S波段电子直线加速器高功率同轴负载的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低能高功率直线加速器在工农业及医疗卫生等领域得到了越来越广泛的应用,随着应用领域的扩展,对直线加速器的小型化和可移动性要求也越来越迫切。然而,剩余功率的输出耦合器及吸收负载结构成为实现这一要求的瓶颈。采用同轴负载取代波导式吸收负载,可使加速器的结构更为紧凑,实现加速器的小型化,同时能简化系统的装配工序,另外,具有对称性的负载段还有利于获得更高的束流品质。
     前人的同轴负载研究多基于实验的方法,从而局限于较低的剩余功率量级。本文为研制高功率S波段同轴负载,采用理论分析与实验测试相结合的方法,开展了系统的仿真设计研究。研究涉及同轴负载的吸波涂层材料的选择及其电磁参数测试实验的仿真;吸波涂层的电磁特性、几何参数、涂覆位置对负载腔工作频率、品质因子和衰减性的影响分析,以及负载腔频率、损耗性与涂层关系的实验验证和结果分析;根据功率量级和衰减性要求,设计了六腔同轴负载结构,并研究了各负载腔内的功率分布,为同轴负载段的冷却系统的设计提供了结构参数和功率数据;获得了FeSiAl、Kanthal合金两种材料的分别可吸收15 kW和10k W剩余功率的最适吸波材料的涂覆方案和相应的同轴负载结构,为同轴负载的工程应用探索出科学的设计方法,并提供了可靠的技术数据。
     本文首先通过比较,选择了电磁场仿真软件CST作为同轴负载的分析和设计工具,并与谐振腔计算软件Poisson SuperFish的仿真结果进行对比,验证了CST的仿真精度,确认了其用于同轴负载设计的最适性,并研究了腔体仿真的精度控制问题。
     针对同轴负载吸波材料FeSiAl合金的电磁参数测试实验中出现的结果误差过大现象,运用CST对实验进行了仿真,通过对PTFE、高介电材料Al2O3、和ZrO2晶体等样品的仿真分析,获得了各样品与测试夹具之间的间隙对测量精度的影响。对FeSiAl材料测试的仿真表明,较小的样品尺寸误差将使最终的测量结果严重偏离其真实值。该仿真工作有效地指导了测量方案的选取,帮助最终获得了稳定的FeSiAl材料电磁参数。
     对FeSiAl介质材料型的负载腔,分析了材料涂敷体积对腔体工作频率和品质因子的影响,获得了满足2856 MHz频率的腔体尺寸补偿值;利用正交试验法分析了材料介电常数、磁导率对腔体参数影响的敏感度;设计加工了不同涂层尺寸的5个测试负载腔,进行了腔体工作频率和无载Q值的测量,利用精确测量的腔体尺寸建模的CST仿真结果表明,负载腔的工作频率与仿真计算结果一致,并且FeSiAl材料的实际衰减性能与理论预期相符;理论推导出探针法测量中谐振腔Q值与测试探针长度的关系,并最终由谐振腔总Q值推算出单负载腔的Q值。在负载腔仿真分析与实验测试的基础上,提出了同轴负载段的设计流程,针对15 kW剩余功率量级,单路总衰减30 dB的设计目标,设计出六腔同轴负载,以控制负载腔频率漂移为目标,对等功耗型剩余功率分配方案进行了优化,并获得了优化的FeSiAl同轴负载的结构参数。最后,计算出了负载腔内涂层与铜损的详细功率分布,其中FeSiAl涂层处的功率呈均匀分布。
     对Kanthal合金型负载腔,仿真研究了不同涂敷位置及面积对腔体性能的影响,获得了2856 MHz时的尺寸补偿量;设计加工了4个负载腔,分别对比了工作频率和品质因子的实验测试和仿真结果,对腔体损耗性的分析表明,Kanthal涂层的实际衰减性低于理论计算值约50%,因此仿真中所选取的涂层电磁参数有待考证,须通过进一步的实验测试加以验证。Kanthal合金由于自身衰减性的局限,经过详细的探讨和设计计算,其六腔负载段至多可吸收10 kW平均功率,单路衰减约为16 dB。负载腔功率分布计算表明,Kanthal负载腔腔环涂层处功率均匀分布,而阑片涂层的功率密度则呈类抛物线的形状。
     本文研究工作受国家自然科学基金《加速器大功率同轴负载研制及高功率微波吸收材料特性研究》(NO. 10775128)资助。
Nowadays, electron linear accelerators are more and more employed in industry, agriculture, medical care and so on, while the miniaturization and mobility of LINAC is expected to advance all these applications. Aimed at substituting the output coupler and remnant power absorbing load of the LINAC, collinear load coated with high loss materials in its inner walls is expected to make it a reality. It will make the accelerating structure more compact, the size of the whole system decreased and the assembly procedure more simplified.In addition, the symmetry of the load will contribute to better beam quality. Foregoing researches on collinear load were restricted in lower remnant power levels for their rule-of-thumb means. In order to develop high-power S-band collinear load, systematic research on numerical design is performed and presented in this thesis. Several testing cavities following the design are processed out. The size, the operating frequency and quality factor of the cavities are measured. All they have reached the expected value. Then, A six-cavity FeSiAl collinear loads are designed and fabricated for absorbing 15 kW remnant power and -30db attenuation coefficient, The experimental results and the theoretical simulation predicted results are in agreement.
