用户名: 密码: 验证码:
基于故障元件识别的智能电网广域后备保护关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电保护是保障电网安全的第一道防线,当其快速、可靠动作时,可有效遏制电网状态恶化;反之,则可能扩大事故范围,甚至引发全网大面积停电事故。传统后备保护利用被保护元件单侧信息识别故障,存在整定计算繁琐、对电网复杂运行方式适应性差、在大范围潮流转移时可能连锁动作等突出问题。因此,加强继电保护新原理与新技术的研究,构建性能优良、适应复杂电网运行环境的继电保护系统,对保障电力系统运行安全,防范大范围停电事故具有重要的理论和现实意义。
     近年来,随着广域同步测量与通信技术的快速发展,利用电网多点量测信息识别故障元件,并以此构建基于故障元件识别的新型广域后备保护的研究得到了广泛关注,并已成为智能电网保护技术的重要发展方向。本文在国家自然科学基金重点项目“集中决策与分布实现相协调的大电网后备保护系统研究”(50837002)资助下,针对新型广域后备保护系统的关键技术问题进行了深入分析与研究。
     实际电网规模庞大、结构复杂,如何将其划分为若干个合理的保护分区,是广域后备保护需解决的关键问题之一。论文以广域通信可靠性、保护系统投资经济性和分区通信量均衡性为指标,并以保护子站-中心站间的通信时延为约束,构建了广域后备保护的分区性能评价体系。同时,提出了一种基于双层聚类的自适应分区算法,以克服分区数目难以预先确定的问题。该算法根据各变电站的关联支路数,将电网初分为多个候选分区,继而根据候选分区数目确定进化群体中的基因链长度。之后,根据各基因链中基因值的变化,将未激活的候选分区逐一划分至相应的分区中,实现对应分区数目下的区域划分操作。仿真结果表明,所述分区优化算法可对不同规模电网进行合理划分,分区结果的性能指标和通信时延均满足应用要求。
     利用广域信息准确识别故障元件、通过故障区域搜索降低信息交互量是广域后备保护的研究重点和核心,论文从不同角度对该问题进行了分析与研究。根据电网中各节点故障分量电压的分布特性,提出了基于故障电压比较的故障元件识别算法和故障区域搜索算法。其中,故障元件识别算法利用线路一侧的故障电压、电流测量值推算另一侧电压故障分量和补偿电压分量。并利用两者与实测值的比值为动作参数,构建综合比较判据。以保证算法在线路阻抗与两侧系统阻抗相对大小不同时,均能正确识别故障元件。故障区域搜索算法通过检测节点故障电压与支路故障电流的变化幅度确定故障所在区域,进而减少广域通信量。并通过母线序电压排序搜索故障关联线路,减小故障元件识别计算量。仿真结果表明,故障区域搜索算法可通过子站启动检测和故障关联线路搜索,有效降低子站上传信息量和提高故障元件识别效率。故障元件识别算法在多种复杂条件下均能做出正确判断,具有较高的灵敏性与良好的安全性。
     论文根据电网中各支路故障分量电流的分布特性,提出了基于故障电流分布的故障元件识别算法和故障区域搜索算法。其中,故障元件识别算法根据最大故障电流出现在实际故障线路一侧、故障线路两侧的故障电流一般存在较大差异等特性分别构建识别判据。继而将2种判据综合运用,利用两者间的互补性进一步提高故障元件识别算法的整体性能。故障区域搜索算法通过对子站关联支路进行故障电流比幅,选取准故障疑似线路。之后通过关联矩阵计算,在上传信息的准故障疑似线路中搜索故障疑似线路,进一步缩小故障区域。仿真结果表明,所述故障区域搜索算法可有效降低子站信息传输量和中心站故障元件识别计算量。故障元件识别算法可正确识别各种内部故障,并在非故障扰动发生时可靠不误动,具有良好的安全性。
     广域后备保护需采集电网内多点量测信息识别故障元件,如何保证其在信息缺失和错误情况下作出正确决策,是广域后备保护工程应用中亟待解决的技术难题。论文利用D-S证据理论,提出了基于多源信息融合的智能决策模型与算法。其中,决策算法利用Manhattan距离衡量证据多属性间的冲突程度,进而以证据的可依赖度为权重对证据源与合成规则进行修正,克服了经典合成规则在高冲突证据融合时易产生悖论的问题。同时,以广域后备保护故障识别元件、就地保护元件的动作信息为证据,建立了广域后备保护智能决策模型。利用支路故障电流选线对距离Ⅱ、Ⅲ段元件的信任度进行辅助计算。并将决策结果的信任区间细分为非故障、不确定与故障等三部分,进一步防止算法在证据间冲突过大时出现误判。仿真结果表明,所述智能决策算法在多位证据错误和缺失时具有良好的防拒动与防误动性能。
     论文最后对所述研究成果进行了总结,并对后续研究工作进行了展望。
Protective relaying is the first defense line of electric power grid. When it operates fast and reliably, the safety of power grid can be guaranteed. Otherwise, grid instability and blackout event may occur. Traditional backup protection identifies faults based on local information. It has complex setting principle, poor adaptability to grid operation change and is inclined to misoperate under heavily loaded flow transfer. Consequently, it is meaningful to exploit novel protection technology and design new-style protection system which has excellent property and is adaptive to the grid operation change.
