基于激光熔覆的三维金属零件激光直接制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于激光熔覆的三维金属零件直接制造技术,也称为激光直接制造技术(Direct Laser Fabrication, DLF),是一种不需借助任何模具和刀具,只要将CAD/CAM 数据输入数控系统,借助自动送粉激光熔覆工艺,即可直接从CAD文件制造出致密金属零件的先进制造技术。
    本文开发了HUST-RP 激光直接制造工艺控制软件,并将其成功应用于由CO2 激光器、CNC 控制单元、3 轴加工机床、自动送粉器、同轴送粉喷嘴及粉末回收装置等设备构成的开环控制激光熔覆直接制造系统中。通过组件划分、“路径插件”和“G代码配置文件”等设计方案,HUST-RP具有良好的功能扩展性,能够用于DLF等多种激光快速成形技术的工艺控制。
    在上述软硬件系统基础上,本文进行了大量的DLF 工艺试验。研究结果表明,采取合理的系统配置、优化的软件控制及最佳的工艺参数范围等综合控制措施,即使不采用任何闭环控制手段,DLF 工艺仍然可以获得高质量的成形效果。因此,在开环控制条件下进行基于激光熔覆的三维金属零件高质量快速制造是完全可行的。
    通过研究激光功率、扫描速度、搭接率、送粉量、z 轴增量值等参数对DLF 工艺所制备的Ni 合金零件质量的影响,系统探讨了开环控制条件下DLF 工艺参数的优化过程。试验结果表明,激光能量密度是控制DLF工艺成形质量的关键性因素。存在一个合适的能量密度范围,在此范围内Ni合金零件能够以均匀的高度稳定成形。能量密度过高或过低都会使零件中心与边缘的高度差异随着沉积层数的增加而越来越明显,最终导致DLF工艺成形失败。提出了熔覆层重熔深度与其高度之比可以用来作为衡量能量密度是否合适的判据,并由此获得以均匀高度进行Ni合金零件稳定成形的工艺参数范围为:激光功率600~800W; 扫描速度3~8mm s-1; 送粉量3.0~8.8g min-1。
    通过DLF 工艺,分别采用五种不同截面填充模式制造不锈钢拉伸试样并进行拉伸性能测试,系统研究了截面填充模式对DLF技术制造效率、成形精度及机械性能的影响。研究结果表明,就成形效率而言,光栅式填充模式与轮廓偏置式填充模式并无优劣之分,但是对于零件成形精度的影响则差别很大。由于光栅式填充模式能够有效引入“随机路径”机制,因此能够更好的控制零件成形精度。拉伸试验结果证明,即使存在夹杂等较多冶金缺陷的情况下,DLF 工艺所制备的拉伸试样仍然可以获得与传统锻造工艺制备的试样相当甚至更优的机械性能。如果这些冶金缺陷能够消除,则零件
Direct laser fabrication (DLF) is an advanced manufacturing technology, which is developed from rapid prototyping and laser cladding over the last decade. DLF can automatically fabricate full density arbitrarily complex-shaped metal parts directly from CAD files without using any modules or tools by the utilization of laser cladding technique.
    In this Ph.D. dissertation, a control software named HUST-RP was developed in order to achieve the maximum flexibility and extensibility for the direct fabrication of metal parts with various shapes and high accuracy by laser cladding. The software was intergrated into the DLF hardware system, which is composed of a 5kW ROFIN TR050 CO2 laser, a CNC system, a powder feeder, a special designed powder nozzle and a powder recycler. The path pattern plug-ins and G-code profile files were introduced into the software, by which the engineers can choose a suitable filling pattern for a certain part and export it in a suitable G-code format.
    On the basis of the hardware and software system above mentioned, the DLF process of 3D metal parts was studied systematically. The results demonstrated that the fabrication of complex-shaped metal parts by additive-layer laser cladding was feasible under open-loop control. The metal parts with the open-loop control can achieve satisfied shape quality, if the laser processing parameters were chosen in a suitable range. This conclusion proved that the fabrication of metal parts is feasible under open-loop control.
