金属有机配合物用作后合成修饰与晶态分子容器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机配合物的研究重点和方向已经从设计合成、结构表征转变为对其潜在应用的探索,主要是在气体吸附,荧光,催化和生物等领域的应用。运用晶体工程原理,我们可以直接获得具有功能化的金属有机配合物材料。最近几年,后合成和分子容器方法可以帮助我们对主体结构更好的加以修饰(中心离子,有机桥连配体或者孔表面),并广泛用于了合成和改造金属有机骨架领域中,实现了金属有机材料结构的多样性和更加优良的性能。举例来说,中心离子交换可以使原始配合物具有较高的催化活性,或者提高气体吸附能力。所以说,中心离子交换为获得中心离子不同的异质同构配合物提供了简单可行的方法。而对于一些金属有机配合物响应合适的客体分子后,其荧光性能发生了很大改变,可以用于潜在的发光材料。
     本论文主要分为以下六个部分:
     1.采用不对称的刚性吡啶羧酸配体和适当的二价金属在适当的溶剂热条件下通过自组装可以获得结构复杂,迷人的金属有机网络结构。
     2.鉴于客体分子的捕获和交换过程大部分是在常温下进行的,我们考察了高温下对该领域的探索和研究。
     3.采用刚性多氮杂环的有机配体与特定金属离子在高温溶剂热条件进行自组装,考察其结构的多样性和相关性。
     4.根据结构特点,考察了对目标配合物在结构方面的延伸,同时对无机小分子的响应及客体分子捕获前后的结构,磁性,光学,以及催化等方面的性质研究。
     5.利用单晶到单晶去探索相似结构之间的转化,为获得新颖金属有机配合物提供了新的途径和方法。
     6.在采用刚性多氮杂环的有机配体的前提下,引入不同的芳香环羧酸配体和金属离子进行自组装,考察其结构的多样性和不同结构间的转变方式。
Much of the initial enthusiasm and direction on metal-organic frameworks (MOFs) over the past decades has transform from design and synthesis, structural characterization to exploration for the potential applications, which have begun to flourish in areas including gas storage, catalysis, luminescence, biotechnology and so on. In principle, using crystal engineering, we could obtain novel functional metal organic materials (MOMs) via direct methods. Recently, post-synthetic modification (PSM) and crystalline molecular flask (CMF) are widely applied in the areas in construction and restructure of MOFs (central metal ions, organic linkers, pores surface), to produce novel MOMs with structural diversity and more excellent function. For example, metal ion exchange can make previously inert MOFs catalytically active, or improve the gas sorption properties of the framework. Therefore, it is of great interest to provide simple and feasible approaches to create isomorphous MOFs containing various metal ions that cannot be obtained by direct synthesis. In addition, some examples of porous MOFs sensing suitable guest molecules, leads to unprecedented modification in fluorescence properties, which are potential luminescent materials candidates.
     Six following parts are including in this work:
     1. The asymmetric rigid pyridine carboxylic ligand and divalent metal ions are employed to obtain complicated and intriguing metal organic network structures under the appropriate solvent-thermal conditions by self-assembly.
     2. In view of the guest molecule capture and exchange mostly occuring at room temperature, we investigated in the field of exploration and research at high temperature.
     3. Self-assembly of the rigid nitrogen heterocyclic organic ligand and specific metal ions at high temperature under solvent thermal conditions and invesgation on diversity and correlation of the structures.
     4. According to the structure characteristics, we further make an investigation on the extension of the resulting MOFs, but also magnetic, optical, and catalytic properties before or after small inorganic molecules sensing and guest molecules capture.
     5. Upon single crystal to single crystal process to explore the structure transformation, it provides a new way to obtain novel metal organic frameworks.
     6.Introducing different aromatic carboxylic ligands premise that rigid nitrogen heterocyclic organic ligand and metal ion are adopting leads to the structures with diversity and related structural transformation.
引文
(1)Majumder, M.; Sheath, Phillip.; Mardel, J. I.; et al. Aqueous Molecular Sieving and Strong Gas Adsorption in Highly Porous MOFs with a Facile Synthesis. Chem. Mater.2012,24, 4647-4652.
    (2)Li, J.-R.; Yu, J.-M.; Lu, W.-G.; et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun.2013, DOI:10.1038/ncomms2552.
    (3)Farrusseng, D.. Metal-Organic Frameworks:Applications from Catalysis to Gas Storage; Wiley:New York,2011.
    (4)Kreno, L. E.; Leong, K.; Farha, O. K.; et al. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev.2012,112,1105-1125.
    (5)Li, J.-R.; Sculley, Julian; Zhou, H.-C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012,112,869-932.
    (6)Li, J.-R.; Ma, Y.; McCarthy, M. C; et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev.2011,225,1791-1823.
    (7)Pramanik, S.; Zheng, C; Zhang, X.; et al. New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. J. Am. Chem. Soc.2011,133,4153-4155.
    (8)Takashima, Y.; Martinez, V. M.; Furukawa, S.; et al. Molecular decoding using luminescence from an entangled porous framework. Nat. Commun..2010,2,168-175.
    (9)Chen, B.; Wang, L.; Zapata, F.; et al. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc.2008,130,6718-6719.
    (10)Chen, B.; Wang, L.; Xiao, Y; et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ion. Angew. Chem. Int. Ed.2008,48,500-503.
    (11)Kumar, D. K.; Filatov, A. S.; Napier, M.; et al. Dirhodium Paddlewheel with Functionalized Carboxylate Bridges:New Building Block for Self-Assembly and Immobilization on Solid Support. Inorg. Chem.,2012,51,4855-4861.
    (12)Cohen, S. M. Modifying MOFs:new chemistry, new materials. Chem. Sci.2010,1,32-36.
    (13)Lyndon, R.; Konstas, K.; Ladewig, B. P. et al. Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release. Angew. Chem. Int. Ed.2013,52,1-5.
    (14)Horiuchi, S.; Murase, T.; Fujita, M.. Noncovalent Trapping and Stabilization of Dinuclear Ruthenium Complexes within a Coordination Cage. J. Am. Chem. Soc.2011,133, 12445-12447
    (15)Wang, Z.; Cohen, S. M..Tandem Modification of Metal-Organic Frameworks by a Postsynthetic Approach. Angew. Chem., Int. Ed.2008,47,4699-4702.
    (16)Ikemoto, K.; Inokuma,Y.;Fujita, M.. Diels-Alder via Molecular Recognition in a Crystalline Molecular Flask. J. Am. Chem. Soc.2011,133,16806-16808.