     Accompany with the development of wide-area measurement and communication technique, applying wide-area information to identify fault element and studying novel wide-area backup protection (WABP) based on fault element identification (FEI) becomes a hot spot in modern power system research. Supported by the National Natural Science Foundation of China (No.50837002), this dissertation researches the kernel problems of wide-area backup protection based on fault element identification in depth.
     How to partition a large scale power grid into several reasonable subsystems is one of the critical issues of WABP research. There are three indexes including communication reliability of substation, investment economy of protection system and communication balance among subsystems have been adopted to establish a integrated hierarchy so as to evaluate the property of partition result. Meanwhile, a two-layer clustering partition algorithm is proposed. Firstly, the protected grid is decomposed into multiple candidate subsystems according to the compactness among substations, and then the length of chromosome can be determined. During two-layer clustering process, the number of subsystems is optimized when genes within chromosomes are changed, and the candidate subsystems can be further merged. Simulation result demonstrates that the presented algorithm could partition practical large grid into several reasonable subsystems, and the application requirements and latency constraints are satisfied.
     A novel FEI algorithm and a fault area search algorithm based on fault component voltage comparison are proposed, respectively. The fault component voltage and current at one terminal of line are applied to calculate the fault component voltage at the other terminal. Afterwards, a comprehensive identification criterion based on the ratio between measured and calculated values is established to identify fault element. On the other hand, fault area search algorithm could decrease wide-area communication traffic through substation pickup detection, and then accelerate FEI through fault incident line search. Simulation test proves the validity of presented algorithms under various complex conditions.
     The distribution characteristic of fault component currents is illustrated, and corresponding FEI algorithm and fault area search algorithm are also proposed. The FEI algorithm comprises branch fault component current comparison criterion and two-terminal fault component current comparison criterion. Then, these two criteria are synthetically applied to identify various internal faults. The fault area search algorithm searches quasi suspected faulty lines through branch current magnitude comparison. After that, the suspected faulty lines are searched through incident matrix computation. Simulation result shows that the uploaded information of substations and the calculation quantity of central station can be dramatically reduced through fault area search. Moreover, the FEI algorithm could identify different types of faults and has good security.
     How to safeguard the reliability of protection decision result under information error and loss is a formidable challenge. An intelligent decision-making model and a decision-making algorithm based on multi-source information fusion are proposed, respectively. The Manhattan distance is applied to describe conflict degree, and a weighted evidence method is used to decrease the conflict degree among decision evidences. Finally, source evidence and traditional composition rule are all improved. Besides that, the operation information from WABP and local relays are chosen as decision evidences. The fault currents of branches are applied to calculate the trust degree of Zone-2 and-3 elements. Furthermore, the trust interval is partitioned into three parts so as to further improve the performance of decision-making algorithm. Simulation result shows that the proposed algorithm could make correct decision under multiple information error or loss.
引文
[1]S. H. Horowitz, and A. G. Phadke, "Blackouts and relaying considerations," IEEE Power Energy Mag., vol.4, no.5, pp.60-67, Sep./Oct. 2006.
    [2]A. S. Noghabi, J. Sadeh, and H. R. Mashhadi, "Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA," IEEE Trans. Power Del, vol.24, no.4, pp.3-16, Oct. 2009.
