左手媒质的构造及在微波工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等效的介电常数和磁导率同时为负值的左手媒质,颠覆了经典电磁学和传统光学,它的发现被认为是2003年度十大科学突破之一,是当前物理与电磁学研究领域中的前沿与热点问题。电磁波在左手媒质中传播时将显现与传统介质不同的奇异的电磁特性,因而受到了越来越多研究人员的青睐。作为一门新兴的前沿科学,左手媒质的研究在很多方面还不完善,在电磁特性分析、结构构造以及工程应用等方面还需要不断地完善和深入发展。本论文针对这些问题进行研究,主要创新之处有:
     第一,提出了一种二维平面宽带左手媒质结构,该结构在两个方向上的相对带宽均能达到61.6%以上,而中心频率结构单元电尺寸在0.095以下,其双负频段可以平移,结构简单,平面结构更易于加工制作。通过验证该结构的二维双负特性、后向波特性以及负折射特性说明了该左手媒质结构的有效性。同时,说明了该结构的对偶形式——补偿开口金属谐振环的基本特性及典型应用领域,通过在基片集成波导一侧的壁上加载补偿开口金属谐振环结构构造了一种小型的超宽带滤波器,该滤波器利用加载补偿开口金属谐振环可以在截止频率以下产生前向波通带的特性,使得滤波器尺寸减小了40%,同时保留了基片集成波导体积小、重量轻、容易加工和集成等优点。
     第二,阐述了左手传输线和复合左右手传输线理论,比较了对称型和非对称型复合左右手传输线网络的优劣,并提出了一种非对称型具有超宽带特性的共面波导馈电式复合左右手传输线结构和一种改进的对称型复合左右手传输线结构,该结构在保持平面结构易于加工制作的优点之外,具有更小的尺寸,并且避免了微带交指电容易产生寄生谐振的缺点。探讨了复合左右手传输线结构的应用领域:从对复合左右手传输线的左右手通带分析出发,阐述了利用复合左右手传输线构造带通滤波器的机理,并且利用处于平衡态的对称型复合左右手传输线构造了一种超宽带滤波器,证明了该理论的正确性;阐述了漏波辐射的基本原理,指出相比传统漏波结构,复合左右手传输线漏波结构可以实现从后向到前向的连续辐射,并且不需要复杂的馈电网络。最后利用一种对称型复合左右手传输线结构构造了一种漏波天线,并通过数值仿真、等效电路分析和实际测试证明了该天线从后向到前向的连续双边辐射能力。
     第三,阐述了对偶复合左右手传输线理论,提出了一种对称型对偶复合左右手传输线结构,利用该结构的带阻特性实现了一种带阻滤波器,同时利用对偶复合左右手传输线结构的寄生效应,构造了一种能够实现从后向到前向的连续辐射的漏波天线,该天线同样不需要复杂的馈电网络。
The emergence of the left-handed metamaterial (LHM) with simultaneously effective negative permittivity and permeability has subverted the classical Electromagnetics and the traditional Optics. The discovery of LHM has been regarded as one of the ten most significant discoveries in science community in 2003, and has been the front and focus area in physics and electromagnetics research. Compared with traditional materials, electromagnetic waves transmitted in LHM will behave some fantastic characteristics, which have attracted more and more attentions of numerous researchers. However, the research on the LHM is just at its exploration stage, and there are still many tasks need to be complete, including analysis of the exceptional EM properties, construction of the high performance LHM structures and their applications to microwave engineering. The main contributions of the dissertation can be summarized as follows.
     Firstly, a 2-D planar LHM with broad bandwidth is proposed. Its relative bandwidths are above 61.6% and the unit cell electrical sizes are below 0.095 along two dimensions. The frequency band where the LHM is applicable is tunable. The double negative property, the backward wave property and the negative index of refraction property are verified to prove the existence of the LHM. In addition, the characteristics and typical applications of complementary split-ring resonator (CSRR), which is the dual structure of the 2-D planar LHM, are described. An ultra-wideband filter which is composed of CSRRs etched on the surface of a substrate integrated waveguide (SIW) is proposed. By using the characteristics of CSRRs resonant below the waveguide cutoff frequency, an additional forward passband below the waveguide cutoff can be obtained. So the filter size decreases by 40%, while maintaining the advantages of SIW, such as small size, light weight, easy processing and integration, etc.
