新型荧光染料的合成及其在环境监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染问题越来越严重,环境中污染物的种类正在被不断的发现,污染物的数量也在不断增加,对环境中污染物分析手段的灵敏度,准确性,特异性及方便性等方面的要求也越来越高。环境中污染物的分析手段有很多种,其中荧光分析法由于其具有灵敏度高、选择性较好等的优点越来越受到了国内外研究者的关注。本论文主要是进行了一系列发光性能优良的可以发长寿命荧光的稀土配合物、普通荧光的萘酰亚胺、葸衍生物及等荧光染料的设计与合成,并进行了在环境中病原微生物、金属离子、微量水等方面的监测应用。所发展的方法都具有高灵敏度,操作方便等优点。主要完成内容如下:
     (1)提出了一种基于两探针串联的环境中常见病原微生物DNA的监测方法。该模型包括了捕获探针DNA1,识别探针DNA2和目标探针DNA3。合成了几种具有长寿命荧光的稀土三元配合物,并选择发光性能最好的:以噻吩甲酰三氟丙酮(TTA),5-氨基邻菲啰啉(5-NH2-phen)为配体的稀土铕配合物,Eu(TTA)3(5-NH2-phen), (ETN),然后通过修饰连接上免疫球蛋白:ETN-IgG,利用反相微乳液法,制备表面修饰活性基团的核壳型纳米颗粒。这样的纳米颗粒能够十分便利地连接上寡聚核苷酸链以用于时间分辨荧光检测。同时,根据已报道的金黄色葡萄球菌和大肠杆菌特异性基因片段用软件Primer Premier 5.0设计了实验所需的捕获探针,识别探针和目标探针序列。杂交过程中,先将带氨基的捕获探针DNA1共价固定在普通载玻片上,然后与识别探针DNA2,目标探针DNA3在玻片表面进行杂交。最后,通过检测玻片表面的荧光强度来达到监测病原微生物的目的。这种方法具有选择性好、杂交稳定性好、高灵敏度和杂交时间短等优点,是一种微生物病原体监测的有效方法(第2章)。
     (2)在基于发光纳米颗粒的两探针串联的监测模型上,建立了一种直接用长寿命发光单分子为标记物的病原微生物的监测方法。用既带有活性基团又能发长寿命荧光的稀土铕配合物,Eu(TTA)3(5-NH2-phen)直接作为标记物。这种检测方法操作起来更加方便。并且具有杂交时间短,稳定性令人满意,选择性好等优点。(第3章)。
     (3)合成了一种新型的硫脲类荧光探针,9-蒽醛缩氨基硫脲(AnthT),并研究了该探针在测定环境样品中痕量Hg(Ⅱ)和Cu(Ⅱ)的应用。通过研究不同金属离子,Na(Ⅰ), Al(Ⅲ), Ba(Ⅱ), Mn(Ⅱ), Co(Ⅱ), Cd(Ⅱ), Ca(Ⅱ), Zn(Ⅱ), Cr(Ⅲ), Fe(Ⅲ), Pb(Ⅱ), Hg(Ⅱ)及Cu(Ⅱ)(相同浓度:5.0×10-5 mol L-1)对AnthT荧光强度的作用,发现只有Hg(Ⅱ)和Cu(Ⅱ)对AnthT的有显著的荧光猝灭作用。在pH为7.2,激发波长为411 nm的情况下,AnthT在水-乙醇溶液(20/5 v/v)中的荧光强度随着Cu(Ⅱ)或Hg(Ⅱ)浓度的增加慢慢降低。此外,在一定的金属离子浓度范围内该硫脲类染料的荧光强度和金属离子的浓度呈良好的线性关系,对Hg(Ⅱ)和Cu(Ⅱ)监测的线性范围分别为2×10-6-4×10-5 mol L-1和1×10-7-1×10-5 mol L-1。该传感系统表现出了令人满意的灵敏度,操作方法简便,并且对于Hg(Ⅱ)和Cu(Ⅱ)的检测限低至8.9×10-8 mol L-1和3.3×10-8 mol 1-1。该探针可以用于实际样品中Hg(Ⅱ)和Cu(Ⅱ)浓度的测定(第4章)。
     (4)合成了一种新型的对极性敏感,具有可共聚端基双键、性能优良的荧光载体,N-烯丙基-4-吗啉基-1,8-萘酰亚胺(AMN)。将AMN通过末端双键在紫外光照下共价固定到硅烷化的玻片表面。然后对其进行实验研究,实验结果表明,在激发波长400 nm处,随着水含量的增加,AMN的荧光强度显著降低。在有机溶剂中水含量为0.00%至4.40%之间的时候,AMN的荧光强度和水含量呈现了很好的线性关系。该传感体系表现出了令人满意的重现性,具有灵敏度高,响应速度快等优点。同时,通过共价固定的方法也大大减少了荧光载体的流失,提高了传感器的稳定性。另外,所制备的传感体系对环境体系的pH不敏感,并且具有至少一个月的长使用寿命(第5章)。
     (5)合成了又一种对极性敏感的苯并噻吨二羧酸酐衍生物,N-(2-甲基丙烯酰胺)-苯并[k,1]噻吨-3,4-二甲酰亚胺(MBTD),该发光分子也通过末端双键共价固定到玻片表面,用于监测有机溶剂中的水含量。实验考察了不同有机溶剂对荧光载体的影响。结果表明溶剂极性对荧光载体的强度和斯托克斯位移都有着显著的作用。在一定的水含量浓度范围内,荧光强度与浓度呈现了良好的线性关系。该传感器具有响应速度快,重现性好等优点,足以应用于实际样品中微量水含量的测定(第6章)。
     (6)在制备各种荧光传感体系的过程中,也合成了一系列新型的荧光物质。在最后一章中,主要介绍了其他一些发光性能良好的荧光物质的合成(第7章)。
With the increasing of the variety and the amounts of environmental pollutants, the demands for the sensitivity, accuracy, specificity, and accessibility et al. of analytical methods of environmental pollutants become higher and higher. There are many methods to analyze pollutants however, more and more researchers at home and abroad pay attention to fluorescence analytical methods for its high sensitivity, selectivity and other advantages. In this dissertation, a series of novel fluorescence dyes of rare earth complexes with long life fluorescence time, naphthalimide, and anthracene derivatives were designed and synthesized. The dyes were then applied in the detection of pathogenic microorganisms, trace metal ions, or water content in envrionment. The developed detection systems both have satisfactory sensitivity and were easy to operation.