     In this thesis, firstly, the software CST is choosed as the main simulation tool, and in contrast, with the software Poisson SuperFish, verified the CST solving accuracy is confirmed for deformed 3D cavities. Then, the design parameters closely related to the performance of the load cavity, like operation frequency f, attenuation factor alpha,the group velocity Vg quality factor q, etc is discussed. A key problem to plan the location of the coating material in the inner wall of the cavities is solved Different from the traditional methods such as uniform power or same attenuation for every cavity, an optimized strategy based on uniform power principle is adopted, to make the actual load cavities with uniform temperature distribution when they are in operation.
     The electromagnetic parameters of the microwave absorbing material affect the performance of cavities seriously. In measuring the electromagnetic parameters of FeSiAl alloy, some uncertainty appeared. Simulation with CST is utilized to analyze the test results and find the uncertainty is caused by the uncertain gap between the test sample and test fixture. The simulation is very deliberate with several samples of the hollow test fixture, PTFE, crystals of Al_2O_3 and ZrO_2. The experiment simulations of the FeSiAl demonstrate that minor error of the sample size makes the experiment results great deviation from the true values.
     In the case of load cavities with FeSiAl coating, the accuracy control of the cavity simulation is studied. The effect of the coating volume upon the cavity frequency and Q factor is analyzed and the dimension compensations of the cavities are suggested for tuning the load cavities at 2856 MHz. The Orthogonal experimental method is utilized to investigate the sensitivity of the material permittivity (both real part and imaginary part) and permeability (both real part and imaginary part) to cavity characteristics. Five cavities with different coating dimensions are manufactured and their operating frequencies and Q values are measured. Meanwhile, the results are compared with the simulations of the cavities with actual dimensions. It is shown that the Q factor, which is characterization of the actual attenuation of the FeSiAl, agrees very well with the theoretical value. the Q factor of the resonant cavity is measured with the probe method. The relationship between Q factor and the length of the test probe is deduced and eventually the individual Q value of a load cavity is extracted. Simulation shows the FeSiAl load can support average power over 15 kW and the one-way attenuation is about 30 dB.
     As for Kanthal load cavities, the influence of coating position and area to the cavity properties is studied and the cavity dimensions under 2856 MHz are gained. Four cavities are produced and corresponding tests are executed. The measured operating frequencies and Q values are compared with CST simulations. The Q values indicate that the loss of the Kanthal coating is approximately 50% in contrast with theory.