    (17)Wang, Z.; Cohen, S. M.. Modulating Metal-Organic Frameworks To Breathe:A Postsynthetic Covalent Modification Approach. J. Am. Chem. Soc.2009,131,16675-16677.
    (18)Inokumal, Y.;Kawano, M.;Fujita, M.. Crystalline molecular flasks. Nat. Chem.349-358.
    (19)Shultz, A. M. Sarjeant, A. A. Farha, O. K.; et al. Post-Synthesis Modification of a Metal-Organic Framework To Form Metallosalen-Containing MOF Materials. J. Am. Chem. Soc.2011,133,13252-13255
    (20)Inokuma, Y.; Kojima, N.; Arai, T.; et al. Bimolecular Reaction via the Successive Introduction of Two Substrates into the Crystals of Networked Molecular Cages. J. Am. Chem. Soc.2011, 133,19691-19693
    (21)Burrows, A. D.. Mixed-component metal-organic frameworks (MC-MOFs):enhancing functionality through solid solution formation and surface modifications. CrystEngComm 2011,13,3623-3642.
    (22)Koh, K.; Wong-Foy, A. G.; Matzger, A.. A Porous Coordination Copolymer with over 5000 m2/g BET Surface Area. J. J. Am. Chem. Soc.2009,131,4184-4185.
    (23)Koh, K.; Wong-Foy, A. G.; Matzger, A. J. MOF@MOF:microporous core-shell architectures. Chem. Commun.2009,6162-6164.
    (24)Deng, H.; Doonan, C; Furukawa, H.; et al. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010,327,846-850.
    (25)Eddaoudi, M.; Kim, J.; Rosi, N.; et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002,295,469.
    (26)James, S. L.. Metal-organic frameworks. Chem. Soc. Rev.2003,32,276-288.
    (27)Rowsell, J. L. C; Yaghi, O. M.. Metal-organic frameworks:a new class of porous materials. Microporous& Mesoporous Mater.2004,73,3-14. Cote, A. P.; Benin, A. I. Ockwig, N. W.; et al. Porous, Crystalline, Covalent Organic Frameworks. Science,2005,310,1166-1170.
    (28)Ferey, G.. Hybrid porous solids:past, present, future. Chem. Soc. Rev.2008,37,191-214.
    (29)Papaefstathiou, G. S.; MacGillivray, L. R.. Inverted metal-organic frameworks:solid-state hosts with modular functionality. Coord. Chem. Rev.2003,246,169-184.
    (30)Procopio, E. Q.; Fukushima, T.; Barea, E.; et al. A Soft Copper(Ⅱ) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chem. Eur. J. 2012,18,13117-13125.
    (31)Ma, S. Q.; Zhou, H. C. A Metal-Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. J. Am. Chem. Soc.2006,128,11734-11735.
    (32)Cychosz, K. A.; Wong-Foy, A. G.; Matzger, A. J.. Liquid Phase Adsorption by Microporous Coordination Polymers:Removal of Organosulfur Compounds. J. Am. Chem. Soc.2008,130, 6938-6939.
    (33)Liu, Y. L.; Kravtsov, V. C; Larsen, R.; Eddaoudi, M.. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun.2006,1488-1490.
    (34)Park, K. S.; Ni, Z.; Cote, A. P.; et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A.2006,103,10186-10191.
    (35)Mantion, A.; Massuger, L.; Rabu, P.; et al. Metal-Peptide Frameworks (MPFs): "Bioinspired" Metal Organic Frameworks. J. Am. Chem. Soc.2008,130,2517-2526.
    (36)Lin, J. B.; Zhang, J. P.; Chen, X. M. Nonclassical Active Site for Enhanced Gas Sorption in Porous Coordination Polymer. J. Am. Chem. Soc.2010,132,6654-6656.
    (37)Fang, Q. R.; Makal, T. A.; Young, M. D.; et al. Recent advances in the study of mesoporous metal-organic frameworks. Comments on Inorganic Chemistry.2010,31,165-195.
    (38)An, J.; Geib, S. J.;Rosi, N. L. High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine-and Amino-Decorated Pores. J. Am. Chem. Soc.2010,132,38-39.
    (39)Imaz, I.; Rubio-Martinez, M.; An, J.; et al. Metal-biomolecule frameworks (MBioFs). Chem. Commun.2011,47,7287-7302.
    (40)Ferey, G.; Mellot-Draznieks, C; Serre, C; et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005,309,2040-2042.
    (41)Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999,283,1148-1150.
    (42)Park, H. J.; Suh, M. P.. Mixed-Ligand Metal-Organic Frameworks with Large Pores:Gas Sorption Properties and Single-Crystal-to-Single-Crystal Transformation on Guest Exchange. Chem.-Eur. J.2008,14,8812-8821.
    (43)Qiu, S. L.; Zhu, G. S.. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord. Chem. Rev.2009,253, 2891-2911.
    (44)Han, Y.; Chilton, N. F. Li, M. et al. Post-synthetic Monovalent Central Metal Exchange,
    Specific I2-Sensing and Polymerization of a Catalytic [3×3] Grid [CuⅡ5CuI4L6]·(I)2·13H2O. Chem. Eur. J.2013, DOI:10.1002/chem.201204115.
    (45)Seo, J. S.; Whang, D.; Lee, H.; et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000,404,982-986.
    (46)Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Acc. Chem. Res.2005,38,176-182.
    (47)O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Ace. Chem. Res. 2008,41,1782-1789.
    (48)Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers:Design, Analysis and Application; The Royal Society of Chemistry:Cambridge,2009.
    (49)Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuⅠZnⅡ(CN)4] and CuI[4,4',4",4'"-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc.1990,112, 1546-1554.
    (50)Li, H.; Eddaoudi, M.;O'Keeffe, M.;Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999,402,276-279.
    (51)Bradshaw, D.; Claridge, J. B.;Cussen, E. J.; et al. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials. Acc. Chem. Res.2005,38,273-282.
    (52)Horike, S.; Shimomura, S.; Kitagawa, S.. Soft porous crystals. Nat. Chem.2009,1,695-704.
    (53)Furukawa, H.; Ko, N.; Go, Y. B.; et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010,329,424-428.
    (54)Czaja, A. U.; Trukhan, N.; Muller, U.. Industrial applications of metal-organic frameworks. Chem. Soc. Rev.2009,38,1284-1293.
    (55)Smulders, M. M. J.; Riddell, I. A.; Browne. C.;et al. Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev.,2013,42, 1728-1754.