     The details are summarized as follows:
     (1) A two-probe tandem DNA hybridization assay including capture DNA1, probe DNA2, and target DNA3 was prepared. Some kinds of rare earth complex were synthesized. The long-lived luminescent europium complex doped nanoparticles (NPs) were used as the biomarker. The complex included in the particle was Eu(TTA)3(5-NH2-phen)-IgG (ETN-IgG), the europium complex Eu(TTA)3(5-NH2-phen) linking an IgG molecule. Silica NPs containing ETN-IgG were prepared by the reverse microemulsion method, and were easy to label oligonucleotide for time-resolved fluorescence assays. The luminophores were well-protected from the environmental interference when they were doped inside the silica network. The sequences of Staphylococcus aureus and Escherichia coli genes were designed using software Primer Premier 5.0. Amino-modified capture DNA1 was covalently immobilized on the common glass slides surface. The detection was done by monitoring the fluorescence intensity from the glass surface after the hybridization reaction with the NPs labeled probe DNA2 and complementary target DNA3. The sensing system presented short hybridization time, satisfactory stability, sensitivity, and selectivity. This approach was successfully employed for preliminary application in the detection of pure cultured E. coli, it might be an effective tool for pathogen DNA monitoring (chapter 2).
     (2) Based on the above detection assay, the single molecule with a functional group of amino and strong long lifetime fluorescence was directly used as the biomarker. The Eu complex of Eu(TTA)3(5-NH2-phen) was linked to the probe DNA. High sensitivity showed that the proposed DNA detection system based on such complex molecular could be more convenient than nanoparticle-based detection systems. The sensing system presented short hybridization time, satisfactory stability, and high selectivity (chapter 3).
     (3) A novel fluorescent dye,9-anthraldehyde-thiosemicarbazone (AnthT), used for the determination of Cu(Ⅱ) or Hg(Ⅱ) in aqueous solutions was described. In the presence of several metal ions such as Na(Ⅰ), Al(Ⅲ), Ba(Ⅱ), Mn(Ⅱ), Co(Ⅱ), Cd(Ⅱ), Ca(Ⅱ), Zn(Ⅱ), Cr(Ⅲ), Fe(Ⅲ), Pb(Ⅱ), Hg(Ⅱ), and Cu(Ⅱ) at a same concentration of 5.0×10-5 mol L-1, only Hg(Ⅱ) and Cu(Ⅱ) resulted in remarkable decreases. The fluorescence intensity of the probe decreased with increasing concentration of Cu(Ⅱ) or Hg(Ⅱ) when it was excited at 411nm in water-ethanol (20/5 v/v) solutions at pH 7.20. The fluorescence intensity of the probe decreased with increasing concentration of Cu(Ⅱ) or Hg(Ⅱ). The thiourea derivative-based probe showed linear response toward Hg(Ⅱ) in the concentration range ca.2×10-6-4×10-5 mol L-1 and Cu(Ⅱ) ca. 1×10-7-1×10-5 mol L-1. The prepared sensing system presented satisfactory sensitivity and selectivity, and the detection limits could be as low as 8.9x10"8 mol L-1 for Hg(Ⅱ) and 3.3×10-8 mol L-1 for Cu(Ⅱ). The developed method was successfully employed for preliminary application in natural water and domestic sewage (chapter 4).
     (4) A new fluorescent dye, N-allyl-4-morpholinyl-1,8-naphthalimide (AMN), was synthesized as a fluorescent indicator in the fabrication of a sensor for determining water content in organic solvents. AMN was photo-copolymerized on a glass surface treated with a silanizing agent. The fluorescence intensity of AMN decreased with increasing water contents when it was excited at 400 nm. In the range of ca.0.00-4.40%(v/v), the fluorescence intensity of AMN changed as a linear function of water content. The sensor exhibited satisfactory reproducibility, reversibility, and a quick response time. The leakage of the fluorophore was successfully prevented through covalently immobilization. Additionally, the prepared sensor is pH-insensitive and possesses a relatively long lifetime of at least one month (chapter 5).