     On the basis of the simulation analysis and experiment tests of the load cavities, in accordance with the targets of 15 kW average remnant power and 30 dB one-way attenuation, the structure design of six-cavity collinear load is accomplished. Firstly the design flow of the collinear load is summarized and generalized, Two collinear load are designed and both satisfy with the attenuation requirement. With the limitation of absorbing capacity, Kanthal load can only to support average power of 10 kW and the one-way attenuation is about 16 dB. The power distribution calculations point that the power of FeSiAl coating is uniform, the power of Kanthal coating on the cavity ring is also uniform, and the power density of Kanthal coating on the disk surface appears parabola-like.
     This work is supported by the NSFC (NO. 10775128).
引文
[1] Crowley M C. High-energy particle accelerators. Rep. Prog. Phys., 1983, 46: 51-95.
    [2] Thwaites D I, Tuohy J B. Back to the future: the history and development of the clinical linear accelerator. Phys. Med. Biol., 2006, 51: R343-R362.
    [3] Wider?e R.über ein neues Prinzip Zur Herstellung hoher Spannungen. Archiv für Elektrot, 1928, 21: 387-406.
    [4] Hansen W W. A type of electrical resonator. J. Appl. Phys., 1938, 9: 654-63.
    [5] Boot H, Randall J T. Historical notes on the cavity magnetron. IEEE Trans. Electron Devices, 1976, 23: 724-9.
    [6] Varian R H, Varian S F. A high frequency oscillator and amplifier. J. Appl. Phys., 1939, 10: 321–7.
    [7]裴元吉,10 MeV电子直线加速器及其应用,辐射加工,2006,4:39-45.
    [8] Diehl J F. Achievements in food irradiation during the 20th century. Irradiation for Food Safety and Quality, 2001, 1-8.
    [9] Chimbombi E, Moreira R G, Kim J, et al. Prediction of targeted Salmonella enterica serovar typhimurium inactivation in fresh cut cantaloupe (Cucumis melo L.) using electron beam irradiation. Journal of Food Engineering, 2011, 103(4): 409-416.
    [10] Castell-Perez E, Moreno M, Rodriguez O, et al. Electron beam irradiation treatment of cantaloupes: Effect on product quality. Food Science and Technology International, 2004, 10(6): 383-390.
    [11] Kwon J H, Nam K C, Lee E J, et al. Effect of electron beam irradiation and storage on the quality attributes of sausages with different fat contents. Journal of Animal Science, 2010, 88(2): 795-801.
    [12] Neal J A, Cabrera-Diaz E, Marquez-Gonzalez M, et al. Reduction of Escherichia coli O157:H7 and Salmonella on Baby Spinach, Using Electron Beam Radiation. Journal of FoodProtection, 2008, 71(12): 2415-2420.
    [13] Gomes C, Da Silva P, Chimbombi E, et al. Electron-beam irradiation of fresh broccoli heads (Brassica oleracea L. italica). LWT-Food Science and Technology, 2008, 41(10): 1828-1833.
    [14] Gomes C, Moreira R G, Castell-Perez M E, et al. E-beam irradiation of bagged, ready-to-eat spinach leaves (Spinacea oleracea): An engineering approach, Journal of Food Science, 2008, 73(2): E95-E102.
    [15] Kim J, Moreira R G, Castell-Perez M E. Validation of irradiation of broccoli with a 10 MeV electron beam accelerator. Journal of Food Engineering, 2008, 86(4): 595-603.
    [16] Rivadeneira R, Moreira R, Kim J, et al. Dose mapping of complex-shaped foods using electron-beam accelerators. Food Control, 2007, 18(10): 1223-1234.
    [17] Moreno M A, Castell-Perez M E, Gomes C, et al. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0-3.2 kGy). LWT-Food Science and Technology, 2007, 40(7): 1123-1132.
    [18] Han J, Castell-Perez M E, Moreira R G. The influence of electron beam irradiation of antimicrobial-coated LDPE/polyamide films on antimicrobial activity and film properties. LWT-Food Science and Technology, 2007, 40(9): 1545-1554.
