染料后修饰金属有机框架用于金属识别和吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光金属有机框架(MOFs)是非常有前景的多功能材料,在化学探针、光发射器件以及生物医学领域均有重要的理论和应用价值。MOFs由于其结构可预测性、良好的微环境等优点,为发光体的引入并形成固态发光材料提供了独一无二的平台。引入发光体的方法主要有镧系金属的引入、发光配体引入以及发光客体引入三种方法。但是,将有机荧光染料引入到MOFs孔道中仍是一个非常大的挑战。因为,在MOFs合成过程中引入有机染料往往会影响金属与有机配体的配位,从而干扰MOFs的形成。而在MOFs合成后,通常只能通过物理吸附来引入有机染料,这就大大降低了发光MOFs的稳定性。本论文基于荧光标记技术,选用常用的荧光标记染料异硫氰基荧光素(FITC),分别对中性类和羧酸类MOFs进行后合成修饰,并对不同的后修饰MOFs性质极其在水溶液中金属识别和吸附中的应用做了进一步的研究。
     本论文第一部分是以3-氨基-4,4'-联吡啶和4,4’,4”-苯-1,3,5-三-苯甲酸苯作为有机配体与硝酸锌自组装,得到了一种新型的带有氨基官能团的三维大孔MOF晶体:BTPY-NH2。单晶结构检测发现,其窗口和空腔直径分别达到14和27A,空腔占总体积的81.2%。通过核磁、UV-Vis、荧光显微镜以及共聚焦激光显微镜等手段表征,证实了FITC的成功修饰,修饰率达到wt%=5-10%。对修饰后MOF在金属识别中的应用进行了研究,发现其对Ag+检测具有很好的选择性和灵敏性,检测限达到0.1ppm。并探索了MOFs在吸附分离Ag+中的应用,ICP检测显示吸附率达到70%。表明这种发光材料在污水排放监测和饮用水净化领域具有潜在的应用价值。
     本论文第二部分是选用已报道的两种基于2-氨基对苯二甲酸为配体,具有不同空腔和窗口大小的MOFs:NH2-MIL-125(Ti)和UMCM-1-NH2,用FITC对该MOF进行后合成修饰。证实了合适的空腔和窗口大小对于MOF成功后修饰的重要性。NH2-MIL-125(Ti)由于本身窗口小的限制(5A),FITC修饰率不高,修饰率仅为wt%=1.36%。UMCM-1-NH2由于具有较大的窗口尺寸(12A),修饰率达到了wt%=29%。对修饰后的NH2-MIL-125(Ti)在金属识别中的应用进行了研究,发现其对Hg2+和Ag+都具有很好的荧光淬灭响应,尤其是Hg2+,检测限达到了0.3ppm。此外,它对二价金属离子也有较弱的荧光淬灭响应,而对一价金属离子基本没有响应,这可能是由于配体中羧酸阴离子与硫脲识别位点共同作用产生的。
Luminescent MOFs are very promising multifunctional materials for chemical sensors, light-emitting devices, and biomedicine. As MOFs have a degree of structural predictability and the well-defined environments for luminophores in crystalline forms, they offer unique platform for the development of solid-state luminescent materials. Generally, luminescence can arise from organic ligands, metals, and guest molecules. However, the incorporation of fluorescent dyes within the stable pores of MOFs is still a big challenge, because most of the bright luminophores are not compatible with the MOF synthetic conditions or exhibiting groups interfere with the formation of the desired MOFs. Inspired from fluorescent labeling technology, the common labeling dye, Fluorescein Isothiocyanate (FITC), was selected to post-modify MOFs self-assembled by neutral ligands or acidic ligands. The application of modified MOFs in metal-ions detection and adsorption was also investigated
     A new metal-organic framework (BTPY-NH2) with amino groups and neutral ligands was obtained. Single-crystal X-ray diffraction revealed that the largest pore and window sizes of BTPY-NH2were about27A and14A in diameter respectively, the solvent accessible volume accounted for81.2%of the crystal volume. After post modification of BTPY-NH2with fluoresceinisothiocyanate (FITC), FITC@BTPY-NH2was obtained, the wt%of FITC was measured about5-10%. Through studying the recognition ability and adsorption of FITC@BTPY-NH2for metal ions, it indicated that modified MOF can sense Ag+in aqueous solution selectively.The detection limit was0.1ppm.