     Secondly, the ideal left-handed (LH) and composite right/left-handed (CRLH) transmission line (TL) theory are detailed. The asymmetric and symmetric CRLH TL networks are compared. Then an asymmetric coplanar-waveguide-based CRLH TL structure with ultra-wideband and a modified symmetric CRLH TL structure are proposed. These structures have planar structure and compact size which make them easier to implement in diverse miniaturized components. Furthermore, the undesired resonances of the interdigital capacitor, due to the multiconductor structure, are removed. Some applications of CRLH structure are presented. For one thing, by analyzing the left-handed and right-handed passband, the mechanism of the application of the CRLH TL in bandpass filter is proposed. Using the symmetric CRLH TL structure, an ultra-wideband filter is proposed, by which the mechanism is confirmed. For another, the principle of leakage radiation is illustrated. The advantages of the CRLH leaky-wave antenna compared with conventional leaky-wave antenna are given: the capability of backfire-to-endfire frequency-scanning and simple feed mechanism. A double-side radiating leaky-wave antenna based on the symmetric CRLH TL structure is proposed. The numerical simulations and experimental measurements are used to confirm the performance of the antenna.
     Finally, the ideal dual-composite right/left-handed (D-CRLH) transmission line (TL) theory is detailed. A symmetric D-CRLH TL structure is proposed. While a D-CRLH TL is band-stop in nature, a band-stop filter is constructed. Furthermore, by utilizing the presence of parasitic effects, a leaky-wave antenna with backfire-to-endfire radiation capability is proposed. This antenna also has a simple feed mechanism.
引文
[1] Veselago V G. The electrodynamics of substances with simultaneously negative values ofεandμ(in Russian)[J]. Usp Fiz Nauk. 1967, 92: 517-526
    [2] Veselago V G. The electrodynamics of substances with simultaneously negative values ofεandμ[J]. Soviet Physics Usp. 1968, 10 (4): 509-514
    [3] Smith D R, Kroll N. Negative refractive index in left-handed materials [J]. Physical Review Letters. 2000, 85: 2933-2936
    [4] Seddon N, Bearpark T. Observation of the inverse Doppler effect [J]. Science. 2003, 302: 1537-1540
    [5] Lu J, Grzegorczyk T M, Zhang Y, et al. Cerenkov radiation in materials with negative permittivity and permeability [J]. Optics Express. 2003, 11(7): 723-734
    [6] Anthony G, Eleftheriades G Y. Experimental verification of backward-wave radiation from a negative refractive index metamaterial [J]. Journal of Applied Physics. 2002, 92(10): 5930-5935
    [7] Pendry J B., Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures [J]. Physical Review Letters. 1996, 76(25): 4773-4776
    [8] Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures [J]. J Phys: Condens Matter. 1998, 10: 4785-4809
    [9] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques. 1999, 47: 2075-2084
    [10] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters. 2000, 84(18): 4184-4187
    [11] Shelby R A, Smith D R, Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial [J]. Applied Physics Letters. 2001, 78(4): 489-491
    [12] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science. 2001, 292(5514): 77-79
    [26] Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell’s Law [J]. Physical Review Letters. 2003, 90: 137401-137405
    [27]冉立新,章献民,陈抗生等.异向介质及其实验验证[J].科学通报. 2003, 6: 1271-1273
    [28] Caloz C, Chang C–C, Itoh T. Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations [J]. Journal of Applied Physics. 2001,90(11): 5483-5486
    [29] Gerardin J, Lakhtakia A. Negative index of refraction and distributed Bragg reflectors [J]. Microwave and Optical Technology Letters. 2002, 34(6): 409-411
    [30] Ziokowski R W. A double negative metamaterial design, experiments, and applications [C]. IEEE Antennas and Propagation Soc. Int. Sym., 2002, 396-399