    [19] Frazier M J, Kleinkopf G E, Brey R R, et al. Potato sprout inhibition and tuber quality after treatment with high-energy ionizing radiation. American Journal of Potato Research, 2006, 83(1): 31-39.
    [20] Eichenberger C, Palmer D, Sik-Lam W, et al. 7.5 MeV high average power linear accelerator system for food irradiation applications. 15th IEEE International Pulsed Power Conference, 2005, 1274-7, Monterey, CA USA.
    [21] Chen H, Xu Z, Li M. The application and development of radiography technology based on x-ray. Proceedings of the SPIE-The International Society for Optical Engineering, 2009, 738503(8 pp.).
    [22] Natsui T, Uesaka M, Yamamoto T, et al. Development of a Portable 950 keV X-band Linac for NDT. Application of Accelerators in Research and Industry, 2009, 1099: 75-78.
    [23] Li Y L, Li Y J, Wang S F, et al. The development and evaluation of solid-state detector arrays for high energy x-ray imaging. IEEE Nuclear Science Symposium, 2004, 1-5: 1374-1377.
    [24] Brown G, Coates D, Kaba B, et al. X-ray computed tomography (CT) critical nondestructive evaluation (NDE) of nickel-hydrogen spacecraft batteries. Seventeenth Annual Battery Conference on Applications and Advances, Proceedings of Conference (Cat. No.02TH8576), 2002, 263|x+304.
    [25] Terada Y, Hirayama K, Katoh M. Evaluation method for image quality of high energy X-rayradiography. First US-Japan Symposium on Advances in NDT|First US-Japan Symposium on Advances in NDT, 1996, 168-73|458.
    [26] Sakanaka K, Mizowaki T, Arakawa Y, et al. Hypofractionated stereotactic radiotherapy for acoustic neuromas: safety and effectiveness over 8 years of experience. International Journal of Clinical Oncology, 2011, 16(1): 27-32.
    [27] Mariya Y, Sekizawa G, Matsuoka Y, et al. Repeat stereotactic radiosurgery in the Management of brain metastases from non-small cell lung cancer. Tohoku Journal of Experimental Medicine, 2011, 223(2) : 125-131.
    [28] Peng C, Ahunbay E, Chen G P, et al. Characterization interfraction variations and their dosimetric effects in prostate cancer radiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 79(3): 909-914.
    [29] Rodrigues G, Yartsev S, Bauman G. Application of helical tomotherapy in genitourinary malignancies. Canadian Journal of Urology, 2010, 17(6):5453-5458.
    [30] Akagunduz O, Karaca B, Atmaca H, et al. Radiosensitization of hormone-refractory prostate cancer cells by gossypol treatment. Journal of Buon, 2010, 15(4):763-767.
    [31] Shiu A S, Wang H, Ye J S, et al. Dose distribution comparison for the treatment of spinal metastases using cyberknife (R) versus IMRT stereotactic body radiotherapy using Linac/CT-on-rails unit. Radiosurgery, 2010, 7: 56-65.
    [32] Zhang X, Penagaricano J, Moros E G, et al. Dosimetric comparison of helical tomotherapy and Linac-IMRT treatment pans for head and neck cancer patients. Medical Dosimetry, 2010, 35(4): 264-268.
    [33] Pei Y J. The injector prototype for a storage ring-the 30MeV electron linear accelerator [C]. proc. of The Second China-Japan Joint Symposium on Accelerator for Nuclear Science and their Applications, 1983, 131.
    [34] Ebihara K, Nakanishi H, Eruna E. RF high power water loads for KEKB. proc. of the second Asian-Pacific Accelerator Conference [C], 2001, 633.
    [35]周锦宝,波导型高功率干负载的真空处理.原子能科学技术,1996,30(4):355-360.
    [36]赵风利,侯汨,赵延坪,等.BEPCⅡ直线加速器微波系统.高能物理与核物理,2006,30(2):155-158.
    [37]王修龙,马永,屠锐,等.5MW小型干负载的研制.中国原子能科学研究院年报,2001,(00):75-76.