    [3]D. Novosel, G. Bartok, G. Henneberg, et al, "IEEE PSRC report on performance of relaying during wide-area stressed conditions," IEEE Trans. Power Del., vol.25, no.l, pp.3-16, Jan. 2010.
    [4]S. H. Horowitz and A. G. Phadke, Power System Relaying. Chichester: John Wiley, 2008, pp.275-276.
    [5]丁道齐.复杂大电网安全性分析一智能电网的概念与实现.北京:中国电力出 版社,2010:86-104.
    [6]李斌,薄志谦.面向智能电网的保护控制系统.电力系统自动化,2009,33(20): 7-12.
    [7]G.N. Ericsson, "Cyber security and power system communication-essential parts of a smart grid infrastructure," IEEE Trans. Power Del., vol.25, no.3, pp. 1501-1507, Jul. 2010.
    [8]A. Bose, "Smart transmission grid applications and their supporting infrastructure," IEEE Trans. Smart Grid., vol.1, no.1, pp.11-19, Jun.2010.
    [9]F.X. Li, W. Qiao, H. B. Sun, et al, "Smart transmission grid: vision and frame-work," IEEE Trans. Smart Grid., vol.1, no.2, pp. 168-177, Sep. 2010.
    [10]M.Kezunovic, "Smart fault location for smart grids," IEEE Trans. Smart Grid., vol.2, no.1, pp. 11-22, Mar. 2011.
    [11]A.G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their Applications. New York: Springer, 2008, pp. 197-221.
    [12]J.D. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, "Synchronized phasor measurement applications in power systems," IEEE Trans. Smart Grid., vol.1, no.1,pp.20-27, Jun. 2010.
    [13]M. G. Adamiak, A. P. Apostolov, M. M. Begovic, et al, "Wide area protection-technology and infrastructures," IEEE Trans. Power Del., vol.21, no.2, pp. 601-609, Apr.2006.
    [14]S. Sheng, W. L. Chan, K. K. Li, et al, "Context information-based cyber security defense of protection system," IEEE Trans. Power Del., vol.22, no.3, pp.1477-1481,Jul.2007.
    [15]V. Madani, D. Novosel, S. Horowitz, M Adamiak, J. Amategui, et al, "IEEE PSRC report on global industry experiences with system integrity protection schemes (SIPS)," IEEE Trans. Power Del., vol.25, no.4, pp.2143-2155, Oct.2010.
    [16]S. H. Horowitz, D. Novosel, V. Madani, et al, "System-wide protection," IEEE Power Energy Mag., vol.6, no.5, pp.34-42, Sep./Oct.2008.
    [17]A. D. Rajapakse, F. Gomez, K. Nanayakkara, et al, "Rotor angle instability prediction using post-disturbance voltage trajectories," IEEE Trans. Power Syst., vol.25, no.2, pp.947-956, May.2010.
    [18]F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, et al, "Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements," IEEE Trans. Power Syst., vol.26, no.3, pp.1474-1483, Aug.2011.
    [19]E. M. Oumvoulakis, and N. D. Hatziargyriou, "A particle swarm optimization method for power system dynamic security control," IEEE Trans. Power Syst., vol.25, no.2, pp.1032-1041, May.2010.
    [20]Q. Gao, and S. M. Rovnyak, "Decision trees using synchronized phasor measurements for wide-area response-based control," IEEE Trans. Power Syst., vol.26, no.2, pp.855-861, May.2011.
    [21]C. G. Wang, B. H. Zhang, Z. G. Hao, et al, "A novel Real-Time Searching Method for Power System Splitting Boundary," IEEE Trans. Power Syst., vol.25, no.4, pp. 1902-1909, Nov.2010.
    [22]J. Li, C. C. Liu, and K. P. Schneider, "Controlled partitioning of a power network considering real and reactive power balance," IEEE Trans. Smart Grid., vol.1, no.3, pp.261-269, Dec.2010.
    [23]X. N. Lin, H. L. Weng, Q. Zou, et al, "The frequency closed-loop control strategy of islanded power systems," IEEE Trans. Power Syst., vol.23, no.2, pp.796-803, May.2008.
    [24]P. Mercier, R. Cherkaoui, and A. Oudalov, "Optimizing a battery energy storage system for frequency control application in an isolated power system," IEEE Trans. Power Syst., vol.24, no.3, pp.1469-1477, Aug.2009.