     Reported metal-organic frameworks:NH2-MIL-125(Ti) and UMCM-1-NH2based on2-aminoterephthalic acid were selected. The window sizes of them were about5A and12A in diameter respectively. After modified by FITC, the FITC contents in both MOFs were measured about wt%=1.4%and29%respectively. Furthermore, the recognition ability of FITC@NH2-MIL-125(Ti) for metal ions was studied. It showed that the modified MOF can detect sensentively Ag+and Hg2+in aqueous solution. The detection limits of Ag+and Hg2+were1.3ppm and0.3ppm respectively.
引文
[1]Binnemans K. Lanthanide-Based Luminescent Hybrid Materials [J].Chem. Rev.,2009, 109:4283-4374.
    [2]Hwang S H, Moorefield C N, Newkome G R. Dendritic macromolecules for organic light-emitting diodes [J]. Chem. Soc. Rev.,2008,37:2543-2557.
    [3]Carlos L D, Ferreira R A S, de Zea Bermudez V, et al. Progress on lanthanide-based organic-inorganic hybrid phosphors [J].Chem. Soc. Rev.,2011,40:536-549.
    [4]Rocha J, Carlos L D, Paz F A A, et al. Luminescent multifunctional lanthanides-based metal-organic frameworks [J].Chem. Soc. Rev.,2011,40:926-940.
    [5]Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks [J].Chem. Soc. Rev.,2009,38:1330-1352.
    [6]Meek S T, Greathouse J A, Allendorf M D. Metal-Organic Frameworks:A Rapidly Growing Class of Versatile Nanoporous Materials [J].Adv. Mater.,2011,23:249-267.
    [7]Shekhah 0, Liu J, Fischer R A, et al. MOF thin films:existing and future applications [J].Chem. Soc. Rev.,2011,40:1081-1106.
    [8]Ferey G. Hybrid porous solids:past, present, future [J].Chem. Soc. Rev.,2008, 37:191-214.
    [9]Kuppler R J, Timmons D J, Fang Q-R, et al. Potential applications of metal-organic frameworks [J].Coord. Chem. Rev.,2009,253:3042-3066.
    [10]Li H, Eddaoudi M,0'Keeffe M, Yaghi 0 M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402:276-279.
    [11]Chen B L, Eddaoudi M, Hyde S T,O'Keeffe M, Yaghi 0 M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores [J]. Science,2001, 291:1021-1023.
    [12]Klimakow M, Klobes P, Thunemann A F, et al. Mechanochemical Synthesis of Metal-Organic Frameworks:A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas [J].Chem. Mater.,2010,22:5216-5221.
    [13]Braga D, Grepioni F, Maini L, Mazzeo P P, Ventura B. Solid-state reactivity of copper(I) iodide:luminescent 2D-coordination polymers of CuI with saturated bidentate nitrogen bases [J].New J. Chem.,2011,35:339-344.
    [14]Yuan W, Friscic T, Apperley D, James S L. High Reactivity of Metal-Organic Frameworks under Grinding Conditions:Parallels with Organic Molecular Materials [J].Angew. Chem. Int. Ed.,2010,49,3916-3919.
    [15]Friscic T, Reid D G, Halasz I, et al. Ion-and Liquid-Assisted Grinding:Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templat ing [J].Angew. Chem. Int. Ed.,2009,49:712-715.
    [16]Son W-J, Kim J, Kim J, Ahn W-S. Sonochemical synthesis of MOF-5 [J].Chem. Commun. 2008,6336-6338.
    [17]Jung D-W, Yang D-A, Kim J, et al. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent [J]. Dalton Trans.,2010, 39:2883-2887.
    [18]Ni Z, Masel R I. Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis [J].J. Am. Chem. Soc.,2006, 128:12394-12395.