    (56)Fujita, M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors. Chem. Soc. Rev.1998,27,417-425.
    (57)Tranchemontagne, D. J.; Ni, Z.; O'Keeffe, M.; et al. Reticular Chemistry of Metal-Organic Polyhedra. Angew. Chem. Int. Ed.2008,47,5136-5147
    (58)Longa, J. R.; Yaghi, O. M.. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev.,2009,38,1213-1214
    (59)O'Keeffe, M.; Yaghi, O. M.. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev.,2012,112, 675-702
    (60)Conn, M. M.; Rebek, J. Jr.. Self-assembling capsules. Chem. Rev.1997,1647-1668.
    (61)Hof, F., Craig, S. L., Nuckolls, C.; Rebek, J. Jr. Molecular encapsulation. Angew. Chem. Int. Ed.2002,41,1488-1508.
    (62)Fang, Y.; Murase, T.; Sato, S.; et al. Noncovalent Tailoring of the Binding Pocket of Self-Assembled Cages by Remote Bulky Ancillary Groups. J. Am. Chem. Soc.2013,135, 613-615
    (63)Bloch, E. D.; Britt, D.; Lee, C.; et al. Metal Insertion in a Microporous Metal-Organic Framework Lined with 2,2'-Bipyridine. J. Am. Chem. Soc.2010,132,14382-14384
    (64)Song, X.; Kim, T. K.; Kim, H.; et al. Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal-Organic Frameworks:Core-Shell Heterostructures via Selective Transmetalations. Chem. Mater.2012,24,3065-3073
    (65)Li, J.-R.; Zhou, H.-C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedral. Nature Chemistry.893-898
    (66)Falkowski, J. M.; Wang, C.; Liu, S.; et al. Actuation of Asymmetric Cyclopropanation Catalysts:Reversible Single-Crystal to Single-Crystal Reduction of Metal-Organic Frameworks Angew. Chem. Int. Ed.2011,50,8674-8678
    (67)Z. Zhang, W.-Y. Gao, L. Wojtas, et al. Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO2/CH4 Selectivity. Angew. Chem. Int. Ed.2012,51,1-6
    (68)W. Xuan, C. Zhu, Y. Liu; et al. Mesoporous metal-organic framework materials. Chem. Soc. Rev.2012,41,1677-1695
    (69)Ohmori, O.; Kawano, M.; Fujita. M.. Crystal-to-Crystal Guest Exchange of Large Organic Molecules within a 3D Coordination Network. J. Am. Chem. Soc.,2004,126,16292-16293.
    (70)Mai, P.; Breiner, B.; Rissanen, K.; et al. White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule. Science,2009.1697-1699
    (71)Haneda, T. Kawano, M. Kawamichi, T.. Direct Observation of the Labile Imine Formation through Single-Crystal-to-Single-Crystal Reactions in the Pores of a Porous Coordination Network. J. Am. Chem. Soc.2008,130,1578-1579
    (72)Kawamichi, T.; Kodama, T.; Kawano, M.; et al. Single-Crystalline Molecular Flasks: Chemical Transformation with Bulky Reagents in the Pores of Porous Coordination Networks. Angew. Chem. Int. Ed.2008,47,8030-8032
    (73)Kawamichi, T.; Haneda, T.; Kawano, M.; et al. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 633-635
    (74)An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; et al. Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations. J. Am. Chem. Soc.2011,133,1220-1223
    (75)Ma, J.-P. Yu,; Y.; Dong, Y.-B.. Fluorene-based Cu(Ⅱ)-MOF:A visual colorimetric anion sensor and separator based on anion-exchange approach. Chem. Commun.,2012,48, 2946-2948
    (76)Lu, Z.-Z.; Zhang, R.; Li, Y.-Z.; et al. Solvatochromic Behavior of a Nanotubular Metal-Organic Framework for Sensing Small Molecules. J. Am. Chem. Soc.2011,133, 4172-4174.
    [1]Cohen M. S.. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev.2012,112,970-1000.
    [2]Lan, Y. Q., Li, S. L., Jiang, H. L., et al. Tailor-Made Metal-Organic Frameworks from Functionalized Molecular Building Blocks and Length-Adjustable Organic Linkers by Stepwise Synthesis. Chem. Eur. J.2012,18,8076-8083.
    [3]Lim C. S., Tegoni M., Jakusch T. et al. Clarifying the Mechanism of Cation Exchange in Ca(Ⅱ)[15-MCcu(Ⅱ)Ligand-5] Complexes. Inorg Chem.2012,51,11533-11540.
    [4]Fang Y., Murase T., Sato. S.. et al. Noncovalent Tailoring of the Binding Pocket of Self-Assembled Cages by Remote Bulky Ancillary Groups. J. Am. Chem. Soc.2013,135, 613-615
    [5]Burrows A. D., Frost C. G., Mahon M. F., et al. Post-Synthetic Modification of Tagged Metal-Organic Frameworks. Angew. Chem.2008,120,8610-8614; Angew. Chem. Int. Ed. 2008,47,8482-8486.
    [6]Ohara K., Kawano M., Inokuma Y., et al. A Porous Coordination Network Catalyzes an Olefin Isomerization Reaction in the Pore. J. Am. Chem. Soc.2010,132,30-31.
    [7]Sahoo S. C, Kundu T., Banerjee R.. Helical Water Chain Mediated Proton Conductivity in Homochiral Metal-Organic Frameworks with Unprecedented Zeolitic unh-Topology. J. Am. Chem. Soc.2011,133,17950-17958.
    [8]Fujita D., Suzuki K., Sato S. et al. Protein encapsulation within synthetic molecular hosts. Nat. Commun.2012.1-7.
    [9]Browne, C; Brenet, S.; Clegg, J. K. et al. Solvent-Dependent Host-Guest Chemistry of an Fe8L12 Cubic Capsule. Angew. Chem. Int. Ed.2013,52,1-6.
    [10]Ohmori O., Kawano M., Fujita M.. Crystal-to-Crystal Guest Exchange of Large Organic Molecules within a 3D Coordination Network. J. Am. Chem. Soc.2004,126,16292-16295 Osuga T., Murase T., Ono K. et al. [m×n] Metal Ion Arrays Templated by Coordination Cages. J. AM. CHEM. SOC.2010,132,15553-15555
    [11]Reger D. L., Debreczeni A., Smith M. D.. Zinc Paddlewheel Dimers Containing a Strong π…π Stacking Supramolecular Synthon:Designed Single-Crystal to Single-Crystal Phase Changes and Gas/Solid Guest Exchange. Inorg. Chem.2011,50,11754-11764.