    [25]S. Corsi, "Wide area voltage protection," IET Gener. Transm. Distrib., vol.4, no.10, pp.1164-1279, Oct.2010.
    [26]A. G. Beccuti, T. H. Demiray, G. Andersson, et al, "A lagrangian decomposition algorithm for optimal emergency voltage control," IEEE Trans. Power Syst., vol.25, no.4, pp.1769-1779, Nov.2010.
    [27]Y. Serizawa, M. Myoujin, K. Kitamura, et al, "Wide-area current differential backup protection employing broadband communications and time transfer systems," IEEE Trans. Power Del, vol.13, no.4, pp.1046-1052, Oct.1998.
    [28]何志勤,张哲,尹项根.等.电力系统广域继电保护研究综述.电力自动化设备,2010,30(5):125-130.
    [29]G. D. Rokefeller, C. L. Wagner, J. R. Linders, et al, "Adaptive transmission relaying concepts for improved performance," IEEE Trans. Power Del., vol.3, no.4, pp.1446-1458, Oct.1988.
    [30]R. Ramaswami, M. J. Damborg, and S. S. Venkata, "coordination of directional overcurrent relays in transmission systems-a subsystem approach," IEEE Trans. Power Del, vol.5, no.1, pp.64-70, Jan.1990.
    [31]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决对策.中国电机工程学报,2003,23(10):51-56.
    [32]E. Orduna, F. Garces, and E. Handschin, "Algorithmic-knowledge-based adaptive coordination in transmission protection," IEEE Trans. Power Del., vol.18, no.1, pp.61-65, Jan.2003.
    [33]马静,叶东华,王彤,等.电力系统多区域复杂环网的最小断电集计算.中国电机工程学报,2011,31(28):104-111.
    [34]J. Yang, W. Li, T. Chen, et al, "Online estimation and application of power grid impedance matrices based on synchronised phasor measurements," IET Gener. Transm. Distrib., vol.4, no.9, pp.1052-1059, Sep.2010.
    [35]熊玮,夏文龙,余晓鸿,等.多核并行计算技术在电力系统短路计算中的应用.电力系统自动化,2011,35(8):49-52.
    [36]毕兆东,王宁,夏彦辉,等.基于动态短路电流计算的继电保护定值在线校核 系统.电力系统自动化,2012,36(7):81-84.
    [37]Y. L. Zhu, S. Q. Song, and D. W. Wang, "Multiagents-based wide area protection with best-effort adaptive strategy," Int J Elect. Power Energy Sys., vol.31, no.2, pp.94-99, Feb.2009.
    [38]S. H. Horowitz and A. G. Phadke, "Third zone revisited," IEEE Trans. Power Del., vol.21, no.1, pp.23-29, Jan.2006.
    [39]徐慧明,毕天姝,黄少锋,杨奇逊.计及暂态过程的多支路切除潮流转移识别算法研究.中国电机工程学报,2007,27(16):24-30.
    [40]S. Lim, C. C. Liu, S. Lee, et al, "Blocking of zone 3 relays to prevent cascaded events," IEEE Trans. Power Syst., vol.23, no.2, pp.747-754, May.2008.
    [41]P. V. Navalkar and S. A. Soman, "Secure remote backup protection of transmission lines using synchrophasors," IEEE Trans. Power Del., vol.26, no.1, pp.87-96, Jan. 2011.
    [42]董新洲,丁磊,刘琨,等.基于本地信息的系统保护.中国电机工程学报,2010,30(22):7-13.
    [43]袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社,2007:123-133.
    [44]M. Y. Li, P. B. Luh, L. D. Michel, et al, "Corrective line switching with security constraints for the base and contingency cases," IEEE Trans. Power Syst., vol.27, no.1, pp.125-133, Nov.2012.
    [45]徐慧明,毕天姝,黄少锋,等.基于广域同步测量系统的预防连锁跳闸控制策略.中国电机工程学报,2007,27(16):24-30.
    [46]Y. L. Xu, W. X. Liu, and J. Gong, "Stable multi-agent-based load shedding algorithm for power systems," IEEE Trans. Power Syst., vol.26, no.4, pp.2006-2014, Nov.2011.