    [19]Centrone A, Harada T, Speakman S, Hatton T A. Facile Synthesis of Vanadium Metal-Organic Frameworks and their Magnetic Properties [J]. Small,2010, 6:1598-1602.
    [20]Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science,2002, 295:469-472.
    [21]Chen B L, Ma S Q, Zapata F, et al. Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules [J]. Inorg. Chem., 2007,46:1233-1236.
    [22]Chen B L, Liang C D, Yang J, et al. A Microporous Metal-Organic Framework for Gas-Chomatographic Separation of Alkanes [J].Angew. Chem. Int. Ed.,2006, 45:1390-1393.
    [23]0'Keeffe M, Peskov M A, Ramsden S J, Yaghi 0 M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets [J]. Acc. Chem. Res.,2008, 41:1782-1789.
    [24]Carne A, Carbonell C, Imaz I, Maspoch D. Nanoscale metal-organic materials [J].Chem. Soc. Rev.,2011,40:291-305.
    [25]Lin W, Rieter W J, Taylor K M L. Modular Synthesis of Functional Nanoscale Coordination Polymers [J].Angew. Chem. Int. Ed.,2009,48:650-658.
    [26]Huxford R C, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers [J].Curr. Opin. Chem. Biol.,2010,14:262-268.
    [27]Zhao B, Chen X-Y, Cheng P, et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes [J].J. Am. Chem. Soc.,2004,126:15394-15395.
    [28]Liu W, Jiao T, Li Y, et al. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence [J].J. Am. Chem. Soc.,2004,126:2280-2281.
    [29]Chen B, Wang L, Zapata F, et al. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions [J].J. Am. Chem. Soc.,2008, 130:6718-6719.
    [30]Chen B, Wang L, Xiao Y, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for Sensing of Metal Ions [J].Angew. Chem. Int. Ed.,2009, 48:500-503.
    [31]Wong K L, Law G L, Yang Y Y, Wong W T. A Highly Porous Luminescent Terbium-Organic Framework for Reversible Anion Sensing [J].Adv. Mater.,2006,18:1051-1054.
    [32]Harbuzaru B V, Corma A, Rey F, et al. Metal-Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors [J].Angew. Chem., Int. Ed.,2008,47:1080-1083.
    [33]Chen B, Yang Y, Zapata F, et al. Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules [J].Adv. Mater.,2007,19,1693-1696.
    [34]Jiang H-L, Tatsu Y, Lu Z-H, Xu Q. Non-, Micro-, and Mesoporous Metal-Organic .Framework Isomers:Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation [J].J. Am. Chem. Soc.,2010,132:5586-5587.
    [35]Takashima Y, Martinez V M, Furukawa S, et al. Molecular decoding using luminescence from an entangled porous framework [J]. Nat. Comms.,2011,2:168.
    [36]Xu H, Liu F, Cui Y, et al. A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives [J].Chem. Commun.,2011,47:3153-3155.
    [37]Taylor K M L, Rieter W J, Lin W. Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging [J].J. Am. Chem. Soc.,2008,130:14358-14359.
    [38]Rieter W J, Taylor K M L, Lin W. Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing [J].J. Am. Chem. Soc.,2007,129:9852-9853.
    [39]Rieter W J, Taylor K M L, An H, et al. Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents [J].J. Am. Chem. Soc.,2006, 128:9024-9025.
    [40]Taylor K M L, Jin A, Lin W. Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks for Potential Multimodal Imaging [J].Angew. Chem. Int. Ed.,2008,47:7722-7725.
    [41]Li X, Wang X-W, Zhang Y-H. Blue photoluminescent 3D Zn(Ⅱ) metal-organic framework constructing from pyridine-2,4,6-tricarboxylate [J]. Inorg. Chem. Commun.,2008, 11:832-834.
    [42]Fang Q, Zhu G, Xue M, et al. Structure, Luminescence, and Adsorption Properties of Two Chiral Microporous Metal-Organic Frameworks [J].Inorg. Chem.2006, 45:3582-3587.