    [12]Biradha K., Hongo Y., Fujita M., Crystal-to-Crystal Sliding of 2D Coordination Layers Triggered by Guest Exchange. Angew. Chem.2002,114,3545-3548; Angew. Chem. Int. Ed. 2002,41,3395-3398.
    [13]Sharma M. K., Lama P., Bharadwaj P. K.. Reversible Single-Crystal to Single-Crystal Exchange of Guests in a Seven-Fold Interpenetrated Diamondoid Coordination Polymer. Cryst. Growth Des.2011,11,1411-1416.
    [14]Singh, P.; Hundal, G.; et al. A chemodosimeter for ratiometric detection of cyanide in aqueous media and human blood serum. Chem. Commun.,2013,49,2667-2669.
    [15]Das M. C, Bharadwaj P. K... Effect of Bulkiness on Reversible Substitution Reaction at MnⅡ Center with Concomitant Movement of the Lattice DMF:Observation through Single-Crystal to Single-Crystal Fashion. Chem. Eur. J.2010,16,5070-5077.
    [16]Haldara, R.;Maji, T. K. Selective carbon dioxide uptake and crystal-to-crystal transformation: porous 3D framework to 1D chain triggered by conformational change of the spacer. CrystEngComm.2012,14,684-690.
    [17]Yang S. H, Martin G. S. B., Titman J. J. et al. Pore with Gate:Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal-Organic Frameworks. Inorg. Chem.,2011,50,9374-9384
    [18]Hou G. G., Liu Y., Liu Q. K., et al. NbO lattice MOFs based on octahedral M(Ⅱ) and ditopic pyridyl substituted diketonate ligands:structure, encapsulation and guest-driven luminescent property. Chem. Commun.2011,47,10731-10733.
    [19]Mart-Rujas J., Islam N., Hashizume D., et al. Ab Initio Powder Diffraction Structure Analysis of a Host-Guest Network:Short Contacts between Tetrathiafulvalene Molecules in a Pore Angew. Chem.2011,123,6229-6232; Angew. Chem. Int. Ed.2011,50,6105-6108.
    [20]Kikuchi T., Sato S., Fujita M.. Well-Defined DNA Nanoparticles Templated by Self-Assembled M12L24 Molecular Spheres and Binding of Complementary Oligonucleotides. J. Am. Chem. Soc.2010,132,15930-15932.
    [21]Klosterman J. K., Iwamura M., Tahara T., et al. Energy Transfer in a Mechanically Trapped Exciplex. J. Am. Chem. Soc.2009,131,9478-9479.
    [22]Liu Q. K., Ma J. P., Dong Y. B.. Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(Ⅱ)-Triazole Metal-Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion. J. Am. Chem. Soc.2010,132,7005-7017.
    [23]Yaghi O. M., O'Keeffe M., Ockwig N. W., et al. Reticular synthesis and the design of new materials. Nature 2003,423,705-714.
    [24]Delgado-Friedrichs, O, Systre version 1.1.2 beta.
    [25]Spek, A. J. Appl. Crystallogr.2003,36,7.
    [26]Zhang X. M., Fang R. Q., Wu H. S.. A Twelve-Connected Cu6S4 Cluster-Based Coordination Polymer. J. Am. Chem. Soc.2005,127,7670-7671.
    [27]Li D., Wu T., Zhou X. P., et al. Twelve-Connected Net with Face-Centered Cubic Topology: A Coordination Polymer Based on [Cu12((μ4-SCH3)6]6+Clusters and CN+ Linkers. Angew. Chem.2005,117,4247-4250; Angew. Chem. Int. Ed.2005,44,4175-4178.
    [28]Hao Z. M., Fang R. Q., Wu H. S., et al. Is It True Dioxygenase or Classic Autoxidation Catalysis? Re-Investigation of a Claimed Dioxygenase Catalyst Based on a Ru2-Incorporated, Polyoxometalate Precatalyst. Inorg. Chem.2008,47,8197-8203.
    [29]Chen X. D., Zhao X. Hu, Chen M., et al. A 3D Copper(II) Coordination Framework Showing Different Kinetic and Thermodynamic Crystal Transformations through Removal of Guest Water Cubes. Chem. Eur. J.2009,15,12974-12977.
    [30]Kumara Swamy K. C, Kumaraswamy S., Kommana P.. Very Strong C-H…O,N-H…O, and O-H…O Hydrogen Bonds Involving a Cyclic Phosphate. J. Am. Chem. Soc.2001,123,12642-12649.
    [31]Bertrand J. A., F. T.Helm. Magnetic Exchange in Binuclear Copper(II) Complexes. Antiferromagnetic Coupling through Hydrogen-Bonded Oxygen-Hydrogen-Oxygen Bridges J. Am. Chem. Soc.1973,95,8184-8185.
    [32]J. Emsley. Very strong hydrogen bonding. Chem. Soc. Rev.1980,9,91-124.
    [33]Cui F. J., Li S. G.,Jia C. D., et al. Anion-Dependent Formation of Helicates versus Mesocates of Triple-Stranded M2L3 (M= Fe2+, Cu2+ Complexes. Inorg. Chem.2012,51,179-187.
    [34]Li C. P., Du M.. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011,47,5958-5972;
    [35]Du M., Li C. P., Wu J. M., et al. Destruction and reconstruction of the robust [Cu2(OOCR)4] unit during crystal structure transformations between two coordination polymers. Chem. Commun.2011,47,8088-8090.
    [36]Kilbas B., Mirtschin S., Scopelliti R., et al. A solvent-responsive coordination cage. Chem. Sci.2012,3,701-704.
    [37]Jay W. Schneider, J. W., Goetsch, S. C. Leng, X. Y., et al. Coupling Hippocampal Neurogenesis to Brain pH through Proneurogenic Small Molecules That Regulate Proton Sensing G Protein-Coupled Receptors. Chem. Neurosci.,2012,3,557-568.
    [38]Kamlet M. J., Taft R. W.. The solvatochromic comparison method. I. The.beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc.1976,98,377-383.
    [39]Kamlet M. J., Taft R. W.. The solvatochromic comparison method.2. The.alpha.-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc.1976,98,2886-2894.
    [40]Rueff J. M., Masciocchi N., Rabu P., et al. Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono-and Dicarboxylate Soaps. Chem. Eur.J.2002,8,1813-1820.