    [31] Ding Y Q, Liu Z Y, Qiu C Y, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. Physical Review Letters. 2007, 99: 093904-093908
    [32] Lagarkov A N, Kisel V N. Electrodynamics properties of simple bodies made of materials with negative permeability and negative permittivity [J]. Dokl Phys. 2001, 46(3): 163-165
    [33] Lagarkov A N, Kisel V N. Electrodynamics properties of simple bodies made of materials with negative permeability and negative permittivity (in Russian) [J]. Dokl Akad Nauk SSSR. 2001, 377(1): 40-43
    [34] Elser J, Podolskiy V A, Salakhutdinov I, et al. Nonlocal effects in effective-medium response of nanolayered metamaterials [J]. Applied Physics Letters. 2007, 90: 191109-191112
    [35] Ricci M C, Xu H, Prozorov R, et al. Tunability of superconducting metamaterials [J]. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 918-921
    [36] Guven K, Cakmak A O, Caliskan M D, et al. Bilayer metamaterial: analysis of left-handed transmission and retrieval of effective medium parameters [J]. Journal of Optics A: Pure and Applied Optics. 2007, 9: S361-S365
    [37] Balmain K G, Luttgen A A E, Kremer P C. Power fow for resonance cone phenomenon in planar anisotropic metamaterials [J]. IEEE Transactions on Antennas and Propagation. 2003, 51(10): 2612-2618
    [26] Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell’s Law [J]. Physical Review Letters. 2003, 90: 137401-137405
    [27]冉立新,章献民,陈抗生等.异向介质及其实验验证[J].科学通报. 2003, 6: 1271-1273
    [28] Caloz C, Chang C–C, Itoh T. Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations [J]. Journal of Applied Physics. 2001,90(11): 5483-5486
    [29] Gerardin J, Lakhtakia A. Negative index of refraction and distributed Bragg reflectors [J]. Microwave and Optical Technology Letters. 2002, 34(6): 409-411
    [30] Ziokowski R W. A double negative metamaterial design, experiments, and applications [C]. IEEE Antennas and Propagation Soc. Int. Sym., 2002, 396-399
    [31] Ding Y Q, Liu Z Y, Qiu C Y, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. Physical Review Letters. 2007, 99: 093904-093908
    [32] Lagarkov A N, Kisel V N. Electrodynamics properties of simple bodies made of materials with negative permeability and negative permittivity [J]. Dokl Phys. 2001, 46(3): 163-165
    [33] Lagarkov A N, Kisel V N. Electrodynamics properties of simple bodies made of materials with negative permeability and negative permittivity (in Russian) [J]. Dokl Akad Nauk SSSR. 2001, 377(1): 40-43
    [34] Elser J, Podolskiy V A, Salakhutdinov I, et al. Nonlocal effects in effective-medium response of nanolayered metamaterials [J]. Applied Physics Letters. 2007, 90: 191109-191112
    [35] Ricci M C, Xu H, Prozorov R, et al. Tunability of superconducting metamaterials [J]. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 918-921
    [36] Guven K, Cakmak A O, Caliskan M D, et al. Bilayer metamaterial: analysis of left-handed transmission and retrieval of effective medium parameters [J]. Journal of Optics A: Pure and Applied Optics. 2007, 9: S361-S365
    [37] Balmain K G, Luttgen A A E, Kremer P C. Power fow for resonance cone phenomenon in planar anisotropic metamaterials [J]. IEEE Transactions on Antennas and Propagation. 2003, 51(10): 2612-2618
    [38] Lakhtakia A. Positive and negative Goos-H?nchen shift and negative phase-velocity mediums (alias left-handed materials) effect [J]. Int J Electron Commun. 2004, 58(3): 229-231
    [39] Grzegorczyk T M, Kong J A. Electrodynamics of moving media inducing positive and negative refraction [J]. Physical Review B. 2006, 74: 033102-033106
    [40] Kolinko P, Smith D R. Numerical study of electromagnetic waves interacting with negative index materials [J]. Optics Express. 2003, 11: 640-648