    The effect of the specific energy on the cross-section shape of nickel alloy cladding was studied systematically by a single-track cladding experiment with different laser processing parameters. The effect of the laser processing parameters such as laser power, scan velocity, powder feed rate and track overlap on the qualities of metal parts of Ni alloy was also studied by an orthogonal experiment, by which the optimized parameter ranges were gotten. The experimental results showed that the specific energy for laser processing is the most important factor that controls the part qualities. There is an appropriate range of the specific energy, in which the samples of nickel alloy can be fabricated layer by layer with a uniform height. If the specific energy is too small or too high, the difference between the contour height and the inner height of a part will become more and more evident, which will result in the process failure finally. In the dissertation, the ratio of the cladding remelting depth to the
    cladding height can be regarded as the criterion to determine whether the specific energy is suitable or not. The process parameters capable for building up the parts of Ni alloy stably with uniform height are: laser power 600–900W, scan velocity 4–8mm s-1, powder feed rate 3.0–8.0g min-1. The effect of filling path of laser beam on the fabrication efficiency of DLF process, the shape accuracy and mechanical properties of metal parts was studied systematically. The tensile specimens of stainless steel with 5 different filling patterns were fabricated with same laser process parameters. The experimental results showed that the raster filling path and the contour-offset filling path have nearly same fabrication efficiency to the DLF process. However, the raster filling path can achieve much better the shape accuracy of metal parts than the contour-offset filling path because it can utilize the ‘random filling’method in an easy way. Although many metallurgical defects such as oxide impurities were found in the specimens, the yield strength and the tensile strength of the specimens fabricated by DLF process is in same level or even a bit better than the traditional forged materials. It is expected that the mechanical properties of the parts fabricated by DLF would be enhanced even greatly if the metallurgical defects were eliminated by choosing the laser process parameters carefully and by improving the deposition environment. The methods to improve the fabrication accuracy of metal parts with thin-walled structures were studied systematically. Several multi-bead stacks and thin-walled samples of Ni alloy were fabricated with variable process parameters. It showed that the height of each cladding layer of multi-bead stack was unstable if the z-increment value was equal to the first cladding height. There is also an appropriate range for the specific energy in which the multi-bead stack of nickel alloy can be fabricated layer by layer with a uniform height. The continuous interpolation of CNC stage, the randomization of start location of laser beam and the slight lower z-increment value to the first cladding height are the most important steps to achieve excellent thin-walled structure qualities.
引文
[1] P.A. Kobryn, S.L. Semiatin. Microstructure and texture evolution during solidification processing of Ti–6Al–4V. Journal of Materials Processing Technology, 2003, 135(2-3): 330~339.
    [2] 中国机械工程协会. 机械制造技术的发展及其高技术化. 中国制造业信息化, 2004, (05): 4~12.
    [3] 王运赣. 快速成形技术. 武汉: 华中理工大学出版社, 1999 年.
    [4] Detlef Kochan, Chua Chee Kai, Du Zhaohui. Rapid prototyping issues in the 21st century. Computers in Industry, 1999, 39(1): 3~10.
    [5] A. Rosochowski, A. Matuszak. Rapid tooling: the state of the art. Journal of Materials Processing Technology, 2000, 106(1-3): 191~198.
    [6] B. Wiedemann, H.-A. Jantzen. Strategies and applications for rapid product and process development in Daimler-Benz AG. Computers in Industry, 1999, 39(1): 11~25.
    [7] Xue Yan, P Gu. A review of rapid prototyping technologies and systems. Computer-Aided Design, 1996, 28(4): 307~318.
    [8] D.T. Pham, R.S Gault. A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, 1998, 38(10-11): 1257~1287.
    [9] Jeng-Ywan Jeng, Ming-Ching Lin. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. Journal of Materials Processing Technology, 2001, 110(1): 98~103.
    [10] Seitz, S. New high powder turbine made by laser sintered cores. Aluminium, 1998, 74(7-8): 493~494.
    [11] Suman Das, Martin Wohlert, J.J. Beaman et al. Processing of titanium net shapes by SLS/HIP. Materials and Design, 1999, 20(2-3): 115~121.
    [12] J.C. Ferreira, A. Mateus. Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. Journal of Materials Processing Technology, 2003, 142(2): 508~516.
    [13] Frederick T. Wallenberger. Rapid prototyping directly from the vapor phase. Science, 1995, 267(5202): 1274~1275.
    [14] Jouni H?nninen. Direct metal laser sintering. Advanced Materials & Process, 2002, 160(5): 33~36.