    [47]S. Sheng, K. K. Li, W. L. Chan, Z. X. Jun and D. X. Zhong, "Agent-based self-healing protection system," IEEE Trans. Power Del., vol.21, no.2, pp.610-618, Apr.2006.
    [48]丛伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究.中国电机工程学报,2006,26(21):8-14.
    [49]X. Y. Tong, X. R. Wang, and K. M. Hopkinson, "The modeling and verification of peer-to-peer negotiating multiagent colored petri nets for wide-area backup protection," IEEE Trans. Power Del, vol.24, no.1, pp.61-72, Jan.2009.
    [50]M. Chenine, and L. Nordston, "Modeling and simulation of wide-area communication for centralized PMU-based applications," IEEE Trans. Power Del., vol.26, no.3, pp.1372-1380, Jul.2011.
    [51]苗世洪,刘沛,林湘宁,等.基于数据网的新型广域后备保护系统实现.电力系统自动化,2008,32(10):32-36.
    [52]陈朝晖,赵曼勇,周红阳,等.基于广域一体化理念的网络保护系统研究与实施.电力系统保护与控制,2009,37(24):106-108.
    [53]J. Ma, J. L. Li, J. S. Thorp, et al, "A fault steady state component-based wide area backup protection algorithm," IEEE Trans. Smart Grid., vol.2, no.3, pp.468-475, Sep.2011.
    [54]和敬涵,朱光磊,薄志谦.基于多Agent技术的电力系统集成保护.电工技术学报,2007,26(2):141-146.
    [55]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统.中国电机工程学报,2008,28(22):87-93.
    [56]尹项根,汪旸,张哲.适应智能电网的有限广域继电保护分区与跳闸策略.中国电机工程学报,2010,30(7):1-7.
    [57]李振兴,尹项根,张哲,等.有限广域继电保护系统的分区原则与实现方法.电力系统自动化,2010,34(19):48-52.
    [58]D. Dustegor, S. V. Poroseva, M. Y. Hussaini, and S. Woodruff, "Automated graph-based methodology for fault detection and location in power systems," IEEE Trans. Power Del, vol.25, no.2, pp.638-646, Apr.2010.
    [59]C. H. Chin, "Fault section diagnosis of power system using fuzzy logic," IEEE Trans. Power Del, vol.18, no.1, pp.245-250, Feb.2003.
    [60]G. Cardoso, J. J. Rolim, and H. H. Zurn, "Identifying the primary fault section after contingencies in bulk power systems," IEEE Trans. Power Del., vol.23, no.3, pp.1335-1342, Jul.2008.
    [61]Y. L. Zhu, L. M. Huo, and J. L. Lu, "Bayesian networks-based approach for power systems fault diagnosis," IEEE Trans. Power Del, vol.21, no.2, pp.634-639, Apr. 2006.
    [62]曾飞,苗世洪,林湘宁,等.基于序分量的电网后备保护算法.电力系统自动 化,2010,34(23):57-62.
    [63]M. M. Eissa, M. E. Masoud, and M. M. M. Elanwar, "A novel back up wide area protection technique for power transmission grids using phasor measurement unit," IEEE Trans. Power Del., vol.25, no.1, pp.270-278, Jan.2010.
    [64]马静,李金龙,王增平,等.基于故障关联因子的新型广域后备保护.中国电机工程学报,2010,30(31):100-107.
    [65]马静,李金龙,叶东华,等.基于故障匹配度的广域后备保护新原理.电力系统自动化,2010,34(20):55-59.
    [66]F. Namdari, S. Jamali, and P. A. Crossley, "Power differential based wide area protection," Elect. Power Syst. Res., vol.77, no.12, pp.1541-1551, Oct.2007.
    [67]X. N. Lin, Z. T. Li, K. C. Wu, and H. L. Weng, "Principles and implementations of hierarchical region defensive systems of power grid," IEEE Trans. Power Del., vol.24, no.1, pp.30-37, Jan.2009.
    [68]B. Wang, X. Z. Dong, Z. Q. Bo, et al, "Negative-sequence pilot protection with applications in open-phase transmission lines," IEEE Trans. Power Del., vol.25, no.3,pp.1306-1313,Jul.2010.
    [69]N. D.Tleis, Power System Modeling and Fault Analysis. Oxford:Newnes,2008, pp.397-450.