     (5) Another benzothioxanthene derivative of N-(2-methacryloxyethyl) benzo[k,l]thioxanthene-3,4-dicarboximide (MBTD), was used as a fluorescent indicator for determination of water content in organic solvents. MBTD was also photocopolymerization-immobilized on a glass surface. Fluorescence spectra of the sensing membrane were recorded in various solvents of different polarity. The solvent exerted an evident influence on the fluorescence intensities and stokes shift. And the fluorescence intensity of MBTD changed as a linear function of water content in a certain range. The prepared sensor system possesses short response, and recovering time. The reversibility and reproducibility are also adequate for practical measurement (chapter 6).
     (6) While preparing various fluorescence sensing systems, other novel fluorescence dyes were synthesized. In the last chapter, synthesis of some other fluorescence dyes with super luminescence properties were described (chapter 7).
引文
[1]Lejeune J, de Blois M C, Rethore M O, et al. Reflection analysis:a new optical method. Evidence of mitotic inter-chromosomal RNA. Cytogenetics and Cell Genetics,1986,41(1):54-55
    [2]Porzionato A, Macchi V, Parenti A, et al. Morphometric analysis of infant and adult medullary nuclei through optical disector method. The Anatomical Record, 2009,292(10):1619-1629
    [3]Shi Q H, Martin R H. Multicolor fluorescence in situ hybridization analysis of meiotic chromosome segregation in a 47,XYY male and a review of the literature. American Journal of Medical Genetics,2000,93(1):40-46
    [4]赵庆良,贾婷,魏亮亮,等.污水厂二级出水中THMs前体物卤代活性荧光光谱分析.中国环境科学,2009,29(11):1164-1170
    [5]Hanley Q S, Murray P I, Forde T S. Microspectroscopic fluorescence analysis with prism-based imaging spectrometers:review and current studies. Cytometry A,2006,69(8):759-766
    [6]Shimizu M, Sasaki S, Kinjo M. Triplet fracion buildup effect of DNA-YOYO complex studied with fluorescence correlation spectroscopy. Analytical Biochemistry,2007,366(1):87-92
    [7]Chen X, Song Z, Zhang J, et al. Analysis on fluorescence intensity reverse photonic phenomenon between red and green fluorescence of oxyfluoride nanophase vitroceramics. Optics Express,2007,15(20):13421-13433
    [8]Tsuyama M, Shibata M, Kawazu T, et al. An Analysis of the Mechanism of the Low-wave Phenomenon of Chlorophyll Fluorescence. Photosynthesis Research, 2004,81(1):67-76
    [9]Torimura M, Kurata S, Yamada K, et al. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Analytical Science,2001,17(1):155-160
    [10]王宗花,官杰,张菲菲,等,碳纳米管与CTMAB协同加强荧光探针并应用于测定痕量锰.分析试验室,2009,28(11):6-9.
    [11]Moulick K, Clement C C, Aguirre J, et al. Synthesis of a red-shifted fluorescence polarization probe for Hsp90. Bioorganic Medicinal Chemistry Letters,2006, 16(17):4515-4518
    [12]Wang L, Bian G, Dong L, et al. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with beta-cyclodextrin as a fluorescence probe. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2005,61(6):1201-1205
    [13]Siering C, Kerschbaumer H, Nieger M, et al. A supramolecular fluorescence probe for caffeine. Organic Letter,2006,8(7):1471-1474
    [14]Kawaguchi M, Terai T, Utala R, et al. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors. Bioorganic & Medicinal Chemistry letters,18(13):3752-3755
    [15]Mao J, He Q, Liu W, An rhodamine-based fluorescence probe for iron(Ⅲ) ion determination in aqueous solution. Talanta,80(5):2093-2096
    [16]Azzi A, Chance B, Radda G K, et al. A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proceedings of the National Academy of Sciences of the United States of America,1969,62(2):612-619
    [17]Nobelprize.org. The Nobel Prize in Chemistry 2008. http://nobelprize.org/nobel_prizes/chemistry/laureates/2008/,2010-06-05
    [18]Pickup J C, Hussain F, Evans N D, et al. Fluorescence-based gluocose sensors. Biosensors and Bioelectronics,2005,20(12):2555-2565
    [19]Liu W, Wang Y, Tang J, et al. Optical fiber sensor for tetracycline antibiotics based on fluorescence quenching of covalently immobilized anthracene. Analyst, 1998,123(2):365-369
    [20]Niu C G, Gui X Q, Zeng G M, et al. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. Analyst,2005,130(11): 1551-1556
    [21]Niu C G, Gui X Q, Zeng G M, et al. Fluorescence ratiometric pH sensor prepared from covalently immobilized porphyrin and benzothioxanthene. Analytical and Bioanalytical Chemistry,2005,383(2):349-357
    [22]Niu C G, Guan A L, Zeng G M, et al. Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta,2006, 577(2):264-270
    [23]Niu C G, Qin P Z, Zeng G M, et al. Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1, 8-naphthalimide. Analytical Bioanalytical Chemistry,2007,387(3):1067-1074
    [24]Wang Y, Meng S, Song Y, et al. Fluorescence optical fibre sensor provides accurate continuous oxygen detection in rabbit model with acute lung injury. Respirology,2010,15(1):99-106
    [25]Song C, Zhang X, Jia C, et al. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media. Talanta, 2010,81(1-2):643-649