    [15] M.W. Khaing, J.Y.H. Fuh, L. Lu. Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts. Journal of Materials Processing Technology, 2001, 113(1-3): 269~272.
    [16] Gray K. Lewis, Eric Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21(4): 417~423.
    [17] C.O. Brown, E.M. Breinan, B.H. Kear. Method for fabricating articles by sequential layer deposition. US Patent, 4323756, 1982.
    [18] K.I. Schwendner, R. Banerjee, P.C. Collins et al. Direct laser deposition of alloys from elemental powder blends. Scripta Materialia, 2001, 45(10): 1123~1129.
    [19] 钟敏霖, 宁国庆, 刘文今. 激光熔覆快速制造金属零件研究与发展. 激光技术, 2002, 26(5): 388~391.
    [20] G.K. Lewis, R.B. Nemec, J.O. Milewski et al. Directed light fabrication. Proceedings of the ICALEO ’94. Laser Institute of America, Orlando, Florida, 1994:17~26.
    [21] J.O. Milewski, G.K. Lewis, D.J. Thoma et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. Journal of Materials Processing Technology, 1998, 75(1-3): 165~172.
    [22] Romero JA, Griffith ML, Atwood CL et al. Laser engineered net shaping LENSTM for additive component processing. Proceedings of the Rapid Prototyping and Manufacturing Conference. Dearborn, MI, 1996: 23~25.
    [23] D.M. Keicher, W.D. Miller, J.E. Smugeresky et al. Laser Engineered Net Shaping (LENS): Beyond Rapid Prototyping to Direct Fabrication. Proceedings of the 1998 TMS Annual Meeting, San Antonio, Texas, 1998: 369~377.
    [24] W. Hofmeister, M. Wert, J. Smugeresky et al. Investigating Solidification with the Laser-Engineered Net Shaping (LENSTM) Process. JOM-e, 1999, 51(7): http://www.tms.org/ pubs/ journals/JOM/9907/Hofmeister/Hofmeister-9907.html.
    [25] S. Ashley. From CAD art to rapid metal tools. Mechanical Engineering, 1997, 119(3): 82~87.
    [26] J. Mazumder, A. Schifferer, J. Choi. Direct Materials Deposition: Designed Macro and Microstructure. Materials Research Innovations, 1999, 3(3):118~131.
    [27] X. Wu and J. Mei, Microstructure and mechanical properties of laser-fabricated Ti6Al4V samples”, European Congress and Exhibition on Powder Metallurgy(PM2001), 22-24 Oct, 2001, Nice, France. 2001:213-218.
    [28] X. Wu, R. Sharman, J. Mei, W. Voice. Direct laser fabrication and microstructure of a burn-resistant Ti alloy. Materials and Design, 2002, 23(3): 239~247.
    [29] X. Wu, J. Mei. Near net shape manufacturing of components using direct laser fabrication technology. Journal of Materials Processing Technology, 2003, 135(2-3): 266~ 270.
    [30] X. Wu, Jing Liang, Junfa Mei et al. Microstructures of laser-deposited Ti–6Al–4V. Materials and Design, 2004, 25(2): 137~144.
    [31] J. Sigel, F. Dausinger, H. Hugel. Optic device for generating metallic parts with the LAPS-J process. Proceedings of the SPIE. The Int. Society for Optical Engineering, 1997, 3102: 86~94.
    [32] L. Xue, M.U. Islam. Free-form laser consolidation for producing metallurgically sound and functional components. Journal of Laser Applications, 2000, 12(4): 160~165.
    [33] Yanmin Li, Haiou Yang, Xin Lin et al. The influences of processing parameters on forming characterizations during laser rapid forming. Materials Science and Engineering, 2003, 360(1-2): 18~25.
    [34] 李延民, 李建国, 杨海欧等. 金属零件激光直接成形. 应用激光, 2002, 22(2): 140~ 144.
    [35] Yongzhong Zhang, Mingzhe Xi, Shiyou Gao, Likai Shi. Characterization of laser direct deposited metallic parts. Journal of Materials Processing Technology, 2003, 142(2): 582~ 585.
    [36] 张永忠, 章萍芝, 石力开等. 金属零件激光快速成型技术研究. 材料导报, 2001, 15(12): 10~13.
    [37] 王华明, 张凌云, 李安等. 先进材料与高性能零件快速凝固激光加工研究进展. 世界科技研究与发展, 2004, 26(3): 27~31.