    [70]吕颖,张伯明,吴文传.基于增广状态估计的广域继电保护算法.电力系统自动化,2008,32(12):12-16.
    [71]Y. G. Zhang, Z. P. Wang, J. F. Zhang, and J. Ma, "Fault localization in electrical power systems:a pattern recognition approach," Int J Elect. Power Energy Sys., vol.33, no.3,pp.791-798, Mar.2011.
    [72]E. Bernabeu, J. S. Thorp, V. Centeno, "Methodology for a security/dependability adaptive protection scheme based on data mining," IEEE Trans. Power Del., vol. 27, no.1, pp.104-111, Jan.2012.
    [73]J. C. Tan, P. A. Crossley, P. G. McLaren, "Application of a wide area backup protection expert system to prevent cascading outages," IEEE Trans. Power Del., vol.17, no.2, pp.375-380, Apr.2002.
    [74]汪肠,尹项根,张哲,等.基于遗传信息融合技术的广域继电保护.电工技术学报,2010,25(8):174-179.
    [75]李振兴,尹项根,张哲,等.基于多信息融合的广域继电保护新算法.电力系统自动化,2011,35(9):14-18.
    [76]王慧芳,何奔腾.利用状态量信息的集合保护规范化判据研究.中国电机工程学报,2008,28(22):81-86.
    [77]X. N. Lin, S. H. Ke, Z. T. Li, "A fault diagnosis method of power systems based on improved objective function and genetic algorithm-Tabu search," IEEE Trans. Power Del., vol.25, no.3, pp.1268-1274, Mar.2010.
    [78]J. Upendar, C. P. Gupta, G. K. Singh, and G. Ramakrishna, "PSO and ANN-based fault classification for protective relaying," IET Gener. Transm. Distrib., vol.4, no.10, pp.1197-1212, Jan.2010.
    [79]J. J. Ni, C. B. Zhang, and S. X. Yang, "An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs," IEEE Trans. Power Del, vol.26, no.3, pp.1960-1971, Jul.2011.
    [80]J. C. Tan, P. A. Crossley, P. G. Mclaren, et al, "Sequential tripping strategy for a transmission network back-up protection expert system," IEEE Trans. Power Del., vol.17, no.1, pp.68-74, Jan.2002.
    [81]周良才,张保会,薄志谦.广域后备保护系统的自适应跳闸策略.电力系统自动化,2011,35(1):55-60.
    [82]李丰,王来军,文明浩.广域后备保护智能跳闸策略研究.电力自动化设备,2011,31(6):84-87.
    [83]N. Liu, J. H. Zhang, and W. X. Liu, "Toward key management for communications of wide area primary and backup protection," IEEE Trans. Power Del, vol.25, no.3, pp.2030-2032, Jul.2010.
    [84]R. Giovanini, K. Hopkinson, D. V. Coury, et al, "A primary and backup cooperative protection system based on wide area agents," IEEE Trans. Power Del, vol.21, no.3, pp.1222-1230, Jul.2006.
    [85]J. F. Borowski, K. M. Hopkinson, J. W. Humphries, and B. J. Borghetti, "Reputation-based trust for a cooperative agent-based backup protection scheme," IEEE Trans. Smart Grid., vol.2, no.2, pp.20-27, Jun.2011.
    [86]K. E. Martin, D. Hamai, M. G. Adamiak, et al, "Exploring the IEEE standard C37.118-2005 synchrophasors for power systems," IEEE Trans. Smart Grid., vol.2, no.2, pp.20-27, Jun.2011.
    [87]Z. H. Dai, Z. P. Wang, and Y. J. Jiao, "Reliability evaluation of the communication network in wide-area protection," IEEE Trans. Power Del., vol.26, no.4, pp.2523-2530, Oct.2011.
    [88]S. R. Samantaray, I. Kamwa, and G. Joos, "Ensemble decision trees for phasor measurement unit-based wide-area security assessment in the operations time frame," IET Gener. Transm. Distrib., vol.4, no.10, pp.1197-1212, Jan.2010.
    [89]熊小伏,吴玲燕,陈星田.满足广域保护通信可靠性和延时要求的路由选择方法.电力系统自动化,2011,35(3):44-47.