    [41]Rueff J. M., Masciocchi N., Rabu P., et al. Structure and Magnetism of a Polycrystalline Transition Metal Soap-CoⅡ[OOC(CH2)10COO](H2O)2. Eur. J. Inorg. Chem.2001,2843-2848.
    [42]Kurmoo M., Kumagai H., Hughes S. M. Reversible Guest Exchange and Ferrimagnetism (Tc= 60.5 K) in a Porous Cobalt(Ⅱ)-Hydroxide Layer Structure Pillared with trans-1,4-Cyclohexanedicarboxylate. Inorg. Chem.2003,42,6709-6722;
    [43]Bauer E. M., Bellitto C, Righini G., et al. Comparison of the Structure and Magnetic Order in a Series of Layered Ni(Ⅱ) Organophosphonates, Ni[(RPO3)(H2O)] (R= C6Hs, CH3, C18H37). Inorg. Chem.2008,47,10945-10952.
    [44]Zeng M. H., Zhou Y. L., Wu M. C, et al. A Unique Cobalt(Ⅱ)-Based Molecular Magnet Constructed of Hydroxyl/Carboxylate Bridges with a 3D Pillared-Layer Motif. Inorg. Chem. 2010,49,6436-6442.
    [45]Legrand Y. M., Van der Lee A., Masquelez N., et al. Temperature Induced Single-Crystal-to-Single-Crystal Transformations and Structure Directed Effects on Magnetic Properties. Inorg. Chem.2007,46,9083-9089.
    [46]Rabu P., Janvier P., Bujoli B.. Magnetic properties of a new 3D-cobalt phosphonate: Co3(O3PC2H4CO2)2. J. Mater. Chem.1999,9,1323-1326.
    [47]Rabu P., Rueff J. M., Huang Z. L., et al. Copper(Ⅱ) and cobalt(Ⅱ) dicarboxylate-based layered magnets:influence of π electron ligands on the long range magnetic ordering. Polyhedron 2001,20,1677-1685.
    [48]Tian, J. M.; Li, W. L1.;Li, B. et al. Decametallic CoⅡ-Cluster-Based Microporous Magnetic Framework with a Semirigid Multicoordinating Ligand. Chem. Eur. J.2013, DOI: 10.1002/chem.201204458
    [1]Kim M., Cahill J. F., Fei H. H., et al. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. J. Am. Chem. Soc,2012,13418082-18088.
    [2]Kim Y., Das S., Bhattacharya S., Hong S. et al. Metal-Ion Metathesis in Metal-Organic Frameworks:A Synthetic Route to New Metal-Organic Frameworks. Chem. Eur. J.2010,18, 16642-16648.
    [3]Dinca M., Dailly A., Liu Y. et al. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. J. Am. Chem. Soc.2006,128, 16876-16883.
    [4]Plabst M., McCusker L. B., Bein T.. Exceptional Ion-Exchange Selectivity in a Flexible Open Framework Lanthanum(III)tetrakisphosphonate. J. Am. Chem. Soc.2009,131,18112-18118.
    [5]Zhang Z.-J., Zhang L.-P, Wojtas L. et al. Templated Synthesis, Postsynthetic Metal Exchange, and Properties of a Porphyrin-Encapsulating Metal-Organic Material. J. Am. Chem. Soc.2012, 134,924-927.
    [6]Wang X.-J., Li P.-Z., Liu L., et al. Significant gas uptake enhancement by post-exchange of zinc(II) with copper(II) within a metal-organic framework. Chem. Commun.,2012,48, 10286-10288.
    [7]Prasad T. K., Hong D. H, Suh M. P.. High Gas Sorption and Metal-Ion Exchange of Microporous Metal-Organic Frameworks with Incorporated Imide Groups. Chem. Eur. J.2010, 16,14043-14050.
    [8]Liao J.-H., Chen W.-T., Tsai C.-S. et al. Characterization, adsorption properties, metal ion-exchange and crystal-to-crystal transformation of Cd3[(Cd4Cl)3(BTT)g(H2O)12]2 framework, where BTT3-= 1,3,5-benzenetristetrazolate. CrystEngComm,2013, DOI: 10.1039/C3CE27063G.
    [9]Mi L.-W., Hou H.-W., Song Z.-Y. et al. Polymeric Zinc Ferrocenyl Sulfonate as a Molecular Aspirator for the Removal of Toxic Metal Ions. Chem. Eur. J.2008,14,1814-1821.
    [10]Huang S.-L., Li X.-X., Shi X.-J. et al. Structure extending and cation exchange of Cd(Ⅱ) and Co(II) materials compounds inducing fluorescence signal mutation. J. Mater. Chem.2010,20, 5695-5699.
    [11]Mi L.-W., Hou H.-W., Song Z.-Y. et al. Rational Construction of Porous Polymeric Cadmium Ferrocene-1,1'-disulfonates for Transition Metal Ion Exchange and Sorption. Cryst Growth Des.2007,7,2553-2561.
    [12]Yao Q.-X., Sun J.-L., Li K. et al. A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. Dalton Trans.2012,41,3953-3955.
    [13]Wei Z.-W, Lu W.-G, Jiang H.-L. et al. A Route to Metal-Organic Frameworks through Framework Templating. Inorg Chem.2013,52,1164-1166.
    [14]Mukherjee G, Biradha K., Separation of isomers of sulfophthalic acid by guest induced host framework formation with 4,4'-bipyridine.Chem. Commun.2011,47,6614-6616.
    [15]Zhang Z.-J., Shi W., Niu Z. et al. A new type of polyhedron-based metal-organic frameworks with interpenetrating cationic and anionic nets demonstrating ion exchange, adsorption and luminescent properties. Chem Commun,2011,47,6425-6427.
    [16]Jin J., Wang W.-Y, Liu Y.-H. et al. A precise hexagonal octadecanuclear Ag macrocycle with significant luminescent properties. Chem. Commun.2011,47,7461-7464.
    [17]Hu J.-Y, Zhao J.-A., Guo Q.-Q. et al. Construction of a Ag12 High-Nucleariry Metallamacrocyclic 3D Framework. Inorg. Chem.2010,49,3679-3681.
    [18]Dawe L. N., Shuvaev K. V., Thompson L. K... Polytopic ligand directed elf-assembly—polymetallic [n×n] grids versus non-grid oligomers. Chem. Soc. Rev.2009,38, 2334-2359.
    [19]Thompson L. K., Waldmann O., Xu Z.-Q.. Polynuclear manganese grids and clusters—A magnetic perspective. Coord. Chem. Rev.2005,249,2677-2690.