    [43]Bauer C A, Timofeeva T V, Settersten T B, et al. Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks [J]. J. Am. Chem. Soc.,2007,129:7136-7144.
    [44]Berezin M Y, Achilefu S. Fluorescence Lifetime Measurements and Biological Imaging [J].Chem. Rev.,2010,110:2641-2684.
    [45]Jayaramulu K, Kanoo P, George S J, Maji T K. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand [J].Chem. Commun.,2010,46:7906-7908.
    [46]Moore E G, Samuel A P S, Raymond K N. From Antenna to Assay:Lessons Learned in Lanthanide Luminescence [J].Acc. Chem. Res.,2009,42:542-552.
    [47]Escribano P, Julian-Lopez B, Planelles-Arago J, et al. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials [J].J. Mater. Chem.,2008,18:23-40.
    [48]Eliseeva S V, Bunzli J-C G. Lanthanide luminescence for functional materials and bio-sciences [J].Chem. Soc. Rev.,2010,39:189-227.
    [49]Bunzli J-C G, Lanthanide luminescence for biomedical analyses and imaging [J]. Chem. Rev.,2010,110:2729-2755.
    [50]Sabbatini N, Guardigli M, Lehn J-M. Luminescent lanthanide complexes as photochemical supramolecular devices [J]. Coord. Chem. Rev.,1993,123:201-228.
    [51]Weissman S I. Intramolecular energy transfer. The fluorescence of complexes of europium [J].J. Chem. Phys.,1942,10:214-217.
    [52]Chandler B D, Cramb D T, Shimizu G K H. Microporous Metal-Organic Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks [J].J. Am. Chem. Soc.,2006, 128:10403-10412.
    [53]Eliseeva S V, Pleshkov D N, Lyssenko K A, et al. Highly Luminescent and Triboluminescent Coordination Polymers Assembled from Lanthanide β-Diketonates and Aromatic Bidentate 0-Donor Ligands [J].Inorg. Chem.,2010,49:9300-9311.
    [54]de Lill D T, Gunning N S, Cahill C L. Toward Templated Metal-Organic Frameworks: Synthesis, Structures, Thermal Properties, and Luminescence of Three Novel Lanthanide-Adipate Frameworks [J].Inorg. Chem.,2005,44:258-266.
    [55]Yan X, Cai Z, Yi C, et al. Synthesis of Monodisperse, Rodlike Silica Colloids with Tunable Aspect Ratio [J.Inorg. Chem.,2011,2346-2349.
    [56]de Lill D T, de Bettencourt-Dias A, Cahill C L. Exploring Lanthanide Luminescence in Metal-Organic Frameworks:Synthesis, Structure and Guest Sensitized Luminescence of a Mixed Europium/Terbium-Adipate Framework and a Terbium-Adipate Framework [J].Inorg. Chem.,2007,46:3960-3965.
    [57]Soares-Santos P C R, Cunha-Silva L, Paz F A A, et al. Photoluminescent 3D Lanthanide-Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids [J]. Cryst. Growth Des.,2008,8:2505-2516.
    [58]Zhu X, Lu J, Li X, et al. Syntheses, Structures, Near-Infrared, and Visible Luminescence of Lanthanide-Organic Frameworks with Flexible Macrocyclic Polyamine Ligands [J]. Cryst. Growth Des.,2008,8:1897-1901.
    [59]Mahata P, Ramya K V, Natarajan S. Pillaring of CdCl2-Like Layers in Lanthanide Metal-Organic Frameworks:Synthesis, Structure, and Photophysical Properties [J].Chem. Eur. J.,2008,14:5839-5850.
    [60]Xu J, Su W, Hong M. A Series of Lanthanide Secondary Building Units Based Metal-Organic Frameworks Constructed by Organic Pyridine-2,6-Dicarboxylate and Inorganic Sulfate [J]. Cryst. Growth Des.,2011,11:337-346.
    [61]Zou J-P, Peng Q, Wen Z, et al. Cryst. Two Novel Metal-Organic Frameworks (MOFs) with (3,6)-Connected Net Topologies:Syntheses, Crystal Structures, Third-Order Nonlinear Optical and Luminescent Properties [J]. Growth Des.,2010,10:2613-2619.