    [38]金凯.大功率射频干负载的研制.中国科学技术大学学报,1994,24(3):394-396.
    [39] Matsumoto H, Lino Y, Kabeya Z, et al, Experience on the high-power SiC microwave dummy-load using SiC absorber [C]. proc.of the 1999 Particle Accelerator Conference, 1999842.
    [40] Johnson J, Rimmer R, Cerlett J, Computer simulator of a wide-bandwidth Ferrite-Loaded highpower wareguide termination [C], proc.of 1995 Particle Accelerator Conference, 1995, 1818.
    [41] Kamino Y, 10 MeV 25 kW industrial electron LINAC [C]. Proc. of LINAC’96, 1996, 836.
    [42] http://www.microlab.fxr.com/pdf/WLseries.pdf.
    [43] http://www.wavelineinc.com/catalog/cp36.htm.
    [44] http://www.hdmicrowave.com/htdocs/NewWeb1/chinese/product/wb014.htm
    [45] http://www.798microwave.com/.
    [46] Haimson J. Absorption and generation of radio-frequency power in electron linear accelerator systems. Nucl. Instr. and Meth., 1965, 33: 93-106.
    [47]姚充国,陈亦梅.盘荷波导型同轴负载.核科学与工程,1984,4(2):153-159.
    [48] Jin K, Pei Y J, et al. X-Band Travelling Wave Accelerator Structure R&D. Proceedings of the 2001 Particle Accelerator Conference, 2001, Chicago.
    [49] Jin K, Pei Y J, etc al. Collinear load study for X-band linear accelerator structure. Nuclear Instruments and Methods in Physics Research A, 2002, 488: 473-477.
    [50]曹磊,徐广为,沈连婠.用多尺度方法分析热喷涂层应力.材料科学与工艺,2006, 14(1):22-24.
    [51]曹磊.直线加速器微波干负载材料Kanthal合金热喷涂层的研究[D]:[硕士].合肥:中国科学技术大学.
    [52]徐广为,沈连婠.直线加速器同轴负载的热分析与优化设计.机械与电子,2006, 9:12-14.
    [53] He X D, Wu C F. Measurement for the Kanthal alloy used for collinear load and the S-band load design. Proceedings of Pac’07, 2007, 06.
    [54]何笑东.X波段介质-金属膜片混合加载加速器的研究[D]:[博士].合肥:中国科学技术大学.
    [55]舒钊.紧凑型低能高功率LINAC加速管及其同轴吸收负载的热特性研究[D]:[博士].合肥:中国科学技术大学.
    [1] Brinkmann R, Flottmann K, Robbach J, et al. TESLA Technical Design Report, PART II, March 2001.
    [1] Yoshida S, Sato M, et al. Permeability and electromagnetic-interference characteristics of Fe-Si-Al alloy flakes polymer composite. J. Appl. Phys., 1999 , 85(8): 4636-4638.
    [2] Kishimoto Y, Yamashita O, Makita K. Magnetic properties of sintered sendust alloys using powders granulated by spray drying method. J. Mater. Sci., 2003, 38: 3479-3484.
    [3]赵海燕,虞维扬,姚中.FeSiAl合金薄膜电感的研制与研究.金属功能材料, 2001, 8 (3): 17.
    [4]冯则坤,何华辉.扁平状Fe-Si-Al合金微粉的抗EMI特性研究.金属功能材料, 2002, 9 (1) : 8.
    [5] K. Sakai, N. Asano, Y. Wada, S. Yoshikado, J. Eur. Ceram. Soc. 30 (2010) 347.
    [6] Barros J, Schneider J, Verbeken K, et al. Assessment of Si and Al diffusion for the production of high Si and high Si–Al electrical steel. J. Magn. Magn. Mater., 2008, 320: e389-e392.
    [7] Lee S J, Kim Y B, Lee K S, et al. Effect of annealing temperature on electromagnetic absorption properties of crystalline Fe-Si-Al alloy powder-polymer composites. Phys. Status.Solidi. A., 2007, 204(12): 4121-4124.