    [20]Dawe L. N., Shuvaev K. V., Thompson L. K.. Magnetic [n×n] (n= 2-5) Grids by Directed Self-Assembly. Inorg. Chem,2009,48,3323-3341.
    [21]Newton G. N., Onuki T., Shiga T. et al. Mapping the Sequential Self-Assembly of Heterometallic Clusters:From a Helix to a Grid. Angew. Chem. Int. Ed.2011,50, 4844-4848.
    [22]Shiga T., Matsumoto T., Noguchi M. et al. Cobalt Antiferromagnetic Ring and Grid Single-Molecule Magnet. Chem. Asian J.2009,4,1660-1663.
    [23]Barboiu M., Vaughan G, Graff R. et al. Self-Assembly, Structure, and Dynamic Interconversion of Metallosupramolecular Architectures Generated by Pb(Ⅱ) Binding-Induced Unfolding of a Helical Ligand. J. Am. Chem. Soc.2003,125, 10257-10265.
    [24]Lin, Q. P.; Wu, T.; Bu, X.-H.; et al. A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Trans.2012,41,3620-3622.
    [25]Eryazici, I.; Farha, O. K.; Hauser, B. G.; et al. Two Large-Pore Metal-Organic Frameworks Derived from a Single Polytopic Strut. Cryst. Growth Des.2012,12,1075-1080.
    [26]Nouar F., Eubank J. F., Bousquet T. et al. Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks. J. Am. Chem. Soc.2008, 130,1833-1835.
    [27]Prakash M. J., Lah M. S., Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks. Chem. Commun.2009,3326-3341.
    [28]Zhang, P.; Li, B.; Zhao, Y; et al. A novel (3,36)-connected and self-interpenetrated metal-organic framework with high thermal stability and gas-sorption capabilities. Chem. Commun., 2011,47,7722-7724.
    [29]Luan X.-J., Wang Y.-Y, Li D.-S. et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed.2005,44,3864-3867.
    [30]Maxim C, Tuna F., Madalan A. M. et al. Cyanido-Bridged Heterometallic Oligonuclear Complexes and Coordination Polymers Constructed Using Tridentate Schiff-Base Ligands: Synthesis, Crystal Structures, and Magnetic and Luminescence Properties. A New Trimeric Water Cluster. Cryst. Growth Des.2012,12,1654-1665.
    [31]Zhang J.-P., Kitagawa S.. Supramolecular Isomerism, Framework Flexibility, Unsaturated Metal Center, and Porous Property of Ag(I)/Cu(I) 3,3',5,5'-Tetrametyl-4,4'-Bipyrazolate. J. Am. Chem. Soc.2008,130,907-917.
    [32]Spek A. L.. Single-crystal structure validation with the program PLATON.J. Appl. Crystallogr.2003,36,7.
    [33]V. A. Blatov, IUCr CompComm Newsl.2006,7,4; see also http://www.topos.ssu.samara.ru;
    [34]Lu W.-G, Yuan D.-Q, Makal T. A. et al. A Highly Porous and Robust (3,3,4)-Connected Metal-Organic Framework Assembled with a 90°Bridging-Angle Embedded Octacarboxylate Ligand. Angew. Chem. Int. Ed.2012,51,1580-1584.
    [35]Yao R.-X., Xu X., Zhang X.-M.. Magnetic Modulation and Cation-Exchange in a Series of Isostructural (4,8)-Connected Metal-Organic Frameworks with Butterfly-like [M4(OH)2(RCO2)8] Building Units. Chem. Mater.2012,24,303-310.
    [36]He Y.-B., Zhang Z.-J., Xiang S.-C. et al. A Microporous Metal-Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature. Chem. Eur. J.2012,18,613-619.
    [37]O. Delgado-Friedrichs, Systre version 1.1.2 beta,2007.
    [38]Hazra S., Majumder S., Fleck M., Aliaga-Alcalde N. et al. Synthesis, molecular and supramolecular structures, electrochemistry and magnetic properties of two macrocyclic dicopper(II) complexes:Microporous supramolecular assembly. Polyhedron.2009,28, 3707-3714.
    [39]Lin X.-J., Shen Z., Song Y., Xu H.-J., Li Y.-Z., You X.-Z.. Structures and magnetic properties of dicopper(II) and dinickel(II) complexes with end-on azido bridges. Inorg. Chim. Acta2005,358,1963-1969.
    [40]Kiczka S., Hoffmann S. K., Goslar J. et al. Electronic structure, Jahn-Teller dynamics and electron spin relaxation of two types of octahedral Cu(II) complexes in cadmium formate dihydrate Cd(HCOO)2.2H2O. EPR and ESE studies. Phys. Chem. Chem. Phys.2004,6,64-71.
    [41]Chilton N. F., Anderson R. P., Turner L. D. et al. PHI:A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d-and f-block complexes. J. Comput. Chem.,2013, in press.
    [42]Han Y, Xu H., Liu Y.-Y. et al. Temperature-Dependent Capture of Water Molecules by Saddle-Shaped Hexanuclear Carboxylate Cycloclusters in a (3,18)-Connected Metal-Organic Framework. Chem. Eur. J.2012,18,13954-13958.
    [43]Song K. C, Lee K. M., Nghia N. Van. et al. Synthesis and Anion Binding Properties of Multi-phosphonium Triarylboranes:Selective Sensing of Cyanide Ions in Buffered Water at pH 7. Organometallics,2013,32,817-823.
    [44]Yin Z., Wang Q.-X., Zeng M.-H.. Iodine Release and Recovery, Influence of Polyiodide Anions on Electrical Conductivity and Nonlinear Optical Activity in an Interdigitated and Interpenetrated Bipillared-Bilayer Metal-Organic Framework. J. Am. Chem. Soc.2012,134, 4857-4863.
    [45]Lin Y.-M., Massa W, Dehnen S.. "Zeoball" [Sn36Ge24Se132]24-:A Molecular Anion with Zeolite-Related Composition and Spherical Shape. J. Am. Chem. Soc,2012,134,4497-4500.
    [46]Sava D. F., Rodriguez M. A., Chapman K. W. et al. Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc,2011,133, 12398-12401.
    [47]Hasell T., Schmidtmann M., Cooper A. I.. Molecular Doping of Porous Organic Cages. J. Am. Chem. Soc.2011,133,14920-14923.