    [41] Balmain K G, Luttgen A A E, Kremer P C. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial [J]. IEEE Microwave and Wireless Components Letters. 2002, 1(7): 146-149
    [42] Silin R A, Chepurnykh I P. On media with negative dispersion [J]. J Commun Technol Electron. 2001, 46(10): 1121-1125
    [43] Silin R A, Chepurnykh I P. On media with negative dispersion (in Russian) [J]. Radiotekhnika. 2001, 46(10): 1212-1217
    [44] Cheng Q, Cui T J. Energy localization using anisotropic metamaterials [J]. Physics Letters A. 2007, 367(4): 259-262
    [45] Baccarelli P, Burghignoli P, Lovat G, et al. Surface-wave suppression in a double-negative metamaterial grounded slab [J]. IEEE Antennas and Wireless Propagation Letters. 2002, 2(19): 269-272
    [46] Alu A, Engheta N. Anomalies in surface wave propagation along double-negative and single-negative cylindrical shells [J]. Progress in Electromagnetic Research Symp. 2004: 28-31
    [47] Zharov A A, Shadrivov I V, Kivshar Y S. Nonlinear Properties of left-handed metamaterials [J]. Physical Review Letters. 2003, 91: 037401-037405
    [48] Moss C D, Grzegorczyk T M, Zhang Y, et al. Numerical studies of left handed metamaterials [J]. Progress in Electromagnetic Research. 2002, 35: 315-334
    [49] Weiland T, Cchuhmann R, Greegor R B, et al. Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments [J]. Journal of Applied Physics. 2001, 90(10): 5419-5424
    [50] Grande A, Pereda J A, Gonzalez O, et al. On the equivalence of several FDTDformulations formodeling electromagnetic wave propagation in double-negative metamaterials [J]. IEEE Microwave and Wireless Components Letters. 2007, 6: 324-327
    [51] Mosallaei H, Rahmat-Samii Y. Composite materials with negative permittivity and permeability properties: concept, analysis, and characterization [C]. IEEE AP Int. Symposium, 2001, 378-381
    [52] Feise M W, Schneider J B, Bevelacqua P J. Finite-difference and pseudospectral time-domain methods applied to backward-wave metamaterials [J]. IEEE Transactions on Antennas and Propagation. 2004, 52: 2955-2962
    [53] Lee J–Y, Kim H–S, Kang N–W, et al. Effective medium approach of left-handed material using a dispersive FDTD method [J]. IEEE Transactions on Magnetics. 2005,41: 1484-1487
    [54] Philippe Gay-Balmaz, Martin Olivier J F. Electromagnetic resonances in individual and coupled split-ring resonators [J]. Journal of Applied Physics. 2002, 92(5): 2929-2936
    [55] Shadrivov I V, Sukhorukov Andrey A, Kivshar Yusi S, et al. Nonlinear surface waves in left-handed materials [J]. Physical Review E. 2004, 69: 016617-016626
    [56] Nefedov I S, Tretyakov S A. Theoretical study of waveguiding structures containing backward-wave materials [J]. URSI XXVIIth General Assembly. 2002, 8: 1074
    [57] Smith D R, Schultz S, Markos P, et al. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients [J]. Physical Review B. 2002, 65(19): 195104
    [58] Chen X D, Grzegorczyk T M, Wu B I, et al. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials [J]. Physical Review E. 2004, 70(1): 016608
    [59] Smith D R, Vier D C, Koschny T, et al. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials [J]. Physical Review E. 2005, 71(3): 036617
    [60] Smith D R, Pendry J B. Homogenization of Metamaterials by Field Averaging (Invited Paper) [J]. Journal of the Optical Society of America B-Optical Physics. 2006, 23(3): 391-403
    [61] Yao H Y, Xu W, Li L W, et al. Propagation Property Analysis of Metamaterial Constructed by Conductive Srrs and Wires Using the Mgs-Based Algorithm [J]. IEEETransactions on Microwave Theory and Techniques. 2005, 53(4): 1469-1476
    [62] Hou L L, Chin J Y, Yang X M, et al. Advanced Parameter Retrievals for Metamaterial Slabs Using an Inhomogeneous Model [J]. Journal of Applied Physics. 2008, 103(6): 064904
    [63] Aksun M I, Alparslan A, Karabulut E P, et al. Determining the Effective Constitutive Parameters of Finite Periodic Structures: Photonic Crystals and Metamaterials [J]. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(6): 1423-1434