    [38] 张剑峰, 沈以赴, 赵剑峰等. Ni 基金属粉末激光快速制造的研究. 航空学报, 2002, 23(3): 221~225.
    [39] Minlin Zhong, Wenjin Liu, Guoqing Ning et al. Laser direct manufacturing of tungsten nickel collimation component. Journal of Materials Processing Technology, 2004, 147(2): 167~173.
    [40] 宁国庆, 钟敏霖, 杨林等. 激光直接制造金属零件过程的闭环控制研究. 应用激光, 2002, 22(2): 172~176.
    [41] C. Atwood, M. Griffith, L. Harwell et al. Laser Engineered Net Shaping (LENSTM): A tool for direct fabrication of Metal Parts. Proceedings of ICALEO '98, November 16-19, 1998, Orlando, FL: E-1.
    [42] D. Srivastava, I.T.H. Chang, M.H. Loretto. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics, 2001, 9(12): 1003~1013.
    [43] J. Mazumder, D. Dutta, N. Kikuchi et al. Closed loop direct metal deposition: art to part. Optics and Lasers in Engineering, 2000, 34(4-6): 397~414.
    [44] P.A. Kobryn, E.H. Moore, S.L. Semiatin. The effect of laser power and traverse speed on microstruture, porosity, and build height in laser-deposited Ti-6Al-4V. Scripta mater., 2000, 43(4): 299~305.
    [45] Andrew J. Pinkerton, Lin Li. Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties. Thin Solid Films, 2004, 453-454: 471~476.
    [46] L. Li. The advances and characteristics of high-power diode laser materials processing. Optics and Lasers in Engineering, 2000, 34(4-6): 231~253.
    [47] 张魁武. 国外激光熔覆设备. 金属热处理, 2002, 27(7): 26~32.
    [48] J.O. Milewski, G.K. Lewis, D.J. Thoma et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. Journal of Materials Processing Technology, 1998, 75(1-3): 165-172.
    [49] D.M. Hensinger, A.L. Ames, J.L. Kuhlmann. Motion planning for a direct metal deposition rapid prototyping system. Proceedings of the 2000 IEEE Int. Conf. on Robotics & Automation, 2000, 4: 3095~3100.
    [50] G.K. Lewis, J.O. Milewski, D.A. Cremers et al. Laser production of articles from powders. US Patent, 5837960, 1998.
    [51] Justin Koch, Jyoti Mazumder. Apparatus and methods for monitoring and controlling multilayer laser cladding. US Patent, 6122564, 2000.
    [52] D.M. Keicher, W.D. Miller. Multiple beams and nozzles to increase deposition rate. US Patent, 6268584, 2001.
    [53] G.K. Lewis, R.M. Less. Rotary powder feed through apparatus. US Patent, 6305884, 2001.
    [54] J. Lin, W.M. Steen. Design characteristics and development of a nozzle for coaxial laser cladding, Journal of Laser Application, 1998, 10(2): 55~63.
    [55] Richard Mah. Directed Light Fabrication, Advanced Materials & Process, 1997, 151(3): 31~33.
    [56] D.M. Keicher, J.E. Smugeresky, J.D. Puskar. Using the Laser Engineered Net Shaping (LENS) Process to Produce Complex Components from a CAD Solid model. SPIE, 1997, 2993: 91-97.
    [57] Xue L, J.Y. Chen, M.U. Islam et al. Laser consolidation of IN-738 alloy for repairing cast IN-738 gas turbine blades. ASM Proceedings: Heat Treating, 2000, 2: 1063-1071.
    [58] 张永忠, 席明哲, 石力开等. 激光快速成形316L 不锈钢研究. 材料工程, 2002, (5): 22~25.
    [59] 高士友, 张永忠, 石力开, 王殿武. 激光快速成型TC4 钛合金的力学性能. 2004, 28(1): 29~33.
    [60] 张永忠, 章萍芝, 石力开, 程晶, 徐骏, 席明哲. 激光直接堆积成形铜合金的组织及性能. 金属热处理, 2001, (6): 5~7.
    [61] M.R. Boddu, R.G. Landers, F.W. Liou. Control of laser cladding for rapid prototyping –A review. 12th Annual Solid Freeform Fabrication Symposium, Austin, Texas, August 7–9: 460~467.