    [48]Cui P.,Ren L.-J., Chen Z. et al. Temperature-Controlled Chiral and Achiral Copper Tetrazolate Metal-Organic Frameworks:Syntheses, Structures, and 12 Adsorption. Inorg Chem. 2012,51,2303-2310.
    [49]Liu Q.-K., Ma J.-P., Dong Y.-B.. Highly efficient iodine species enriching and guest-driven tunable luminescent properties based on a cadmium(II)-triazole MOF. Chem. Commun.2011, 47,7185-7187.
    [50]Kloo L., Svensson P.Taylor H., M. J..Investigations of the polyiodides H3O·IX (x=3,5 or 7) as dibenzo-18-crown-6 complexes. J. Chem. Soc, Dalton Trans.2000,1061-1065.
    [51]Svensson P. H., Kloo L.. Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide-Iodine Systems. Chem. Rev.2003,103,1649-1684, and references therein.
    [52]Das M. C, Xiang S.-C, Zhang Z.-J. et al. Functional Mixed Metal-Organic Frameworks with Metalloligands. Angew. Chem. Int. Ed.2011,50,10510-10520.
    [53]Rivesta J. B., Jain P. K.. Cation exchange on the nanoscale:an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev.2013,42,89-96, and references therein.
    [54]Appukkuttan P., Dehaen W., Fokin V. V. et al. A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction. Org. Lett.2004,6,4223-4225.
    [55]Feldman A. K., Colasson B., and Fokin V. V.. One-Pot Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from In Situ Generated Azides. Org.Lett.2004,6,3897-3899.
    [56]Xia Y., Fan Z.-J., Yao J.-H. et al. Discovery of bitriazolyl compounds as novel antiviral candidates for combating the tobacco mosaic virus. Bioorganic& Medicinal Chemistry Letters. 2006,16,2693-2698.
    [57]Wang Z.-X., Zhao Z.-G, Synthesis of 1,4-disubstituted 1,2,3-triazoles via a three-component reaction in water in the presence of cux (X= Cl,I). J. Heterocyclic Chem,2007,44,89-92.
    [58]Jayaramulu K., Narayanan R. P., George S. J. et al. Luminescent Microporous Metal-Organic Framework with Functional Lewis Basic Sites on the Pore Surface:Specific Sensing and Removal of Metal Ions. Inorg. Chem.,2012,51,10089-10091.
    [59]Li Z.-X., Yu M.-M., Zhang L.-F. et al. A "switching on" fluorescent chemodosimeter of selectivity to Zn2+and its application to MCF-7 cells. Chem. Commun.2010,46,7169-7171.
    [60]Peng X.-J., Du J.-J., Fan J.-L., Wang J.-Y. et al. A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. J. Am. Chem. Soc.2007,129,1500-1501.
    [61]Zheng Y, Orbulescu J., Ji X., Andreopoulos F. M. et al. J. Am. Chem. Soc.2003,125, 2680-268
    [1]Sumida, K.; Rogow, D. L.; Mason, J. A.; et al. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev.2012,112,724-781.
    [2]Wu, H.-H.; Gong, Q.-H.;Olson, D. H. et al. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chem. Rev.2012,112,7836-868.
    [3]Sumida, K.; Rogow, D. L.; Mason, J. A.;et al. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev.2012,112,724-781.
    [4]Liu, J.; Thallapally, P. K.; McGrail,B. P.;et al. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev.2012,41,2308-2322.
    [5]Chen, Q.; Luo, M.; Hammersh(?)j, P.;et al. J. Am. Chem. Soc.,2012,134,6084-6087.
    [6]Lee, J. Y.; Farha, O. K.; Roberts, J.; et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009,38,1450-1459.
    [7]Yoshikai, N.; Nakamura, E.; Mechanisms of Nucleophilic Organocopper(Ⅰ) Reactions. Chem. Rev.2012,112,2339-2372.
    [8]Allendorf, M. D.; Houk, R. J.; Andruszkiewicz, L.; et al. Stress-Induced Chemical Detection Using Flexible Metal-Organic Frameworks. J. Am. Chem. Soc.2008,130,14404-14405.
    [9]Chen, B.; Wang, L.; Xiao, Y.; et al. A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium(Ⅲ)Metal-Organic Framework. Angew. Chem. 2009,121,508; Angew. Chem. Int. Ed.2009,48,6476-6479.
    [10]Perkins, F. K.; Friedman, A. L.; Cobas, E.; et al. Chemical Vapor Sensing with Monolayer MoS2. Nano Lett.2013,13,668-673.
    [11]Xie, Z.;Ma, L.;deKrafft, K. E.;et al. Porous Phosphorescent Coordination Polymers for Oxygen Sensing. J. Am. Chem. Soc.2010,132,922-923.
    [12]Rieter, W. J.; Pott, K. M.;Taylor, K. M. L.;et al. Nanoscale Coordination Polymers for Platinum-Based Anticancer Drug Delivery. J. Am. Chem. Soc.2008,130,11584-11585.
    [13]Horcajada, P.; Chalati, T.; Serre, C.; et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010,9,172-178.
    [14]K. M. L. Taylor-Pashow, J. Delia Rocca, Z. Xie, S. Iran, W. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery. J. Am. Chem. Soc.2009,131,14261-14263.
    [15]Garcia-Simon, C.; Garcia-Borras, M.; G6mez, L.; et al. Self-Assembled Tetragonal Prismatic Molecular Cage Highly Selective for Anionic π Guests, Chem. Eur. J.2013,19,1445-1456.
    [16]Osuga, T.; Murase, T.; Fujita, M.. Triple-Decker Au3-Ag-Au3-Ag-Au3. Ion Cluster Enclosed in a Self-Assembled Cage. Angew. Chem. Int. Ed.2012,51,12199-12201.
    [17]T. Uemura, Y. Kadowaki, C. R. Kim, et al. Incarceration of Nanosized Silica into Porous Coordination Polymers:Preparation, Characterization, and Adsorption Property. Chem. Mater. 2011,23,1736-1741.
    [18]Liu, J.; Zhang, X.; Yan, H. J.; et al. Solvent-Controlled 2D Host-Guest (2,7,12-Trihexyloxytruxene/Coronene) Molecular Nanostructures at Organic Liquid/Solid Interface Investigated by Scanning Tunneling Microscopy. Langmuir,2010,26,8195-8200.
    [19]Rudkevich, D. M. and Rebek, J. Deep Cavities and Capsules. Calixarenes for Separations, Chapter 20,2000,270-282.
    [20]Ferguson, A.; Squire, M. A.; Siretanu, Diana.; et al. A face-capped [Fe4L4]8+spin crossover tetrahedral cage. Chem. Commun.,2013,49,1597-1599.