    [26]Rochat S, Gao J, Qian X, et al. Cross-reactive sensor arrays for the detection of peptides in aqueous solution by fluorescence spectroscopy. Chemistry,2010, 16(1):104-113
    [27]Perrier S, Ravelet C, Guieu V, et al. Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Biosensors and Bioelectronics,2010,25(7):1652-1657
    [28]Niino Y, Hotta K, Oka K. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging. PLoS One,2010,5(2):e9164
    [29]Dattelbaum A M, Baker G A, Fox J M, et al. PEGylation of a maltose biosensor promotes enhanced signal response when immobilized in a silica sol-gel. Bioconjugate Chemistry,2009,20(12):2381-2384
    [30]Sund S E, Swanson J A, Axelrod D. Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophysical Journal,1999,77(4): 2266-2283
    [31]Guo H, Fan J, Guo Y. A fluorimetric method for the determination of trace pentachlorophenol, based on its inhibitory effect on the redox reaction between the improved Fenton reagent and rhodamine B. Luminescence,2007,22(5): 407-414
    [32]Ruiz-Medina A, Fernandez-de Cordova M L, Molina-Diaz A. A flow-through optosensing device with fluorimetric transduction for rapid and sensitive determination of dipyridamole in pharmaceuticals and human plasma. European Journal of Pharmaceutical Sciences,2001,13(4):385-391
    [33]Niu C G, Li Z Z, Zhang X B, et al. Covalently immobilized aminonaphthalimide as fluorescent carrier for the preparation of optical sensors. Analytical Bioanalytical Chemistry,2002,372(4):519-524
    [34]Niu C G, Yang X, Lin W Q, et al. N- allyl - 4 - (N-2'-hydroxyethyl) amino-1,8 naphthalimide as a fluorophore for optical chemosensing of nitrofurantoin. Analyst,2002,127(4):512-517
    [35]Ruta J, Perrier S, Ravelet C, et al. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Analytical Chemistry,2009, 81(17):7468-7473
    [36]Yu L, Liu Z, Hu X, et al. Fluorescence Quenching Reaction of Polyvinylpyrrolidone-Eosin Y System for the Determination of Polyvinylpyrrolidone. Journal of Fluorescence, DOI:10.1007/s10895-010-0615-3
    [37]Berezin M Y, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chemical Reviews, DOI:10.1021/cr900343z
    [38]Hilal T, Puetter V, Otto C, et al. A dual estrogen receptor TR-FRET assay for simultaneous measurement of steroid site binding and coactivator recruitment. Journal of Biomolecular Screening,2010,15(3):268-278
    [39]Mathai S, Bird D K, Stylli S S, et al. Two-photon absorption cross-sections and time-resolved fluorescence imaging using porphyrin photosensitisers. Photochemical Photobiological Sciences,2007,6(9):1019-1026
    [40]Vos K, Laane C, Weijers S R, et al. Time-resolved fluorescence and circular dichroism of porphyrin cytochrome c and Zn-porphyrin cytochrome c incorporated in reversed micelles. European Journal of Biochemistry,1987, 169(2):259-268
    [41]Wang G, Yuan J, Matsumoto K, et al. Homogeneous time-resolved fluorescence DNA hybridization assay by DNA-mediated formation of an EDTA-Eu(Ⅲ)-beta-diketonate ternary complex. Analytical Biochemistry,2001, 299(2):169-172
    [42]Gabrielsson A, Zalis S, Matousek P, et al. Ultrafast photochemical dissociation of an equatorial CO ligand from trans(X,X)-[Ru(X)2(CO)2(bpy)] (X-Cl, Br, I):a picosecond time-resolved infrared spectroscopic and DFT computational study. Inorganic Chemistry,2004,43(23):7380-7388
    [43]Akita H, Kudo A, Minoura A, et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials,2009,30(15):2940-2949
    [44]Moretti M, Di Fabrizio E, Cabrini S, et al. An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore. Biosensors and Bioelectronics,2008,24(1):141-147
    [45]Harrell C C, Lee S B, Martin C R. Synthetic single-nanopore and nanotube membranes. Analytical Chemistry,2003,75(24):6861-6867
    [46]Yasutake M, Shirakawabe Y, Okawa T, et al. Performance of the carbon nano-tube assembled tip for surface shape characterization. Ultramicroscopy, 2002,91(1-4):57-62
    [47]Zhao L, Wu X, Ding H, et al. Fluorescence enhancement effect of morin-nucleic acid-L-cysteine-capped nano-ZnS system and the determination of nucleic acid. Analyst,2008,133(7):896-902
    [48]Vamvakaki V, Fournier D, Chaniotakis N A. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosensors and Bioelectronics, 2005,21(2):384-388
    [49]Wang L Y, Kan X W, Zhang M C, et al. Fluorescence for the determination of protein with functionalized nano-ZnS. Analyst,2002,127(11):1531-1534
    [50]Linnemayr K, Bruckner A, Korner R, et al. Matrix-assisted laser desorption/ionization time-of-flight and nano-electrospray ionization ion trap mass spectrometric characterization of 1-cyano-2-substituted-benz[f]isoindole derivatives of peptides for fluorescence detection. Journal of Mass Spectrometry, 1999,34(4):427-434
    [51]Veriansyah B, Kim J, Supercritical water oxidation for the destrction of toxic organic wastewaters:A review. Journal of Environmental Sciences,2007,19(5): 513-522
    [52]Xanthopoulou G, Vekinis G, An overview of some environmental applications of self-propagating high-temperature synthesis. Advances in Environmental Research,2001,5(2):117-128
    [53]Cappon C, Sewage sludge as a source of environmental selenium. The Science of the Total Environment,1991,100:177-205