    [64] Lagarkov A N, Kissel V N. Near-perfect imaging in a focusing system based on a left-handed-material plate [J]. Physical Review Letters. 2004, 92(7): 077401-077405
    [65] Baena J D, Ricardo Marques, Francisco Medina, et al. Artifcial magnetic metamaterial design by using spiral resonators [J]. Physical Review B. 2004, 69: 014402-014407
    [66] Cummer S A, Bopa B L. Wave fields measured inside a negative refractive index metamaterial [J]. Applied Physics Letters. 2005, 85: 4564-4566
    [67] Popa B L, Cummer S A. Direct measurement of evanescent wave enhancement inside passive metamaterials [J]. Physical Review E. 2006, 73: 016617-016622
    [68] Ziolkowski R W. Design, fabrication, and testing of double negative metamaterials [J]. IEEE Transactions on Antennas and Propagation. 2003, 51(7): 1516-1529
    [69] Lagarkov A N, Semenenko V N, Kisel V N, et al. Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions [J]. Journal of Magnetism and Magnetic Materials. 2003, 258: 161-166
    [70] Hsu Y J, Huang Y C, Lih J S, et al. Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials [J]. Journal of Applied Physics. 2004, 96(4): 1979-1982
    [71] Huangfu J T, Ran L X, Chen H S, et al. Experimental confirmation of negative refractive index of a metamaterial composed of omega-like metallic patterns [J]. Applied Physics Letters. 2004, 84(9): 1537-1539
    [72] Chen H S, Ran L X, Huangfu J T, et al. Left-handed materials composed of only S-shaped resonators [J]. Physical Review E. 2004, 70(5): 057605
    [73] Bulu I, Caglayan H, Ozbay E. Experimental demonstration of labyrinth-based left-handed metamaterials [J]. Optics Express. 2005, 13(25): 10238-10247
    [74] Zhang S, Fan W J, Malloy K J, et al. Near-infrared double negative metamaterials [J]. Optics Express. 2005, 13(13): 4922-4930
    [75] Marques R, Martel J, Mesa F, et al. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides [J]. Physical Review Letters. 2002, 89(18): 183901
    [76] Ueda T and Tsutsumi M. Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite [J]. IEEE Transactions on Magnetics. 2005, 41(10): 3532-3537
    [77] Ueda T, Lai A, Itoh T. Negative refraction in a cut-off parallelplate waveguide loaded with a two dimensional lattice of dielectric resonators [A]. Proc. 36th Eur. Microw. Conf. [C]. 2006: 435–438.
    [78] Ueda T, Lai A, Itoh T. Demonstration of negative refraction in a cutoff parallel-plate waveguide loaded with 2-D square lattice of dielectric resonators [J]. IEEE Transactions on Microwave Theory and Techniques. 2007, 55(6): 1280-1287
    [79] Ueda T, Michishita N, Akiyama M, et al. Dielectric-resonator-based composite right/left-handed transmission lines and their application to leaky wave antenna [J]. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(10): 2259-2269
    [80] He Y X, He P, Harris V G, et al. Role of ferrites in negative index metamaterials [J]. IEEE Transactions on Magnetics. 2006, 42(10): 2852-2854
    [81] Rachford F J, Armstead D N, Harris V G, et al. Simulations of ferrite-dielectric-wire composite negative index materials [J]. Physical Review Letters. 2007, 99(5): 057202
    [82] Caloz C, Itoh T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line" [J]. IEEE Antennas and Propagation Society International Symposium. 2002, 2: 412-415
    [83] Caloz C, Okabe H, Iwai T, et al. Anisotropic PBG surface and its transmission line model [A]. URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting [C]. San Antonio: TX, 2002: 224
    [84] A. A. Oliner. A periodic-structure negative-refractive-index medium without resonant elements [A]. URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting [C]. San Antonio: TX, 2002: 41
    [85] Iyer A K, Eleftheriades G V. Negative refractive index metamaterials supporting 2-D waves [A]. IEEE-MTT Int’l Symp. [C]. Seattle: WA, 2002: 412–415