    [62]Wei Y, Yu Y, Wu K. Highly Stable Five-Coordinated Mn(II) Polymer [Mn(Hbidc)]n (Hbidc=lH-Benzimidazole-5,6-dicarboxylate):Crystal Structure, Antiferromegnetic Property, and Strong Long-Lived Luminescence [J]. Cryst. Growth Des.,2008,8:2087-2089.
    [63]Wang G-H, Li Z-G, Jia H-Q, et al. Metal-organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand:syntheses, structures, and photoluminescence [J]. CrystEngComm,2009,11:292-297.
    [64]Feng R, Jiang F-L, Chen L, et al. A luminescent homochiral 3D Cd(II) framework with a threefold interpenetrating uniform net 86 [J].Chem. Commun.,2009, 5296-5298.
    [65]Li M-X, Wang H, Liang S-W, et al. Solvothermal Synthesis and Diverse Coordinate Structures of a Series of Luminescent Copper(I) Thiocyanate Coordination Polymers Based on N-Heterocyclic Ligands [J]. Cryst. Growth Des.,2009,9:4626-4633.
    [66]Wang X W, Chen J-Z, Liu J-H. Photoluminescent Zn(II) Metal-Organic Frameworks Built from Tetrazole Ligand:2D Four-Connected Regular Honeycomb (4363)-net [J]. Cryst. Growth Des.,2007,7:1227-1229.
    [67]An J, Shade C M, Chengelis-Czegan D A, et al. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations [J].J. Am. Chem. Soc.,2011,133:1220-1223.
    [68]Luo F, Batten S R. etal-organic framework (MOF):lanthanide(III)-doped approach for luminescence modulation and luminescent sensing [J].Dalton Trans.,2010, 39:4485-4488.
    [69]Fang Q-R, Zhu G-S, Jin Z, et al. Mesoporous Metal-Organic Framework with Rare etb Topology for Hydrogen Storage and Dye Assembly [J].Angew. Chem., Int. Ed.,2007, 46:6638-6642.
    [70]Jung S, Kim Y, Kim S-J, et al. Bio-functionalization of metal-organic frameworks by covalent protein conjugation [J].Chem. Commun.,2011,47:2904-2906.
    [71]Lu W-G, Jiang L, Feng X-L, et al. Three-Dimensional Lanthanide Anionic Metal-Organic Frameworks with Tunable Luminescent Properties Induced by Cation Exchange [J].Inorg. Chem.,2009,48:6997-6999.
    [72]Chow C-F, Lam M H W, Wong W-Y. A Heterobimetallic Ruthenium(II)-Copper(II) Donor-Acceptor Complex as a Chemodosimetric Ensemble for Selective Cyanide Detection [J].Inorg. Chem.,2004,43:8387-8393.
    [73]Xu H, Xiao Y, Rao X, et al. A metal-organic framework for selectively sensing of P043-anion in aqueous solution [J]. J. Alloys Compd.,2011,509:2552-2554.
    [74]Lee E Y, Jang S Y, Suh M P. Multifunctionality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn40(NTB)2] [J].J. Am. Chem. Soc.,2005, 127:6374-6381.
    [75]Bai Y, He G-J, Zhao Y-G, et al. Porous material for absorption and luminescent detection of aromatic molecules in water [J].Chem. Commun.,2006,1530-1532.
    [76]Katz M J, Ramnial T, Yu H-Z, et al. Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor [J].J. Am. Chem. Soc.,2008,130:10662-10663.
    [77]Habibagahi A, Mebarki Y, Sultan Y, et al. Water-Based Oxygen-Sensor Films [J]. J. ACS Appl. Mater. Interfaces,2009,1:1785-1792.
    [78]Xie Z, Ma L, deKrafft K E, et al. Porous Phosphorescent Coordination Polymers for Oxygen Sensing [J].J. Am. Chem. Soc.,2010,132:922-923.
