基于光内送粉的激光熔覆快速成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆快速成形技术结合了激光熔覆与快速成形(Rapid Prototyping)两大技术的优点,成为了目前先进制造技术的一个重要研究方向。但是目前此项技术中成形所采用送粉方式为单粉管光外侧向送粉和多粉管光外侧向同轴送粉。光外侧向送粉成形有一些不足之处:倾斜侧向输送的粉末一般呈抛物线运动,多粉束汇聚精度低,其运动轨迹受多种因素干扰,任意光轴横截面上的粉末密度分布不均匀,激光束与粉末耦合效应不高,热作用效率低,成形件表面较粗糙,金属粉末利用率一般只有20%~30%。针对上述不足之处,本文采用“光束中空,粉管居中,光内送粉”的方法进行三维成形,对光内送粉工艺进行了部分实验研究。
     分析了光内正向同轴送粉工艺下的激光束与粉末相互作用过程,以作用区域的整体粉束为研究对象,重点讨论了金属粉末的有效利用率ε。建立粉末有效利用率的计算模型。实验证明,光内送粉的粉末有效利用率在一定条件下随着送粉速率的增大而增大,达到一定程度后便下降;随着扫描速度的增大亦出现如上规律。测试数据证明:光内送粉比传统光外送粉的粉末利用率提高2~3倍。
     利用自主研制的光内同轴送粉喷头进行了单层和多层堆积实验,找出不同工艺参数与熔覆层质量之间的联系,主要针对激光功率密度、光斑形式、送粉速率和扫描速度等工艺参数变化对成形的影响进行了实验研究。在此基础上进行圆柱空心薄壁件和锥形空心薄壁件的多层堆积实验。实验证明,与侧向单粉路送粉和多粉路光外同轴送粉成形工艺相比,光内送粉装置实现了光、粉、气一体同轴,成形过程稳定可靠,光内送粉喷头的使用性能和工艺性能具有明显的优势,成形件表面光洁度高,侧面无未熔化颗粒,尺寸精度得到很好保证。最后对成形件进行了显微组织分析、硬度测试、残余应力测试,结果证明:成形件显微组织晶粒细小、均匀,致密无缺陷,性能优越。
Laser cladding rapid prototyping combines advantages about technology of laser cladding and rapid prototyping, is the research direction of advanced manufacturing technology, but now the type of powder feeding is the lateral powder feeding or coaxial powder feeding outside the laser about this process, there are many disadvantages: such as lateral powder feeding shows itself as parabolic motion of powder, being easily interfered by many external factors, asymmetry of powder in any section, poor coupling of laser and powder reciprocity, coarseness of parts surface, inefficiency of laser and powder thermodynamics reciprocity, difficulty in prototyping high quality parts and only twenty to thirty percent powder catchments efficiency. Aiming at so many disadvantages, this article puts forward a new process of hollow focusing laser, powder tube being medial and inside-laser powder feeding. Combines the existing experiment condition, researches the technology of this new process according experiments.
     The article discusses the course about laser and alloy powder reciprocity, researches the alloy powder in the area of laser, and discusses its efficiency. Established the model about alloy powder efficiency, according to experiment, the efficiency of the powder increases with the increase of powder cladding speed, at a point, it will fall down. And the same disciplinarian appears with the increase of scanning speed. At last, the powder efficiency is tested about sixty-eight point three percent, higher than that in the process of lateral powder feeding or coaxial powder feeding outside the laser.
     The article also discusses the key process parameters that are needed in the cylindrical shaped and taper shaped parts experiment, such as laser power density, beam of light mode、powder delivered speed、scanning speed etc. The steel medicinal pinhead is chosen as powder feeding nozzle and nitrogen gas is adopted as the pneumatic drive to feeding powder. Through several monolayer line scanning cladding experiment and multilayer line scanning cladding experiment the multimode laser, the relation between different process parameters and cladding coat quality is obtained. Based on the experiment research, cylindrical shaped and taper shaped parts prototyping experiment is accomplished with the new inside-laser coaxial powder feeding process. In the experiment process, laser power is synchronously controlled by the molten pool temperature collected by infrared temperature measuring apparatus and z axis increment is also modified every time. Experiment results shows that The shaping process of inside-laser coaxial powder feeding overcomes the disadvantages of the former shaping process: realizing the integrative coaxial function of laser, powder and gas, forward and vertical powder feeding inside laser, the shaping process is stable and reliable, the functional and process property of new powder feeding nozzle is superior to the traditional powder feeding nozzle and parts surface quality and dimension precision are improved greatly, compared with the former prototyping process. At last, the article analyses microscopic structure、hardness of shaped metallic parts and remainder stress. The microscopic structure is dense、crystal is thin and has no defects and the hardness of shaped metallic parts enhances greatly.