    [86] A. Grbic and G. V. Eleftheriades. A backward-wave antenna based on negative refractive index L-C networks [A]. Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting [C]. San Antonio: TX, 2002, 4: 340–343
    [87] Grbic A., Eleftheriades G V. An isotropic three-dimensional negative-refractive-index transmission-line metamaterial [J]. Journal of Applied Physics. 2005, 98(4): 043106
    [88] Alu A, Salandrino A. Negative effective permeability and left-handed materials at optical frequencies [J]. Optics Express. 2006, 14(4): 1557-1567
    [89] Caloz C, Itoh T. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications [M]. Hoboken: John Wiley & Sons, Inc. 2006
    [90] Martin F, Bonache J, Falcone F, et al. Split ring resonator-based left-handed coplanar waveguide [J]. Applied Physics Letters. 2003, 83(22): 4652-4654
    [91] Falcone F, Martin F, Bonache J, et al. Left handed coplanar waveguide band pass filters based on bi-layer split ring resonators [J]. IEEE Microwave and Wireless Components Letters. 2004, 14(1): 10-12
    [92] Baena J D, Bonache J, Martin F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines [J]. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(4): 1451-1461
    [93] Gil M, Bonache J, Selga J, et al. Broadband resonant-type metamaterial transmission lines [J]. IEEE Microwave and Wireless Components Letters. 2007, 17(2): 97-99
    [94] Gil M, Bonache J, Garcia-Garcia J, et al. Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design [J]. IEEE Transactions on Microwave Theory and Techniques. 2007, 55(6): 1296-1304
    [95] Garcia-Garcia J, Bonache J, Gil I, et al. Miniaturized microstrip and CPW filters using coupled metamaterial resonators [J]. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(6): 2628-2635
    [96] Bonache J, Martin F, Garcia-Garcia J, et al. Ultra wide band pass filters (UWBBPF) based on complementary split rings resonators [J]. Microwave and Optical TechnologyLetters. 2005, 46(3): 283-286
    [97] Bonache J, Gil I, Garcia-Garcia J, et al. Novel microstrip bandpass filters based on complementary split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(1): 265-271
    [98] Eleftheriades G V, Siddiqui O, Iyer A K. Transmission line models for negative refractive index media and associated implementations without excess resonators [J]. IEEE Microwave and Wireless Components Letters. 2003, 13(2): 51-53
    [99] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science. 2006, 314(5801): 977-980
    [100] Liu L, Caloz C, Chang C C, et al. Forward coupling phenomena between artificial left-handed transmission lines [J]. Journal of Applied Physics. 2002, 92(9): 5560-5565
    [101] Xiao S S, Shen L F, He S L. A novel directional coupler utilizing a left-handed material [J]. IEEE Photonics Technology Letters. 2004, 16(1): 171-173
    [102] Yuan Y, Ran L X, Chen H S, et al. A backward waveguide coupler using left-handed materials [J]. Applied Physics Letters. 2006, 88:211903-211906
    [103] Moses C A, Engheta N. An idea for electromagnetic "Feedforward-Feedbackward" media [J]. IEEE Transactions on Antennas and Propagation. 1999, 47(5): 918-928
    [104] Li Y, Ran L X, Chen H S, et al. Experimental realization of a one-dimensional LHM-RHM resonator [J]. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(4): 1522-1526
    [105] Lin I H, DeVincentis M, Caloz C, et al. Arbitrary dual-band components using composite right/left-handed transmission lines [J]. IEEE Transactions on Microwave Theory and Techniques. 2004, 52(4): 1142-1149
    [106] Lin I, Caloz C, Itoh T. A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines [A]. IEEE-MTT Int. Symp. Dig. [C]. 2003: 325-327
    [107] Ji S H, Cho C S, Lee J W, et al. Concurrent dual-band class-E power amplifier using composite right/left-handed transmission lines [J]. IEEE Transactions on Microwave Theory and Techniques [J]. 2007, 55(6): 1341-1347