    [79]Lan A, Li K, Wu H, et al. A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives [J].Angew. Chem., Int. Ed., 2009,121:2334-2338.
    [80]Harbuzaru B V, Corma A, Rey F, et al. A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium (III) Metal-Organic Framework [J].J. Angew. Chem., Int. Ed.,2009,48:6476-6749.
    [81]D'Andrade B W, Forrest S R. White Organic Light-Emitting Devices for Solid-State Lighting [J].Adv. Mater.,2004,16:1585-1595.
    [82]Guo H, Zhu Y, Qiu S, et al. Coordination Modulation Induced Synthesis of Nanoscale Eul-xTbx-Metal-Organic Frameworks for Luminescent Thin Films [J].Adv. Mater. 2010,22:4190-4192.
    [83]Liu K, You Hm, Zheng Y, et al. Facile and rapid fabrication of metal-organic framework nanobelts and color-tunable photoluminescence properties [J]. J. Mater. Chem.,2010,20:3272-3279.
    [84]Jiang Y-Y, Ren S-K, Ma J-P, et al. Crown Ether-Like Pb(II)-Metal Framework with Dual-and Bimodal-Emissive Properties Based on Its Photochromic Precursor by Leaching [J]. Chem.-Eur. J.,2009,15:10742-10746.
    [85]Huang Y-Q, Ding B, Song H-B, et al. A novel 3D porous metal-organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths [J].Chem. Commun.,2006, 4906-4908.
    [86]Fu R, Hu S, Wu X. Syntheses, crystal structures, thermal stabilities and luminescence of two new zinc phosphonates [J]. Dalton Trans.,2009,9440-9445.
    [87]Kim J H, Holloway P H. Near-Infrared-Electroluminescent Light-Emitting Planar Optical Sources Based on Gallium Nitride Doped with Rare Earths [J]. Adv. Mater., 2005,17:91-96.
    [88]Zhang J, Shade C M, Chengelis D A, Petoud S. A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3:organic tropolonate ligands for the sensitization of Ln(3+)-doped NaYF4 nanocrystals [J].J. Am. Chem. Soc.,2007, 129:14834-14835.
    [89]Lu X Q, Feng W X, Hui Y N, et al. Near-Infrared Luminescent, Neutral, Cyclic Zn2Ln2 (Ln= Nd, Yb, and Er) Complexes from Asymmetric Salen-Type Schiff Base Ligands [J].Eur. J. Inorg. Chem.,2010,2714-2722.
    [90]Wang H-S, Zhao B, Zhai B, et al. Syntheses, Structures, and Photoluminescence of One-Dimensional Lanthanide Coordination Polymers with 2,4,6-Pyridinetricarboxylic Acid [J].Cryst. Growth Des.,2007,7:1851-1857.
    [91]Bo Q-B, Sun G-X, Geng D-L, et al. Novel three-dimensional pillared-layer Ln(III)-Cu(I) coordination polymers featuring spindle-shaped heterometallic building units [J]. Inorg. Chem.,2010,49:561-571.
    [92]Jin J, Niu S, Han Q, Chi Y. Synthesis and structure of a series of new luminescent Ag-Ln coordination polymers and the influence of the introduction of an Ag(I) ion on NIR luminescence from the Ln(III) centre [J].New J. Chem.,2010,34:1176-1183.
    [93]Guo X, Zhu G, Fang Q, et al. Synthesis, Structure and Luminescent Properties of Rare Earth Coordination Polymers Constructed from Paddle-Wheel Building Blocks [J].Inorg. Chem.,2005,44:3850-3855.
    [94]White K A, Chengelis D A, Zeller M, et al. Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation.properties [J].Chem. Commun. 2009,4506-4508.
    [95]White K A, Chengelis D A, Gogick K A, et al. Near-infrared luminescent lanthanide MOF barcodes [J].J. Am. Chem. Soc.,2009,131:18069-18071.
    [96]Rowe M D, Thamm D H, Kraft S L, et al. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer [J]. Biomacromolecules,2009,10:983-993.