引文
[1] 钟敏霖,刘文今.国内外高功率激光材料加工研究的最新发展.激光集锦.2003,11
    [2] 许勤,张坚.激光快速成型技术研究现状与发展.九江学院学报.2005,(1)
    [3] 王冰.快速成型技术发展新趋势.科技论坛.2005,(9)
    [4] 周惦武,徐翔,周述积.快速成型技术的研究进展与发展趋势.铸造设备研究.2003,(2)
    [5] 关振中.激光加工工艺手册..中国计量出版社.1998
    [6] 王至尧.中国材料工程大典第 25 卷.化学工业出版社.2006,1
    [7] 姚纯.激光熔覆实体快速成形及送粉系统研究.苏州:苏州大学硕士论文.2006,5
    [8] 李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究.华中科技大学博士学位论文.2005
    [9] 张庆茂,刘文今,钟敏霖.送粉式激光熔覆稀释率的检测方法及其影响因素.应用激光.2002,(4)
    [10] Angelo Buongiorno, Wanague,N.J. Laser/Powered Metal Cladding Nozzle. 美国专利(US5477026)1995
    [11] Gary K,Lew,Richard M,Less. Deposition Head For Laser.美国专利(US5961862) .1999
    [12] 美国专利(US5418350)
    [13] 日本专利(JP2005219060)
    [14] Hu Yingping.Coaxial Nozzle Design for Laser Cladding/Welding Process.欧洲专利(WO2005/028151)
    [15] B.S.Shin. A new rapid manufacturing process for multi-face high-speed machining. The international journal of advanced manufacturing technology.2003, 22:68-74
    [16] N.P. Karapatisect. Direct rapid tooling:a review of current research. Rapid Prototyping Journal.1998,2(4): 77—89
    [17] 李鲁伯.孔类零件内壁激光熔覆及合金化用同轴送粉嘴.国内专利[02110244.9]
    [18] 胡乾午,曾晓雁.一种内置式激光熔覆喷嘴.国内专利[200410013108.0]
    [19] 钟敏霖,刘文今,李凤生.垂直面送粉激光熔覆喷嘴.国内专利[02123645.3]
    [20] 钟敏霖,刘文今.垂直装卸的分体式激光熔覆同轴送粉喷嘴.ZL专利号 00100041.1
    [21] 张永忠,石力开,邢吉丰,朱学新,徐骏.激光熔覆同轴送粉喷嘴. 国内专利[01267740.X]
    [22] 王云山,杨洗陈,赵新.一种激光涂敷送粉嘴.国内专利[02245661.9] 公开号:2555102
    [23] D Hu,H Mei and R Kovacevic. Improving solid freeform fabrication by laser based additive manufacturing. Proc Instn Mech Engrs Vol 216 Part B: J Engineering Manufacture B14001 I Mech E 2002
    [24] Dongming Hu, Radovan Kovacevic. Sensing, modeling and control for laser-based additive manufacturing. Int J Adv Manufacturing Technology (2000) 16:681–6872000 Springer-Verlag London Limited
    [25] C.A.BRICE, H. L. FRASER. Characterization of Ti-Al-Er alloy produced via direct laser deposition. JOURNAL OF MATERIALS SCIENCE 38 (2003) 1517 – 1521
    [26] Andrew J. Pinkerton, Lin Li. The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects) International Journal of Machine Tools & Manufacture .44 (2004) 573–584
    [27] 张永忠,章萍芝.金属零件激光快速成型技术研究. 材料导报.2001,(12)
    [28] 杨健.激光快速成形金属零件力学行为研究.西北工业大学.2004,(2)
    [29] 席明哲,张永忠,石力开.工艺参数对激光快速成形 316L 不锈钢组织性能的影响.中国激光.2002,(11)
    [30] 梁朝罡,邓琦林.激光熔覆制造致密金属零件送料方式的分析和比较.电加工与模具.2003,(5)
    [31] 张凯,刘伟军.金属零件激光直接快速成型技术的研究(上)—国外篇.工具技术.2005,39:3—8
    [32] 张凯,刘伟军.金属零件激光直接快速成形技术的研究(下)—国内篇.工具技术.2005,(39):3—5
    [33] 张庆茂,刘文今,杨森等. 激光与熔覆粉末作用效率的计算及影响因. 激光技术.2002,(3)