    [54]Beyersmann D, Effects of carcinogenic metals on gene expression. Toxicology Letters,2002,127(1-3):63-68
    [55]Sorvari J, Rantala L M, Rantala M J, et al. Heavy metal pollution disturbs immune response in wild ant populations. Environmental Pollution,2007,145(1): 324-328
    [56]Franca S, Vinagre C, Cacador I, et al. Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Marine Pollution Bulletin,2005, 50(9):998-1003
    [57]Glasby G P, Szefer P, Geldon J, et al. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Science of the Total Environment,2004,330(1-3):249-269
    [58]Shparyk Y S, Parpan V I. Heavy metal pollution and forest health in the Ukrainian Carpathians. Environmental Pollution,2004,130(1):55-63
    [59]Nakanishi Y, Sumita M, Yumita K, et al. Heavy-metal pollution and its state in algae in Kakehashi river and Godani river at the foot of Ogoya mine, Ishikawa Prefecture. Analytical Science,2004,20(1):73-78
    [60]Cheng S. Heavy metal pollution in China:origin, pattern and control. Environmental Science and Pollution Research,2003,10(3):192-198
    [61]Gumgum B, Unlu E, Tez Z, et al. Heavy metal pollution in water, sediment and fish from the Tigris river in Turkey. Chemosphere,1994,29(1):111-116
    [62]Tam N F, Liu W K, Wong M H, et al. Heavy metal pollution in roadside urban parks and gardens in Hong Kong. Science of the Total Environment,1987,59: 325-328
    [63]Nishida H, Suzuki S. A statistical view of heavy metal pollution index of river sediment. Bulletin of Environmental Contamination and Toxicology,1984,32(5): 503-509
    [64]Lepri F G, Borges D L, Araujo R G, et al. Determination of heavy metals in activated charcoals and carbon black for Lyocell fiber production using direct solid sampling high-resolution continuum source graphite furnace atomic absorption and inductively coupled plasma optical emission spectrometry. Talanta,2010,81(3):980-987
    [65]Ghaedi M, Shokrollahi A, Kianfar A H, et al. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde,1,3 propan diimine (BSPDI) loaded on activated carbon. Journal of Hazardous Materials,2008,154(1-3): 128-134
    [66]Wei Z G, Wong J W, Zhao H Y, et al. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biological Trace Element Research,2007,118(2): 146-158
    [67]Shkinev V M, Gomolitskii V N, Spivakov B Y, et al. Determination of trace heavy metals in waters by atomic-absorption spectrometry after preconcentration by liquid-phase polymer-based retention. Talanta,1989,36(8):861-863
    [68]Talebi S MMalekiha M, Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate. Journal of Environmental Engineering and Science,2008,50(3):197-202
    [69]Ochsenkuhn-Petropoulou M, Ochsenkuhn K M. Comparison of inductively coupled plasma-atomic emission spectrometry, anodic stripping voltammetry and instrumental neutron-activation analysis for the determination of heavy metals in airborne particulate matter. Fresenius'Journal of Analytical Chemistry,2001, 369(7-8):629-632
    [70]Bordera L, Hernandis V, Canals A. Automatic flow-injection system for the determination of heavy metals in sewage sludge by microwave digestion and detection by inductively coupled plasma-atomic emission spectrometry (MW-ICP/AES). Analytical Bioanalytical Chemistry,1996,355(2):112-119
    [71]Vereda Alonso E, de Torres A G, Cano Pavon J M. Determination of trace heavy metals in biological samples by inductively-coupled plasma atomic emission spectrometry after extraction with 1,5 - bis - (di - 2 - pyridylmethylene) thio-carbono-hydrazide. Talanta,1996,43 (3):493-501
    [72]Vukovic J, Matsuoka S, Yoshimura K, et al., Simultaneous determination of traces of heavy metals by solid-phase spectrophotometry. Talanta,2007,71(5): 2085-2091
    [73]Pena-Vazquez E, Perez-Conde C, Costas E, et al. Development of a microalgal PAM test method for Cu(Ⅱ) in waters:comparison of using spectrofluorometry. Ecotoxicology, DOI:10.1007/s10646-010-0487-y
    [74]Lafisca T A, Nagourney S J, Pietarinen C. The determination of lead in total suspended air particulates by x-ray fluorescence spectroscopy. Talanta,1991, 38(9):995-998
    [75]Yantasee W, Hongsirikarn K, Warner C L, et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst,2008, 133 (3):348-355
    [76]Hunsom M, Pruksathorn K, Damronglerd S, et al., Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research,2005,39(4):610-616
    [77]van Leeuwen H P, Town R M. Electrochemical metal speciation analysis of chemically heterogeneous samples:the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environmental Science Technology,2003,37(17):3945-3952
    [78]Jebali J, Banni M, Gerbej H, et al. Metallothionein induction by Cu, Cd and Hg in Dicentrarchus labrax liver:assessment by RP-HPLC with fluorescence detection and spectrophotometry. Marine Environmental Research,2008,65(4):358-363
    [79]Hu Q, Yang G, Zhao Y, et al. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection. Analytical Bioanalytical Chemistry,2003,375(6): 831-835
