2): 523~532.
    [154]C. Lascu, L. Asiminoaei, I. Boldea, et al. High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters. IEEE Trans. on Power Electronics,2007,22(5):1826~1835.
    [155]C. Lascu, L. Asiminoaei, I. Boldea, et al. Frequency Response Analysis of Current Controllers for Selective Harmonic Compensation in Active Power Filters. IEEE Trans. on Industrial Electronics,2009,56(2):337~347.
    [156]M. Liserre, R. Teodorescu, F. Blaabjerg. Multiple Harmonics Control for Three-Phase Grid Converter Systems with the Use of PI-RES Current Controller in a Rotating Frame. IEEE Trans. on Power Electronics,2006,21(3):836~841.
    [157]L. Asiminoaei, C. Lascu, F. Blaabjerg, et al. Performance Improvement of Shunt Active Power Filter with Dual Parallel Topology. IEEE Trans. on Power Electronics,2007,22(1):247~259.
    [158]F. D. Freijedo, J. Doval-Gandoy, O. Lopez, et al. A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters. IEEE Trans. on Industrial Electronics,2009,56(8):2829~2840.
    [159]杨柳,刘会金,陈允平.三相四线制系统任意次谐波电流的检测新方法.中国电机工程学报,2005,25(13):41~44.
    [160]贺荣徽,肖国春,王兆安.并联直流有源电力滤波器的数字控制.电力电子技术,2005,39(4):7~8,40.
    [161]S. Buso, L. Malesani, P. Mattavelli. Comparison of Current Control Techniques for Active Filter Applications. IEEE Trans. on Industrial Electronics,1998,45(5): 722~729.
    [162]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006.47~53.
    [163]王磊,刘小宁,王灿.稳态强磁场中直流有源滤波器连接电感的计算.电力电子技术,2011,45(3):13~15,21.
    [164]肖国春,裴云庆,姜桂宾,等.高精度、低纹波稳定电源用直流有源滤波器研究.电工技术杂志,2001,(6):4~6,45.
    [165]K. Li, J. J. Liu, G. C. Xiao, et al. Novel Load Ripple Voltage-Controlled Parallel DC Active Power Filters for High Performance Magnet Power Supplies. IEEE Trans. on Nuclear Science,2006,53(3):1530~1539.
    [166]胡寿松.自动控制理论.(第四版).北京:科学出版社,2001.1~16.
    [167]彭涛,辜承林.脉冲强磁体中应力的有限元分析.核技术,2004,27(9):700~704.
    [168]彭涛,辜承林.脉冲强磁体专用设计软件开发.原子能科学技术,2008,42(2):173~176.
    [169]彭涛,李亮.65 T脉冲强磁体设计与实验研究.强激光与粒子束,2010,22(1):225~228.
    [170]韩小涛,孙文文,谢剑锋,等.基于OPC技术的脉冲强磁场装置实时控制系统的研究.仪表技术与传感器,2010,(6):97~100.
    [171]韩小涛,宋志伟,谢剑锋,等.集成式脉冲强磁场装置控制系统的研制.高电压技术,2010,36(3):716~721.
    [172]肖后秀.脉冲强磁场装置及脉冲平顶磁场实现方法的研究:[博士论文].武汉:华中科技大学图书馆,2009.
    [173]叶齐政,孙敏.电磁场.(第一版).武汉:华中科技大学出版社,2008.229~232.
    [174]尹洪峰,任耘,罗发.复合材料及其应用.(第一版).西安:陕西科技出版社;2003:2-17.
    [175]彭涛.脉冲强磁场体分析设计的理论与实践:[博士论文].武汉:华中科技大学图书馆,2005.
    [176]R. Liang, S. B. Dewan. A Low Ripple Power Supply for High-Current Magnet Load. IEEE Trans, on Industry Applications,1994,30(4):1006~1015.
    [177]R. Liang, S. B. Dewan. Modeling and Control of Magnet Power Supply System with Switch-Mode Ripple Regulator. IEEE Trans, on Industry Applications,1995, 31(2):264~272.
    [178]刘金琨.先进PID控制MATLAB仿真.(第二版).北京:电子工业出版社,2003.42~45.
    [179]陶永华.新型PID控制及其应用.(第一版).北京:机械工业出版社,1998.1~26.
    [180]B. A. Francis, W. M. Wonham. The Internal Model Principle for Linear Multivariable Regulators. Applied Mathematics and Optimization,1975,12(2): 170~194.
    [181]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究:[博士论文].武汉:华中科技大学图书馆,2000.
    [182]Y. Y. Tzou, R. S. Ou, S. L. Jung, et al. High-Performance Programmable AC Power Source with Low Harmonic Distortion Using DSP-Based Repetitive Control Technique. IEEE Trans. on Power Electronics,1997,12(4):715-725.
    [183]Y. Y. Tzou, S. L. Jung, H. C. Yeh. Adaptive Repetitive Control of PWM Inverters for Very Low THD AC-Voltage Regulation with Unknown Loads. IEEE Trans. on Power Electronics,1999,14(5):973~981.
    [184]傅鹏,高格,李定,等.晶闸管在大功率电流和开关中的应用.电工技术学报,2004,19(8):34~39.
    [185]李定,傅鹏,汤伦军,等.15 kA晶闸管分断开关的改进及其在EAST装置中的应用.电工技术学报,2006,21(9):99~105.
    [186]温家良,傅鹏,刘正之,等.EAST托卡马克大功率双向直流快速晶闸管开关可靠关断理论分析及参数优化设计.中国电机工程学报,2005,25(14):62~67.
    [187]温家良,傅鹏,刘正之,等.大功率直流晶闸管开关设计及其可靠性分析.电力系统自动化,2006,30(5):55~58,86.
    [188]温家良,傅鹏,刘正之,等.HT-7U托卡马克高功率双向直流快速晶闸管开关的研制.电力系统自动化,2003,27(14):49~53.
    [189]J. L. Wen, Z. Z. Liu, P. Fu, et al. A Study of High Power Thyristor Switch of Poloidal-Field Power Supply System in HT-7U Super-Conductive Tokamak. Plasma Science & Technology,2001,3(5):1005~1010.
    [190]温家良.高功率双向直流快速晶闸管开关的研究与开发及其在HT-7U超导托卡马克极向场电源系统中的应用:[博士论文].北京:国家图书馆,2003.
    [191]P. Fu, Z. Z. Liu, J. Z. Xu, et al. Poloidal Field Power Supply Systems for the HT-7U Steady State Superconducting Tokamak. Fusion Science and Technology, 2002,42(1):155~161.
    [192]D. Li, P. Fu. Design and Test Results for the 15 kA Thyristor Switch. in:2009 IEEE 6th International Power Electronics and Motion Control Conference. Piscataway, NJ, USA:IEEE,2009.2599~2602.
    [193]Y. L. Lv, T. Peng, L. Qiu, et al. Design and Tests of a 40 Tesla Long Pulse Magnet Energized by Battery. in:22th International Conferrence on Magnet Technology. Marseille, France:IEEE,2011.
    [194]F. Herlach. Strong and Ultrastrong Magnetic Fields and Their Applications. New York:Springer-Verlag Press,1985.247~350.
    [195]邱关源.电路.(第四版).北京:高等教育出版社,1999.231~240.
    [196]杨传普,孙敏,杨泽富.电路理论——时域与频域分析.(第一版).武汉:华中科技大学出版社,1998.183~197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700