    [34] 王建军.基于激光熔覆的快速成形初步研究.天津:天津工业大学.2003,5
    [35] 刘喜明等.激光技术的应用.中国激光.1999,A26(5):470-476
    [36] B.1opezMaterials Science and Technology.1996,12(6):45
    [37] X.Zeng,et al,ELSEVIER Surface and coatings. Technology.1996,79(2):2O9-217
    [38] M.Picasso,Metallurgical and materials transactions B.1994,25B(2):281
    [39] 李力钧,Mazumder J.应用激光.1987,7(1):23-27
    [40] 谢新建.材料加工新技术与新工艺.冶金工业出版社.北京:2004
    [41] 石世宏.激光加工技术讲义.苏州:2006
    [42] 热处理手册.中国机械工程学会热处理学会编.机械工业出版社.北京:第三版
    [43] 张永忠,石力开,章萍芝,徐 骏.基于金属粉末的激光快速成型技术新进展.稀有金属材料与工程.2000,(9):361—364
    [44] 席明哲,张永忠.激光快速成型致密金属零件的研究.北京科技大学学报.2002,(4): 441—444
    [45] 钟敏霖,宁国庆等.激光快速柔性制造金属零件基本研究. 应用激光.2001,21(2):76—80
    [46] 杨森,钟敏霖等.激光快速成型金属零件的新方法.激光技术.2001,(4):254—258
    [47] 杨家林,王洋,陈杨.快速成型技术研究现状与发展趋势.新技术新工艺.2001,(1):28—29
    [48] 陈静,杨海鸥,李延民等.激光快速成形过程中熔覆层的两种开裂行为及其机理研究.应用激光.2002(3),300-304
    [49] 陈静,林鑫,王涛等.316L 不锈钢激光快速成形过程中熔覆层的热裂机理.稀有金属材料与工程.2003(3),183-186
    [50] 陈静,杨海鸥,杨健等.高温合金和钛合金的激光快速成形工艺研究.航空材料学报.2003,(10):100-103
    [51] 张永忠,石力开,章萍芝等.激光快速成形镍基高温合金研究.航空材料学报.2002,(1):22-25
    [52] 张永忠,席明哲,石力开等.激光快速成形 316L 不锈钢研究.材料工程.2002,(5):22-25
    [53] 刘常乐.载气式激光熔覆送粉器的研制.天津工业大学.2003,2
    [54] 唐英,王云山,孙荣禄等.激光熔覆镍基自熔性合金粉末的研制.天津工业大学学报.2003,(5):52-55
    [55] 杨毅.激光直接快速成形金属零件的机理及工艺研究.南华大学硕士论文.2006,5
    [56] 沈德久,廖波,王玉林.同轴送粉对激光熔覆组织的细化作用.应用激光.
    [57] 钟敏霖,张红军,刘文今.可调宽带双向对称送粉激光熔斑喷嘴.国内专利[01110132.6]22卷.2002年6月第3期:290-292
    [58] M. P. Mughal H Fawad R. Mufti. Parametric thermal analysis of a single molten metal droplet as applied to layer manufacturing. Heat Mass Transfer (2005). DOI 10.1007/s00231-005-0010-9
    [59] Hu Y P.et a1.An analysis of powder feeding systems on the quality of laser cladding.Advances in Powder Metallurgy&Particulate Materials.1997,21:17~31
    [60] Lin J,et a1.Design characteristics and development of a nozzle for coaxial laser cladding[J].Journal of Laser Application.1998.10:55—63
    [61] Andrew J. Pinkerton ,Lin Li. Direct additive laser manufacturing using gas and water-atomsed H13 tool steel powders. Int J Adv Manufacturing Technology (2004) DOI 10 100700170-003-1844-2
    [62] 朱银锋.用于激光快速制造的三维送粉头的设计.应用激光.2005年第25卷第1期:13-16
    [63] 王志坚,尚晓峰,徐丽.激光工程化净成形同轴送粉的研究.沈阳航空工业学院学报.2004年第21卷第1期:20-26
    [64] 李辉,单际国,任衷烈.同步送粉高能束粉末堆焊技术的研究现状.热加工工艺.2001年第4期
    [65] 高淑英,杨洗陈.用于激光熔敷的同轴送粉喷嘴的设计.天津工业大学学报. 2003,10
    [66] 张红军,钟敏霖,刘文今,孙鸿卿.高汇聚温度显示激光快速制造同轴送粉喷嘴的研制.应用激光.2004年12月第24卷第6期:380-384
    [67] 王安军. 激光熔覆快速成形光内同轴送粉装置及工艺研究.苏州:苏州大学硕士论文.2007,5
    [68] 王家金.激光加工技术.中国计量出版社.北京:1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700