    [80]Huang Z, Yang G, Hu Q, et al. Determination of lead, cadmium and mercury in microwave-digested foodstuffs by RP-HPLC with an on-line enrichment technique. Analytical Science,2003,19(2):255-258
    [81]Hu Q, Yang G, Yang J, et al. Study on determination of iron, cobalt, nickel, copper, zinc and manganese in drinking water by solid-phase extraction and RP-HPLC with 2-(2-quinolinylazo)-5-diethylaminophenol as precolumn derivatizing reagent. Journal of Environmental Monitoring,2002,4(6):956-959
    [82]Gioia R, Sweetman A J, Jones K C. Coupling passive air sampling with emission estimates and chemical fate modeling for persistent organic pollutants (POPs):a feasibility study for Northern Europe. Environmental Science Technology,2007, 41(7):2165-2171
    [83]Hubert A, Wenzel K D, Manz M, et al. High extraction efficiency for POPs in real contaminated soil samples using accelerated solvent extraction. Analytical Chemistry,2000,72(6):1294-1300
    [84]Katsoyiannis ASamara C, Persistent organic pollutants (POPs) in the sewage treatment plant of Thessaloniki, northern Greece:occurrence and removal. Water Res,2004,38 (11):2685-2698
    [85]Meijer S N, Ockenden W A, Steinnes E, et al. Spatial and temporal trends of POPs in Norwegian and UK background air:implications for global cycling. Environmental Science Technology,2003,37(3):454-461
    [86]Tenenbaum D J. POPs in polar bears:organochlorines affect bone density. Environmental Health Perspectives,2004,112(17):A1011
    [87]Zhao Y, Yang L, Wang Q. Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in mainland China. Environmental Science Technology,2008, 42(16):6046-6051
    [88]Kohler A, Hellweg S, Escher B I, et al., Organic pollutant removal versus toxicity reduction in industrial wastewater treatment:the example of wastewater from fluorescent whitening agent production. Environmental Science Technology, 2006,40(10):3395-3401
    [89]Farrington J W. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms. Environmental Health Perspectives,1991,90:75-84
    [90]Maciel R, Sant'Anna G L, Jr.Dezotti M. Phenol removal from high salinity effluents using Fenton's reagent and photo-Fenton reactions. Chemosphere,2004, 57(7):711-719
    [91]Korenkova E, Matisova E, Slobodnik J. Application of large volume injection GC-MS to analysis of organic compounds in the extracts and leachates of municipal solid waste incineration fly ash. Waste Management,2006,26(9): 1005-1016
    [92]Banar M, Ozkan A, Kurkcuoglu M. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS. Environment Monitoring and Assessment,2006,121(1-3):439-459
    [93]Li H Q, Jiku F, Schroder H F. Assessment of the pollutant elimination efficiency by gas chromatography/mass spectrometry, liquid chromatography-mass spectrometry and -tandem mass spectrometry. Comparison of conventional and membrane-assisted biological wastewater treatment processes. Journal of Chromatography A,2000,889(1-2):155-176
    [94]Intaraprasert J, Marriott P J. On-line concentration of environmental pollutant samples by using capillary electrophoresis. Methods in Molecular Biology,2008, 384:661-701
    [95]Keane A, Phoenix P, Ghoshal S, et al. Exposing culprit organic pollutants:a review. Journal of Microbiological Methods,2002,49(2):103-119
    [96]Vo-Dinh T, SERS chemical sensors and biosensors:new tools for envionmental and biological analysis. Sensors and Actuators B:Chemical,1995,29(1-3): 183-189
    [97]Threlfall E J, Hall M L, Rowe B. Salmonella bacteraemia in England and Wales. Journal of Clinical Pathology,1992,45(1):34-36
    [98]Susa M, Konig M, Saalmuller A, et al. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. The Journal of Virology, 1992,66(2):1171-1175
    [99]Ali E H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia,2005,159(2):231-243
    [100]Hodgkin J, Kuwabara P E, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Current Biology,2000,10(24):1615-1618
    [101]Maresca B, Carratu L, Kobayashi G S. Morphological transition in the human fungal pathogen Histoplasma capsulatum. Trends in Microbiology,1994,2(4): 110-114
    [102]Gomez M J, Maras B, Barca A, et al. Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infection and Immunity,2000,68(2):694-701
    [103]Janeway C A, Jr., Goodnow C C, Medzhitov R. Danger-pathogen on the premises! Immunological tolerance. Current Biology,1996,6(5):519-522
    [104]Tazume S, Umehara K, Matsuzawa H, et al. Immunological function of food-restricted germfree and specific pathogen-free mice. Jikken Dobutsu,1991, 40(4):523-528
    [105]Cremonesi P, Pisoni G, Severgnini M, et al. Pathogen detection in milk samples by ligation detection reaction-mediated universal array method. Journal of Dairy Science,2009,92(7):3027-3039
    [106]Thilmony R, Underwood W, He S Y. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. The Plant Journal,2006,46(1):34-53
    [107]Hollingshead S K, Briles D E. Streptococcus pneumoniae:new tools for an old pathogen. Current Opinion in Microbiology,2001,4(1):71-77
    [108]Van Vliet K, Mohamed M R, Zhang L, et al. Poxvirus proteomics and virus-host protein interactions. Microbiology and Molecular Biology Reviews,2009,73(4): 730-749