    [21]Munoz-Lara, F. J. Gaspar, A. B.; Munoz, M. C.; et al. Novel Iron(Ⅱ) Microporous Spin-Crossover Coordination Polymers with Enhanced Pore Size. Inorg. Chem.,2013,52, 3-5.
    [22]Kurmoo, M.; Kumagai, H.; Chapmanc, K. W.; et al. Reversible ferromagnetic-antiferromagnetic transformation upon dehydration-hydration of the nanoporous coordination framework, [Co3(OH)2(C4O4)2]-3H2O. Chem. Commun.,2005, 3012-3014.
    [23]Armentano, D.; Munno, G. D.; Mastropietro, T. F.; et al. Intermolecular Proton Transfer in Solid Phase:A Rare Example of Crystal-to-Crystal Transformation from Hydroxo-to Oxo-Bridged Iron(III) Molecule-Based Magnet. J. Am. Chem. Soc.2005,127,10778-10779.
    [24]Takashima, Y.; Martinez, V. M.; Furukawa, S.; et al. Molecular decoding using luminescence from an entangled porous framework. Nat. Commun.2011.2.1-8.
    [25]Lee, S.-J.; Moskovits, M.; Remote Sensing by Plasmonic Transport. J. Am. Chem. Soc,2012, 134,11384-11387.
    [26]Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; et al. Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework. Angew. Chem. Int. Ed.2013,125, 2953-2957.
    [27]Yang, Y. M.; Zhao, Q.; Feng, W. et al. Chem. Rev.,2013,113,192-270.
    [28]Li, J. R.; Timmons, D. J.; Zhou. H.-C..Interconversion between Molecular Polyhedra and Metal-Organic Frameworks. J. Am. Chem. Soc.2009,131,6368-6369.
    [29]Schoedel,A.; Wojtas, L.; Kelley, S. P.; et al. Network Diversity through Decoration of Trigonal-Prismatic Nodes:Two-Step Crystal Engineering of Cationic Metal-Organic Materials. Angew. Chem. Int. Ed.2011,50,11421-11424
    [30]Figuerola, A.; Tangoulis, V.; Ribas, J.;et al. Synthesis, Crystal Structure, and Magnetic Studies of Oxo-Centered Trinuclear Chromium(III) Complexes: [Cr3(μ3-O)(μ2-PhCOO)6(H2O)3]NO3·4H2O·2CH3OH, a Case of Spin-Frustrated System, and [Cr3(μ-O)-(μ2-PhCOO)2(μ2-OCH2CH3)2(bpy)2(NCS)3], a New Type of [Cr3O] Core. Inor. Chem,2007,46,11017-11024.
    [31]Lan, Y.-Q.; Li, S.-L.; Jiang, H.-L.; et al. Tailor-Made Metal-Organic Frameworks from Functionalized Molecular Building Blocks and Length-Adjustable Organic Linkers by Stepwise Synthesis. Chem. Eur. J.2012,18,8076-8083.
    [32]Gong, Y; Li, J.-H.; Wu, T.; et al. Organic molecules induced crystal transformation from a two dimensional coordination polymer to chain-like structures. CrystEngComm,2012,14, 663-669.
    [33]Min, K. S.; DiPasquale, A. G.;Golen, J. A.; et al. Synthesis, Structure, and Magnetic Properties of Valence Ambiguous Dinuclear Antiferromagnetically Coupled Cobalt and Ferromagnetically Coupled Iron Complexes Containing the Chloranilate(2-) and the Significantly Stronger Coupling Chloranilate(-3-) Radical Trianion. J. Am. Chem. Soc.2007, 129,2360-2368.
    [34]Kleinke, A. S. and Jamison, T. F. Hydrogen-Free Alkene Reduction in Continuous Flow. Org. Lett.,2013,15,710-713.
    [35]Patra, R.; Sahoo, D.; Dey.S.; Sil, D.; et al. Switching Orientation of Two Axial Imidazole Ligands between Parallel and Perpendicular in Low-Spin Fe(Ⅲ) and Fe(Ⅱ) Nonplanar Porphyrinates. Inorg. Chem.2012,51,11294-11305.
    [36]Canadillas-Delgado, L.; Fabelo, O.; Rodriguez-Velamaza, J. A.; et al. The Role of Order-Disorder Transitions in the Quest for Molecular Multiferroics:Structural and Magnetic Neutron Studies of a Mixed Valence Iron(Ⅱ)-Iron(Ⅲ) Formate Framework.2010, 134,19772-19781.
    [37]Serre, C; Millange, F.; Thouvenot, C.;et al. Very Large Breathing Effect in the First Nanoporous Chromium(Ⅲ)-Based Solids:MIL-53 or CrⅢ(OH)-{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc.2002,124, 13519-13526.
    [38]Loiseau, T.; Serre, C; Huguenard, C; et al. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J.2004,10,1373-1382.
    [39]Mukherjee, R.; Chakrabarti, T.; Anumol, E. A. et al. Thermal Stability of Spherical Nanoporous Aggregates and Formation of Hollow Structures by Sintering—A Phase-Field Study. Nano,2011,5,2700-2706.
    [40]Haider, G. J.; Kepert, C. J.; Moubaraki, B.; et al. Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material Science 298,1762-1765.
    [41]Garcia, Y.; Robert, F.; Naik, A. D.; et al. Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(Ⅱ)Complex. J. Am. Chem. Soc.2011,133,15850-15853.
    [42]Ni, Z.; Shores, M. P..Magnetic Observation of Anion Binding in Iron Coordination Complexes:Toward Spin-Switching Chemosensors. J. Am. Chem. Soc.2009,131,32-33.
    [43]Giitlich, P.;Garciaa, Y.;Goodwinb, H. A.. Spin crossover phenomena in Fe(Ⅱ) complexes. Chem. Soc. Rev.,2000,29,419-427
    [44]Siretanu, D.; Li, D.; Buisson, L.; et al. Controlling Thermally Induced Electron Transfer in Cyano-Bridged Molecular Squares:From Solid State to Solution. Chem. Eur. J.2011,17, 11704-11708.
    [45]Min, K. S.; DiPasquale, A. G.;Rheingold, A. L.;et al. Observation of Redox-Induced Electron Transfer and Spin Crossover for Dinuclear Cobalt and Iron Complexes with the 2,5-Di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate Bridging Ligand. J. Am. Chem. Soc. 2009,131,6229-6236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700