    [8] Zhou T D, Zhou P H, Liang D F, et al. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching. J. Alloys. Compd., 2009, 484: 545-549.
    [9]张永清,丁耀根.大功率微波器件的新型薄膜衰减材料.真空电子技术,2004, 3: 20-22|26.
    [10]王秀翠.直线加速器高功率同轴负载吸波材料FeSiAl的研究[D]:[硕士].合肥:中国科学技术大学.
    [11]唐宗熙,张彪.微波介质介电常数和磁导率测试方法.计量学报,2007, 28(4):383-387.
    [12]倪尔瑚,林薇微,张志鸿,等.在微波频率下测量高损耗材料的复介电常数和复磁导率.浙江大学学报,1989, 23(2):289-297.
    [13]倪尔瑚.对传输-反射法测量材料电磁参数的分析.浙江大学学报,1991,25(5):523-531.
    [14]田步宁,杨德顺,唐家明,等.传输/反射法测量材料电磁参数研究.宇航学报,2001,16(1):57-60.
    [15]田步宁,刘其中,杨德顺.传输反射法测量复介电常数的三个方程研究.宇航学报,2002, 23(5): 21-27.
    [16]吴明忠.介质材料的射频和微波电磁参数的测量方法研究[D]:[博士].上海:同济大学.
    [17]景莘慧,蒋全兴.基于同轴线传输/反射法测量射频材料电磁参数.宇航材料,2005, 26(5): 630-634.
    [18]王忠友,江建军,张传坤,等.Cr代替部分Si对Sendust微波吸收特性的影响.金属功能材料,2008,15(3):14-17.
    [19]王秀翠,沈连婠,孙袁等.直线加速器同轴负载材料FeSiAl的电磁参数测试及仿真.强激光与粒子束,2011, 23(1):170-174.
    [1]裴元吉.电子直线加速器.课程讲义.
    [2]王秀翠.直线加速器高功率同轴负载吸波材料FeSiAl的研究[D]:[硕士].合肥:中国科学技术大学.
    [3]王秀翠,沈连婠,孙袁等.直线加速器同轴负载材料FeSiAl的电磁参数测试及仿真.强激光与粒子束,2011, 23(1):170-174.
    [4] T. Toda, K. Irie, I. Uetomi, A 300 MeV electron linear accelerator for Tohoku university, in: Mitsubishi Denki Laboratory Reports, October 1968.
    [5] Y.Y. Li, C.R.Hu, Experiment Design and Data Processing (in Chinese), Chemical IndustryPress, Beijing, 2008.
    [6]何笑东.X波段介质-金属膜片混合加载加速器的研究[D]:[博士].合肥:中国科学技术大学.
    [7] J. Michael Drozd, William T. Joines, Determining Q Using S Parameter Data, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 11, NOVEMBER 1996.
    [8] Raymond S K, Ji-Fuh L. Characterization of high-Q resonators for microwave-filter applications, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 1, JANUARY 1999.
    [9] APS KHANNA, Y. GARAULT. Determination of Loaded, Unloaded, and External Quality Factors of a Dielectric Resonator Coupled to a Microstrip Line. IEEE TRANSACTIONS ON MICROWAVS THEORY AND TECHNIQUES, VOL. MTT-31, NO. 3, MARCH 1983.
    [10] E. L. GINZTON. Microwave Q measurements in the presence of coupling losses. IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1958.
    [11] WILLIAM ALTAR. Q Circles-A Means of Analysis of Resonant Microwave Systems. PROCEEDINGS OF THE I.R.E.,1947.
    [12] DARKO KAJFEZ, EUGENE J. HWAN. Q-factor measurement with network analyzer, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Mn-32, NO. 7, 1984.
    [13] A. PODCAMENI, L. F. M. CONRADO, M. M. MOSSO. Unloaded quality factor measurement for MIC dielectric resonator application, 1981.
    [14] En-Yuan Sun, Shuh-Han Chao. Unloaded Q Measurement-The Critical-Points Method, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 8, AUGUST 1995.