    [109]Schabacker D S, Stefanovska I, Gavin I, et al. Protein array staining methods for undefined protein content, manufacturing quality control, and performance validation. Analytical Biochemistry,2006,359(1):84-93
    [110]Ravindranath S P, Mauer L J, Deb-Roy C, et al. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Analytical Chemistry,2009,81(8):2840-2846
    [111]Bhunia A K. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Advances in Food Nutrition Research,2008,54:1-44
    [112]Simpson J M, Lim D V. Rapid PCR confirmation of E. coli O157:H7 after evanescent wave fiber optic biosensor detection. Biosensors and Bioelectronics, 2005,21(6):881-887
    [113]Ghaffari S, Ingle J D, Jr. Optimization of atomic fluorescence measurements with a microcomputer-based time-multiplex multiple-slit spectrometer. Talanta, 1992,39(7):749-757
    [114]Li Y, Yin X B, Yan X P, Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions. Analytica Chimica Acta, 2008,615(2):105-114
    [115]Wei Q, Yang J, Zhang Y, et al. Determination of antimony(Ⅲ) in environmental water samples in microemulsion system by the fluorescence quenching method. Talanta,2002,58(3):419-426
    [116]Jie N, Zhang Q, Yang J, et al. Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G. Talanta,1998, 46(1):215-219
    [117]Xiang Y, Mei L, Li N, et al. Sensitive and selective spectrofluorimetric determination of chromium(Ⅵ) in water by fluorescence enhancement. Analytical Chimica Acta,2007,581(1):132-136
    [118]Sanchez F G, Lopez M H. Trace zinc determination by synchronous derivative fluorimetry. Talanta,1986,33(10):785-789
    [119]Xiao Y, Wang H Y, Han J. Simultaneous determination of carvedilol and ampicillin sodium by synchronous fluorimetry. Spectrochimica Acta A: Molecular and Biomolecular Spectrosctroscopy,2005,61(4):567-573
    [120]Tam S, Clavijo A, Engelhard E K, et al. Fluorescence-based multiplex real-time RT-PCR arrays for the detection and serotype determination of foot-and-mouth disease virus. Journal of Virological Methods,2009,161(2):183-191
    [121]Yong V W, Kim S U. A new double labelling immunofluorescence technique for the determination of proliferation of human astrocytes in culture. Journal of Neuroscience Methods,1987,21(1):9-16
    [122]Valesini G, Masala C. The Trypanosoma lewisi immunofluorescence test:a new simple technique for simultaneous determination of total antinuclear antibodies and the detection of antibodies to double-stranded DNA. Journal of Immunological Methods,1982,48(2):177-188
    [123]Chiang W T, Wentworth B B, Alexander E R. The use of an immunofluorescence technique for the determination of antibodies to cytomegalovirus strains in human sera. Journal of Immunological Methods,1970, 104(4):992-999
    [124]Ouyang M, Sun J, Chien S, et al. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proceeding of the National Academy of Sciences of the United States of America,2008,105(38): 14353-14358
    [125]Watanabe J, Ishihara K. Instantaneous determination via bimolecular recognition: usefulness of FRET in phosphorylcholine group enriched nanoparticles. Bioconjugate Chemistry,2007,18(6):1811-1817
    [126]Hillisch A, Lorenz M, Diekmann S. Recent advances in FRET:distance determination in protein-DNA complexes. Current Opinion in Structural Biology, 2001,11(2):201-207
    [127]Fonfria E S, Vilarino N, Molgo J, et al. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Analytical Biochemistry,2010,403(1-2):102-107
    [128]Nasir M S, Jolley M E. Development of a fluorescence polarization assay for the determination of aflatoxins in grains. Journal of Agricultural and Food Chemistry, 2002,50(11):3116-3121
    [129]Maragos C M, Jolley M, ENasir M S. Fluorescence polarization as a tool for the determination of deoxynivalenol in wheat. Food Additives Contaminants,2002, 19(4):400-407
    [130]Maragos C M, Jolley M E, Plattner R D, et al. Fluorescence polarization as a means for determination of fumonisins in maize. Journal of Agricultural and Food Chemistry,2001,49(2):596-602
    [131]Lindquist J. Determination of water in penicillins using fast Karl Fischer reagents and electronic end-point optimization. Journal of Pharmaceutical and Biomedical Analysis,1984,2(1):37-44
    [132]Bai M, Seitz W R. A fiber optic sensor for water in organic solvents based on polymer swelling. Talanta,1994,41(6):993-999
    [133]Gupta Tvan der Boom M E. Optical sensing of parts per million levels of water in organic solvents using redox-active osmium chromophore-based monolayers. Journal of the American Chemistry Society,2006,128(26):8400-8401
    [134]Ryan G J, Quinn S, Gunnlaugsson T. Highly effective DNA photocleavage by novel "rigid" Ru(bpy)(3)-4-nitro- and -4-amino-1,8-naphthalimide conjugates. Inorganic Chemistry,2008,47(2):401-403
    [135]Chovelon J M, Grabchev I. A novel fluorescent sensor for metal cations and protons based of bis-1,8-naphthalimide. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2007,67(1):87-91
    [136]Schlicker A, Peschke P, Burkle A, et al.4-Amino-1,8-naphthalimide:a novel inhibitor of poly(ADP-ribose) polymerase and radiation sensitizer. International Journal of Radiation Biology,1999,75(1):91-100