    [62] J. Beuth, N. Klingbeil. The role of process variables in laser-based direct metal solid freeform fabrication. JOM, 53(9): 36~39.
    [63] P.A. Vetter, T. Engel, J. Fontaine. Laser cladding: The relevant parameters for process control. Proceedings of the SPIE The International Society for Optical Engineering, 1994, 2207: 452~462.
    [64] M.L. Griffith, M.E. Schlienger, L.D. Harwell et al. Understanding thermal behavior in the LENS process. Materials and Design, 1999, 20(2-3): 107-113.
    [65] Gaumann M, Henry S, F. Cleton et al. Epitaxial Laser Metal Forming: Analysis of Microstructure Formation. Materials Science & Engineering A, 1999, 271(1-2): 232~241.
    [66] 杨健, 黄卫东, 陈静等. 激光快速成形金属零件的残余应力. 应用激光. 2004, 24(1): 5~8.
    [67] N.W. Klingbeil, J.L. Beuth, R.K. Chin et al. Residual stress-induced warping in direct metal solid freeform fabrication. International Journal of Mechanical Sciences, 2002, 44(1): 57~77.
    [68] Li L. Steen WM. Sensing, modeling and closed loop of powder feeder for laser surface modification. Orlando, FL, USA, ICALEO’1993: 965~74.
    [69] P.A. Carlvalho, N. Braz, M.M. Pontinha et al. Automated workstation for variable composition laser cladding-its use for rapid alloy scanning. Surface and Coatings Technology, 1995, 72(1-2): 62~70.
    [70] Dongming Hu, R. Kovacevic. Sensing, modeling and control for laser-based additive manufacturing. International Journal of Machine Tools & Manufacture, 2003, 43(1): 51~60.
    [71] S.A. Morgan, M.D.T. Fox, M.A. McLean et al. Real-time process control in CO2 laser welding and direct casting: focus and temperature. Orlando, FL, USA, ICALEO’1997: 290~299.
    [72] H. Derouet, L. Sabatier, F. Coste et al. Process Control Applied to Laser Surface Remelting. Proceedings of ICALEO, 1997: 85~92.
    [73] P. Koomsap, V.V. Prabhu, J.T. Schriempf et al. Simulation-based design of laser-based free forming process control. Journal of Laser Applications, 2001, 13(2): 46~59.
    [74] W.H. Hofmeister, D.O. MacCallum. G.A. Knorovsky. Video monitoring and control of the LENS process. Proceedings of AWS 9th Int. Conf. on Computer Technology in Welding, 1999: 187~196.
    [75] D.S. Choi, S.H. Lee, B.S. Shin et al. Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology. Journal of Materials Processing Technology, 2001, 113(1-3): 273~279.
    [76] J.Y. Jeng, M.C. Lin. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. Journal of Materials Processing Technology, 2001, 110(1): 98~103.
    [77] 徐向阳, 陈光南, 刘文今. 先进的激光直接制造技术与现代航空装备维修. 航空维修与工程, 2004, (3): 28~30.
    [78] V. Kumar, D. Dutta. An approach to modeling multi-material objects. In: Hoffman C, Bronsvort W, editors. Fourth Symposium on Solid Modeling and Applications, Atlanta, Georgia. New York: ACM SIGGRAPH, 1997: 336~353.
    [79] Y.K. Siu, S.T. Tan. ‘Source-based’heterogeneous solid modeling. Computer-Aided Design, 2002, 34(1): 41~45.
    [80] T.R. Jackson, H. Liu, N.M. Patrikalakis et al. Modeling and designing functionally graded material components for fabrication with local composition control. Materials and Design, 1999, 20(2-3): 63~75.
    [81] K.H. Shin, H. Natu, D. Dutta et al. A method for the design and fabrication of heterogeneous objects. Materials and Design, 2003, 24(5): 339~353.
    [82] R.K. Oruganti, A.K. Ghosh, J. Mazumder. Thermal expansion behavior in fabricated cellular structures. Materials Science and Engineering A, 2004, 371(1-2): 24~34.
    [83] 黄树槐, 肖跃加, 莫健华等. 快速成形技术的展望. 中国机械工程, 2000, 11(1-2): 195~200.