    [15] Lye Heng Chua, Dariush Mirshekar-Syahkal. Accurate and Direct Characterization of High-Q Microwave Resonators Using One-Port Measurement, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003.
    [16] Peng Wang, Lye Heng Chua, Dariush Mirshekar-Syahkal. Accurate characterization of low-Q microwave resonator using critical-points method, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 1, JANUARY 2005.
    [17] W. PERRY WHELESS, DARKO KAJFEZ. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 12, DECEMBER 1987.
    [18] P. I. SONSEO, Graphical Analysis of Q circuits, IEEE TRANSACTIONS Ohl MICROWAVE THEORY AND TECHNIQUES, 1963.
    [19] Darko Kajfez. LINEAR FRACTIONAL CURVE-FITTING FOR MEASUREMENT OF HIGH Q-FACTORS, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 7, JULY 1994.
    [20] W. Perry Wheless, Darko Kajfez. Microwave resonator circuit model from measured data fitting, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES vol: 42 No: 7 page: 1149-1153, JUL 1994.
    [21] M.C. Sanchez, E. Martin, J.M. Zamarro. New vectorial automatic technique for characterisation of resonators, IEE PROCEEDINGS, Vol. 136, Pt. H, No. 2, APRIL 1989.
    [22] Kenneth Leong, Janina Mazierska. Precise measurements of the Q factor of dielectric resonators in the transmission mode - Accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 9, SEPTEMBER 2002.
    [23] Darko Kajfez, Random and Systematic Uncertainties of Reflection-Type Q-Factor Measurement With Network Analyzer. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 2, FEBRUARY 2003.
    [24] D. Kajfez. Q-FACTOR MEASUREMENT WITH A SCALAR NETWORK ANALYZER, IEE Proc.-Microw. Antennas Propag., Vol. 142, No. 5, October 1995.
    [25] DARKO KAJFEZ, Numerical Determination of Two-Port Parameters from Measured Unrestricted Data, IEEE TRANSSACTTONS ON INSTRIJMENTATION AND MEASUREMENT, VOL. IM-24, NO. 1, MARCH 1975.
    [26] M.C. Sanchez, E. Martin, J.M. Zamarro. Unified and simplified treatment of techniques for characterising transmission, reflection or absorption resonators, IEE PROCEEDINGS, Vol. 137, Pt. H, No. 4, AUGUST 1990.
    [27] Paul J. Petersan, Steven M. Anlage. Measurement of resonant frequency and quality factor of microwave resonators-Comparison 6of methods, JOURNAL OF APPLIED PHYSICS VOLUME 84, NUMBER 6 15 SEPTEMBER 1998.
    [28] J. Michael Drozd, William T. Joines. Determining Q using S parameter data, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHhIQUES, VOL. 44, NO. 1 I , NOVEMBER 1996.
    [1]李明芳,新型电阻合金,上海金属,1985,7卷6期.
    [2]吴德荣,粉末冶金技术提高了加热元件的性能,工业炉,1995,第3期.
    [3]周捷,新铁铬铝加热元件材料,上海金属,1986, 8卷5期.
    [4]冯茂全,介绍一种硫酸电加热炉,硫酸工业,1994, 6期.
    [5]徐涛,涂善东等,Cr_Mo钢炉管表面改性涂层的耐氧化试验研究,压力容器,22卷8期.
    [6]魏世丞,徐滨士等,FeAl系电热爆炸喷涂层抗高温氧化腐蚀性能对比,材料热处理学报,2007, 28卷1期.
    [7]胡军志,陈学荣等,FeCrAl/WC复合涂层650℃的热腐蚀行为,材料保护,2005,38卷6期.
    [8]周健儿,李家科等,FeCrAl合金表面高温抗氧化陶瓷涂层的制备,硅酸盐学报,2005,33卷9期.
    [9]丁彰雄,陈江涛等,FeCrAl合金涂层抗高温氧化及热腐蚀性能研究,武汉理工大学学报,2003,27卷4期.