    [108] Ji S H, Cho C S, Lee J W, et al. 836MHz/1.95GHz dual-band class-E power amplifierusing composite right/left-handed transmission lines [A]. IEEE Eur. Microw. Conf. [C]. 2002: 356-359
    [109] Mao S G, Wu M S, Chueh Y Z. Design of composite right/left-handed coplanar waveguides bandpass and dual-passband filters [J]. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(9): 3543-3549
    [110] Mao S G, Chueh Y Z, Wu M S. Asymmetric dual-passband coplanar waveguide filters using periodic composite right/left-handed and quarter-wavelength stubs [J]. IEEE Microwave and Wireless Components Letters. 2007, 17(6): 418-420
    [111] Okabe H, Caloz C, Itoh T. A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section [J]. IEEE Transactions on Microwave Theory and Techniques. 2004, 52(3): 798-804
    [112] Hrabar S, Jankovic G. Experimental investigation of waveguide filled with uniaxial thin-wire-based ENG metamaterial [A]. Proc. on AP-S 2006 [C]. 2006: 475-478
    [113] Zhang X, Yu Z, Xu J. Novel band-pass substrate integrated waveguide filter based on complementary split ring resonators [J]. Progr. Electromagn. Res.. 2007, 72: 39-46
    [114] Che W, Li C, Deng K, et al. A novel bandpass filter based on complementary split ring resonators and substrate integrated waveguide [J]. Microw. Opt. Technol. Lett.. 2008, 50(3): 699-701
    [115] Dong Y D, Yang T, Itoh T. Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters [J]. IEEE Transactions on Microwave Theory and Techniques. 2009, 57: 2211-2223
    [116] Caloz C, Sanada A, Itoh T. Zeroth-order resonance in composite right/left-handed transmission line resonators [A]. Asia-Pacific Microwave Conference [C]. 2003: 1588-1592
    [117] Cheng-Jung Lee, Leong K M K H, Itoh T. Design of resonant small antenna using composite right/left-handed transmission line [A]. 2005 IEEE Antennas and Propagation Society International Symposium [C]. 2005: 218-221
    [118] Lai A, Leong K M K H, Itoh T. Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures [J]. IEEE Transactions on Antennas and Propagation. 2007, 55(3): 868-876
    [119] Eleftheriades G V, Grbic A, Antoniades M. Negative-refractive-index transmission-line metamaterials and enabling electromagnetic applications [J]. IEEE Antennas and Propagation Society International Symposium. 2004: 1399-1402
    [120] Liu L, Caloz C, Itoh T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability [J]. Electronics Letters. 2002, 38(23): 1414-1416
    [121] Dong Y D, Itoh T. Composite right/left-handed substrate integrated waveguide leaky-wave antenna [A]. Proceeding of the 39th European Microwave Conference [C]. 2009: 276-279
    [122] Chen H S, Wu B I, Ran L X, et al. Controllable left-handed metamaterial and its application to a steerable antenna [J]. Applied Physics Letters. 2006, 89(5): 053509-053512
    [123] Wu M F, Meng F Y, Wu Q, et al. An approach for small omnidirectional microstrip antennas based on the backward waves of double negative metamaterials [J]. Applied Physics a-Materials Science & Processing. 2007, 87(2): 193-198
    [124] Ziolkowski R W, Heyman E. Wave propagation in media having negative permittivity and permeability [J]. Physical Review E. 2001, 64: 056625+14
    [125] Gerardin J, Lakhtakia A. Spectral response of cantor multilayers made of materials with negative refractive index [J]. Physics Letters A. 2002, 301(4): 377-381
    [126] Cory H, Zach C. Wave propagation in metamaterial multilayered structures [J]. Microwave and Optical Technology Letters. 2004, 40(6): 460-465
    [127] Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures [J]. Journal of Physics-Condensed Matter, 1998, 10: 4785-4809
    [128] Leong K M K H, Lai A, Itoh T. Demonstration of reverse doppler effect using a left-handed transmission line [J]. Microwave and Optical Technology Letters. 2006, 48(3): 545-547