    [137]Harma H, Soukka T, Lovgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinical Chemistry,2001,47:561-568
    [138]Chen Y, Chi Y, Wen H, et al. Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA. Analytical Chemistry, 2007,79(3):960-965
    [139]Wu J, Wang G L, Jin D Y, Yuan J L, Guan Y F, Piper J. Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging. Chemical Communications, 2008,3:365-367
    [140]Ye Z Q, Tan M Q, Wang G L, Yuan J L. Novel fluorescent europium chelate-doped silica nanoparticles:preparation, characterization and time-resolved fluorometric application. Journal of Materials Chemistry,2004,14: 851-856
    [141]Tan M Q, Wang G L, Hai X D, Ye Z Q, Yuan J L. Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications. Journal of Materials Chemistry,2004, 14:2896-2901
    [142]Wu J, Ye Z Q, Wang G L, Yuan J L. Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging. Talanta,2007,72:1693-1697
    [143]Ye Z Q, Tan M Q, Wang G L, Yuan J L. Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(Ⅲ) fluorescent nanoparticles. Analytical Chemistry,2004,76:513-518
    [144]Chen Y, Lu Z H. Dye sensitized luminescent europium nanoparticles and its time-resolved fluorometric assay for DNA. Analytica Chimica Acta.2007,587: 180-186
    [145]Sabbioni E, Girardi F.. Metallobiochemistry of heavy metal pollution:nuclear and radiochemical techniques for long term--low level exposure (LLE) experiments. Science of the Total Environment,1977,7(2):145-179
    [146]Diamandis E P, Christopoulos T K, Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Analytical Chemistry, 1990,62:1149A-1157A
    [147]Yuan J L, Wang G L. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. Journal of Fluorescence,2005,15:559-568
    [148]Peruski A H, Johnson L H, Peruski Jr L F. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. Journal of Immunological Methods,2002,263,35-41
    [149]Zheng Y J, Lu J, Liu L Y, Zhao D Q, Ni J Z. Fluorescence analysis of aldolase dissociation from the N-terminal of the cytoplasmic domain of band 3 induced by lanthanide. Biochemical and Biophysical Research Communications,2003,303: 433-439
    [150]Havas F, Danel M, Galaup C, Tisnes P, Picard C. A convenient synthesis of 6,6'-dimethyl-2,2'-bipyridine-4-ester and its application to the preparation of bifunctional lanthanide chelators. Tetrahedron Letters,2007,48:999-1002
    [151]Hashino K, Ikawa K, Ito M, Hosoya C, Nishioka T, Makiuchi M, Matsumoto K. Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay. Analytical Biochemistry, 2007,364:89-91
    [152]Lopez E, Chypre C, Alpha B, Mathis G. Europium(Ⅲ) trisbipyridine cryptate label for time-resolved fluorescence detection of polymerase chain reaction products fixed on a solid support. Clinical Chemistry,1993,39:196-201
    [153]Forstner U. Lake sediments as indicators of heavy-metal pollution. Naturwissenschaften,1976,63(10):465-470
    [154]Bewley R J. Effects of Heavy Metal Pollution on Oak Leaf Microorganisms. Appl Environ Microbiol,1980,40(6):1053-1059
    [155]Howell W M. Detection of DNA hybridization using induced fluorescence resonance energy transfer. Methods in Molecular Biology,2006,335:33-41
    [156]Rurack K, Kollmannsberger M, Resch-Genger U, Daub J. A selective and sensitive fluoroionophore for HgⅡ, AgⅠ, and CuⅡ with virtually decoupled fluorophore and receptor units. Journal of American Chemical Society,2000,122: 968-969
    [157]Zhang X B, Guo C C, Li Z Z, Shen G L, Yu R Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry,2002, 74:821-825
    [158]Martinez R, Espinosa A, Tarraga A, Molina P. New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine. Organic Letters, 2005,7:5869-5872
    [159]Sandor M, Geistmann F, Schuster M. An anthracene-substituted benzoylthiourea for the selective determination of Hg(Ⅱ) in micellar media. Analytica Chimica Acta,1999,388:19-26
    [160]Schuster M, Sandor M. N-Dansyl-N'-ethylthiourea for the fluorometric detection of heavy metal ions. Journal of Analytical Chemistry,1996,356: 326-330
    [161]Unterreitmaier E, Schuster M. Fluorometric detection of heavy metals with N-methyl-N-9-(methylanthracene)-N'-benzoylthiourea. Analytica Chimica Acta, 1995,309:339-344
    [162]Hine A V, Chen X, Hughes M D, et al. Optical fibre-based detection of DNA hybridization. Biochemical Society Transactions,2009,37(Pt 2):445-449
    [163]Albertson D G, Fishpool R M, Birchall P S. Fluorescence in situ hybridization for the detection of DNA and RNA. Methods in Cell Biology,1995,48:339-364
    [164]Estevez M C, Huang Y F, Kang H, et al. Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods in Molecular Biology,2010,624: 235-248
    [165]Zhao W, Wang L, Tan W. Fluorescent nanoparticle for bacteria and DNA detection. Advances in Experimental Medicine and Biology,2007,620:129-135
    [166]Zhuang J, Cheng T, Gao L, et al. Silica coating magnetic nanoparticle-based silver enhancement immunoassay for rapid electrical detection of ricin toxin. Toxicon,2010,55(1):145-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700