    [10]王建平,徐连勇等,FeCrAl和高镍铬合金涂层的抗高温腐蚀性能研究,中国电力,40卷4期.
    [11] LI PingZhao, Sheng fuJi, Feng XiangYin et al. Catalytie Combustion of Methane over Co1-xMgxO/A12O3/FeCrAI Monolithie Catalysts. Journal of Natural Gas Chemistry 15(2006)287-296.
    [12]王伟,季生福,银凤翔,等. Ce1-xNixO2/Al2O3/FeCrAl催化剂的制备及其甲烷.分子催化,20卷第6期,2006年.
    [13]赵福真,曾鹏辉,季生福,等.CuxCo1-x/Al2O3/FeCrAl整体式催化剂上甲苯催化燃烧.物理化学学报, 2010, 26(12):3285-3290.
    [14] ZENG Shanghong, SU Haiquan, LIU Yuan, et al.CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by in situ combustion synthesis method for preferential oxidation of carbon monoxide.
    [15]郏景省,周瑾,张纯希,等.Ir/CexZr1-xO2/Al2O3/FeCrAl高温甲醇水蒸气重整催化剂的研究.中国稀土学报,26卷3期,2008.
    [16]陈能展,季生福,银凤翔,等.LaAl1-xFexO3/ Al2O3/ FeCrAl催化剂的制备及其对甲烷燃烧的催化性能.催化学报,26卷第11期,2005.
    [17]敖庆波,汤慧萍,朱纪磊,等.FeCrAl纤维多孔材料梯度结构吸声性能的研究.功能材料,40卷第10期,2009.
    [18]敖庆波,汤慧萍,朱纪磊,等.烧结FeCrAl纤维多孔材料的高温吸声性能.压电与声光,32卷5期,2010.
    [19]敖庆波,汤慧萍,朱纪磊,等.烧结FeCrAl纤维多孔材料的吸声特性.稀有金属材料和工程,38卷10期,2009.
    [20]左渝钰.航空发动机高温应变测量系统.计算机测量与控制,2008,16(11).
    [21]赵杰,吕涛,金枫.FeCrAl合金材料真空扩散焊工艺实验研究.电焊机,39卷7期,2009.
    [22]姜威,吕涛,常保华,等.不同中间层扩散焊接微通道反应器中FeCrAl芯片的研究.焊接技术,39卷5期,2010.
    [23]吴晓东,翁端,陈震,等.等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响.清华大学学报,42卷第10期,2002.
    [24]李亚宁,康新婷,汤慧萍,等.电化学脱合金法在FeCrAl纤维毡表面制备纳米自组装结构.稀有金属材料与工程,38卷5期,2009.
    [25]林志娇,王珂,王云兴,等.电泳沉积法在铁铬铝合金丝网上制备均匀的铝颗粒涂层.电镀与涂饰,28卷第4期,2009.
    [26]杨照玲,李建平,杨延安,等.铁铬铝金属纤维的制备与性能.稀有金属材料与工程,33卷9期,2008.
    [27] Jin K, Pei Y J, etc al. Collinear load study for X-band linear accelerator structure. Nuclear Instruments and Methods in Physics Research A, 2002, 488: 473-477.
    [28] He X D, Wu C F. Measurement for the Kanthal alloy used for collinear load and the S-band load design. Proceedings of Pac’07, 2007, 06.
    [29]何笑东.X波段介质-金属膜片混合加载加速器的研究[D]:[博士].合肥:中国科学技术大学.
    [1]舒钊.紧凑型低能高功率LINAC加速管及其同轴吸收负载的热特性研究[D]:[博士].合肥:中国科学技术大学.
    [2] Jin K, Pei Y J, etc al. Collinear load study for X-band linear accelerator structure. Nuclear Instruments and Methods in Physics Research A, 2002, 488: 473-477.
    [3]姚充国,陈亦梅.盘荷波导型同轴负载.核科学与工程,4卷第2期,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700