    [129] Kraus J D, Marhefka R J. Antennas [M]. McGraw Hill, 2001
    [130] Lotsch H K V. Beam displacement at total reflection: the Goos-H?nchen effect [J]. I Optik. 1970, 32: 116-137
    [131] Goos F, H?nchen H. Ein neuer und fundamentaler versuch zur total reflexion [J]. Ann Phy Lpz. 1947, 1: 333-336
    [132]崔万照,马伟,邱乐德,张洪太.电磁超介质及其应用[M].北京:国防工业出版社, 2008
    [133] Pendry J B, Smith D R. Reversing light: negative refraction [J]. Physics Today. 2004, 57: 37-44
    [134] Grbic A, Eleftheriades G Y. Practical limitations of subwavelength resolution using negative-refractive-index transmission-line lenses [J]. IEEE Transactions on Antennas and Propagation. 2005, 53(10): 3201-3209
    [135] Fang N, Liu Z, Yen T J, et al. Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation [J]. Applied Physics A. 2005, 80: 1315-1325
    [136] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science. 2005, 308: 534-537
    [137] Melville D O S, Blaikie R J, Wolf C R. Submicron imaging with a planar silver lens [J]. Applied Physics Letters. 2004, 84(22): 4403-4405
    [138] Pendry J B. A chiral route to negative refraction [J]. Science. 2004, 306: 1353-1355
    [139] Smith D R, Rye P, Vier D C, et al. Design and measurement of anisotropic metamaterials that exhibit negative refraction [J]. IEICE Transactions on Electronics. E87-C, 2004: 359-370
    [140] Chen H, Ran L, Huangfu J T, et al. Negative refraction of a combined double S-shaped metamaterial [J]. 2005, 86(15): 151909: 1-3
    [141] Meng F Y, Wu Q, Jin B S, et al. Numerical verification of the NIR features for 2-D isotropic LHM [J]. Microwave and Optical Technology Letters. 2006, 55: 4514-4520
    [142] Gong J Q, Chu Q X, Liu C Y. Effective constitutive parameters extraction method for 1D left-handed material [A]. Microwave and Millimetre-Wave Symposium of China [C]. 2007: 1606-1609
    [143] Garcia-Garcia J, Martin F, Falcone F, et al. Microwave filters with improved stopband based on sub-wavelength resonators [J]. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(6): 1997-2006
    [144] Martin F, Bonache J, Falcone F, et al. Split ring resonator-based left-handed coplanar waveguide [J]. Applied Physics Letters. 2003, 83(22): 4652-4654
    [145] Falcone F, Lopetegi T, Baena J D, et al. Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators [J]. IEEE Microwave and Wireless Components Letters. 2004, 14(6): 280-282
    [146] Falcone F, Lopetegi T, Laso M A G, et al. Babinet principle applied to the design of metasurfaces and metamaterials [J]. Physical Review Letters. 2004, 93(19): 197401
    [147]钟催林.基于基片集成波导的微波电路研究[D].成都:电子科技大学, 2009
    [148] Cassivi Y, Perregrini L, Bressan P, et al. Dispersion characteristics of substrate integrated rectangular waveguide [J]. IEEE Microwave Wireless Components Letters. 2002, 12(9): 333–335
    [149] C. Caloz, T. Itoh. Novel microwave devices and structures based on the transmission line approach of meta-materials [A]. IEEE-MTT Int’l Symp. [C]. Philadelphia, PA, 2003: 195-198
    [150] Casares-Miranda F P, Marquez-Segura E, Otero P, et al. Composite right/left-handed transmission line with wire bonded interdigital capacitor [J]. IEEE Microwave Wireless Components Letters, 2006, 16: 624-626
    [151] Gao J, Zhu L. Characterization of infinite- and finite-extent coplanar waveguide metamaterials with varied left- and right-handed passbands [J]. IEEE Microwave Wireless Components Letters. 2005, 15, 805-807
    [152] Horii Y, Caloz C, Itoh T. Super-compact multilayered left-handed transmission line and diplexer application [J]. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(4): 1527-1534
    [153] Caloz C. Dual composite right/left-handed (D-CRLH) transmission line metamaterial [J]. IEEE Microwave and Wireless Components Letters. 2006, 16(11): 585-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700