    [84] http://140.112.43.64/doc/ntu_talk.pdf
    [85] K.M. B. Taminger, R.A. Hafley, D.L. Dicus. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions. Invited Keynote Lecture for 2002 Int. Conf. on Metal Powder Deposition for Rapid Manufacturing, April 8-10, 2002, San Antonio, TX.
    [86] Jehnming Lin. A simple model of powder catchment in coaxial laser cladding. Optics & Laser Technology, 1999, 31(3): 233~238.
    [87] 高淑英, 杨洗陈. 用于激光熔敷的同轴送粉喷嘴的设计. 天津工业大学学报, 2003, 22(5): 42~45.
    [88] P.M. Pandey, N.V. Reddy, S.G. Dhande. Slicing procedures in layered manufacturing: a review. Rapid Prototyping Journal, 2003, 9(5): 274~288.
    [89] I. Stroud, P.C. Xirouchakis. STL and extensions. Advances in Engineering Software, 2000, 31(2): 83~95.
    [90] R.C. Luo, P.T. Yu, Yih-Fang Lin et al. Efficient 3D CAD model Slicing for rapid prototyping Manufacturing Systems. IECON Proceedings, 1999, (3): 1504~1509.
    [91] Y. Yang, J.Y.H. Fuh, H.T. Loh. An efficient scanning pattern for layered manufacturing process. IEEE Int. Conf. on Robotics and Automation, 2001, 2(2): 1340~1345.
    [92] 刘斌,肖跃加,韩明等. 实体截面轮廓内外边界的自动识别算法研究. 华中理工大学学报, 1996, 24(10): 23~25.
    [93] P. Kulkarni, D. Dutta. Deposition strategies and resulting part stiffnesses in fused deposition modeling. Journal of manufacturing science and engineering, 1999, 121(1), 93~103.
    [94] Xiaoping Qian, D. Dutta. An Architecture for Interoperability of Layered Manufacturing Data. Proceedings of DETC’98, ASME Design Engineering Technical Conferences. Atlanta 1998, DETC98/CIE-5700.
    [95] Deok-Soo Kim. Polygon offsetting using a Voronoi diagram and two stacks. Computer-Aided Design, 1998, 30(14): 1069~1076.
    [96] 宾鸿赞, 张小波, 刘征宇等. 生长型制造中薄层分形描路径的生成与控制系统. 中国机械工程, 1998, 9(12): 52~54.
    [97] 赵毅, 李占利, 卢秉恒. 激光快速成型中激光扫描路径的快速生成算法. 计算机辅助设计与图形学学报. 1998, 10(3): 260~265.
    [98] Takashi Maekawa. An overview of offset curves and surfaces. Computer-Aided Design, 1999, 31(3): 165~173.
    [99] A.Y.C. Nee, J.Y.H. Fuh, T. Miyazawa. On the improvement of the stereolithography (SL) process. Journal of Materials Processing Technology, 2001, 113(1-3): 262~268.
    [100] M, T. Ensz, M. L. Griffith, L. D. Harwell. Software Development for Laser Engineered Net Shaping. Solid Freeform Fabrication Proceedings, 1998: 359~366.
    [101] Y. Yang, J.Y.H. Fuh, H.T. Loh, Y.G. Wang. An efficient scanning pattern for layered manufacturing processes. IEEE Int. Conf. on Robotics and Automation, 2001, 2: 1340-1345.
    [102] Bahattin Koc, Yuan-Shin Lee. Non-uniform offsetting and hollowing objects by using biarcs fitting for rapid prototyping processes. Computers in Industry, 2002, 47(1): 1~23.
    [103] 刘斌, 张征, 孙延明等. 快速成型系统中Offset 型填充算法. 华南理工大学学报(自然科学版), 2001, 29(3): 64~66.
    [104] 惠延波, 卢秉恒. 一种多边形区域运算的改进算法. 工程图学学报. 1998, (1): 61~65.
    [105] 李志英, 黄晓明, 张伯霖. 超高速加工技术及其应用. 现代制造工程, 2001, (11): 71~72.
    [106] 王志良. 导弹薄壁舱体的精密加工. 航天工艺, 1995, (5): 8~11.
    [107] Jichang Liu, Lijun Li. In-time motion adjustment in laser cladding manufacturing process for improving dimensional accuracy and surface finish of the formed part. Optics & Laser Technology, 2004, 36(6): 477~483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700