    [97]McKinlay A C, Morris R E, Horcajada P, et al. BioMOFs:Metal-Organic Frameworks for Biological and Medical Applications [J].Angew. Chem., Int. Ed.,2010, 49:6260-6266.
    [98]Keskin S, Kizilel S. Biomedical Applications of Metal Organic Frameworks [J]. Ind. Eng. Chem. Res.,2011,50:1799-1812.
    [99]Taylor-Pashow K M L, Rocca J D, Xie Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. [J].J. Am. Chem. Soc.,2009,131:14261-14263.
    [100]Zhang P, Steelant W, Kumar M, et al. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation [J].J. Am. Chem. Soc.,2007,129:4526-4527.
    [101]Celli J P, Spring B Q, Rizvi I, et al. Imaging and photodynamic therapy:mechanisms, monitoring, and optimization [J].Chem. Rev.,2010,110:2795-2838.
    [102]Sun C-Y, Zheng X-J, Chen X-B, et al. Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands [J]. Inorg. Chim. Acta,2009, 362:325-330.
    [103]Yang J.. Yue Q, Li G-D, et al. Structures, Photoluminescence, Up-Conversion, and Magnetism of 2D and 3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages [J]. Inorg. Chem.,2006,45:2857-2865.
    [104]Marks K M, Nolan G P. Chemical labeling strategies for cell biology [J]. Nat Methods, 2006,3:591-596
    [105]Goncalves M T. Fluorescent Labeling of Biomolecules with Organic Probes [J]. Chem. Rev,2009,109:190-212.
    [106]Ratte T. Bioaccumulation and Toxicity of Silver Compounds [J]. Environ. Toxicol. Chem.,1999,18:89-108.
    [107]M. E. P. of, P. R. China, National Standards for the Daily Drinking Water Quality [S],2007.
    [108]M. E. P. of, P. R. China, Integrated Wastewater Discharge Standard [S],1996.
    [109]Park C S, Lee J Y, Kang E-J, et al. A highly selective fluorescent chemosensor for silver(I) in water/ethanol mixture [J].Tetrahedron Lett.,2009,50:671-675.
    [110]Mu H, Gong R, Ren L, et al. An intramolecular charge transfer fluorescent probe: synthesis and selective fluorescent sensing of Ag+[J]. Spectrochim. Acta, Part A, 2008,70:923-928.
    [111]Kim J, Chen B, Reineke T M, et al, Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units:New Examples and Simplifying Principles for Complex Structures [J]. J. Am. Chem. Soc.,2001,123:8239-8247.
    [112]Katritzky A R, Scriven E F V, Majumder S, et al. Preparation of nitropyridines by nitration of pyridines with nitric acid [J]. Org. Biomol. Chem.,2005,3:538-541.
    [113]Ma M, Gross A, Zacher D, et al. Use of confocal fluorescence microscopy to compare different methods of modifying metal-organic framework (MOF) crystals with dyes [J].CrystEngComm,2011,13:2828-2832.
    [114]Zhang J F, Zhou Y, Yoon J, et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions) [J]. Chem. Soc. Rev.,2011,40:3416-3429.
    [115]Zahir F, Rizwi S J, Haqb S K, et al. Low dose mercury toxicity and human health [J]. Environ Toxicol Pharmacol,2005,20:351-360.
    [116]Xi P-X, Huang L, Liu H, et al. Dual-rhodamine urea derivative, a novel chemidosimeter for Hg(II) and its application in imaging Hg(II) in living cells [J].J Biol Inorg Chem,2009,14:815-819.
    [117]Yang Y K, Yook K J, Tae J, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+Ions in Aqueous Media [J]. J. Am. Chem. Soc.,2005,127:16760-16761.
    [118]Dan-Hardi M, Serre C, Frot T, et al. A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate [J]. J. Am. Chem. Soc.,2009,131:10857-10859.
    [119]Fu Y, Sun D, Chen Y, et al. An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for C02 Reduction [J]. Angew. Chem.,2012,124:1-5.
    [120]Wang Z, Tanabe K K, and Cohen S M. Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity [J]. Inorganic Chemistry,2009,48:296-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700