    [90]C. H. Liang, C. Y. Chung, K. P. Wong, and X. Z. Duan, "Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition," IEEE Trans. Power Syst., vol.22, no.1, pp.249-257, Feb. 2007.
    [91]I. Kamawa, A. K. Pradhan, G. Joos, et al, "Fuzzy partitioning of a real power system for dynamic vulnerability assessment," IEEE Trans. Power Syst., vol.24, no.3, pp.1356-1365, Aug.2009.
    [92]李智欢,李银红,段献忠.无功优化协同进化计算的控制变量分区方法研究.中国电机工程学报,2009,29(16):28-34.
    [93]S. Das, A. Abraham, and A. Konar, "Automatic clustering using an improved differential evolution algorithm," IEEE Trans. Syst., Man, Cybern. A, vol.38, no.1, pp.218-237, Jan.2008.
    [94]Y. Wang, W. Y. Li, and J. P. Lu, "Reliability analysis of wide-area measurement system," IEEE Trans. Power Del., vol.25, no.3, pp.1483-1491, Jul.2010.
    [95]彭静,卢继平,汪洋,等.广域测量系统通信主干网的风险评估.中国电机工程学报,2010,30(4):84-90.
    [96]T. H. Cormen, E. L. Charles, L. R. Ronald. Introduction to algorithms. London, England:MIT Press,2009:658-662.
    [97]H. Kirkham, A. R. Johnston, and G. D. Allen, "Design considerations for a fibre optic communications network for power systems," IEEE Trans. Power Del., vol.9, no.1, pp.510-518, Apr.1994.
    [98]G. N Ericsson, "Communication requirements-basis for investment in a utility wide-area network," IEEE Trans. Power Del., vol.19, no.1, pp.92-95, Jan.2004.
    [99]H. Gjermundrod, D. E. Bakken, C. H. Hauser, et al, "Gridstart:a flexible Qos-managed data dissemination framework for the power grid," IEEE Trans. Power Del., vol.24, no.1, pp.136-143, Jan.2009.
    [100]C. L. Chuang, Y. C. Wang, C. H. Lee, et al, "An adaptive routing algorithm over packet switching networks for operation monitoring of power transmission systems," IEEE Trans. Power Del., vol.25, no.2, pp.882-890, Apr.2010.
    [101]S. Mohammad, H. J. Mohammad, S. G. Mohammad, et al, "Comparison between communication infrastructures of centralized and decentralized wide area measurement systems," IEEE Trans. Smart Grid., vol.2, no.1, pp.194-199, Mar. 2011.
    [102]J. W. Stahlhut, T. J. Browne, G. T. Heydt, et al, "Latency viewed as a stochastic process and its impact on wide area power system control signal," IEEE Trans. Power Syst., vol.23, no.1, pp.84-91, Feb.2008.
    [103]戚佳金,徐殿国,周岩,等.低压电力线通信网络特性模型与组网算法.中国电机工程学报,2009,29(6):56-61.
    [104]M. S. Tsai, "Development of an object-oriented service restoration expert system with load variations," IEEE Trans. Power Syst., vol.23, no.1, pp.219-225, Feb 2008.
    [105]刘思革,程浩忠,崔文佳.基于粗糙集理论的多目标电网规划最优化模型.中国电机工程学报,2007,27(7):65-69.
    [106]W. Y. Li, J. Q. Zhou, K. G. Xie, et al, "Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation," IEEE Trans. Power Syst., vol.23, no.2, pp.336-343, May.2008.
    [107]P. Maghouli, S. H. Hosseini, M. O. Buygi, et al, "A scenario-based multi-objective model for multi-stage transmission expansion planning," IEEE Trans. Power Syst., vol.26, no.1, pp.470-478, Feb.2011.
    [108]葛耀中.新型继电保护和故障测距的原理与技术.西安:西安交通大学出版社-2007:15-35.
    [109]汪华,张哲,尹项根,何志勤,等.基于故障电压分布的广域后备保护算法.电力系统自动化,2011,35(7):48-52.
    [110]Z. Q. He, Z. Zhang, W. Chen, Om P. Malik, and X. G. Yin, "Wide-area backup protection algorithm based on fault component voltage distribution," IEEE Trans. Power Del., vol.26, no.4, pp.2752-2760, Oct.2011.
    [111]陈卫,尹项根,陈德树,等.基于补偿电压故障分量的纵联方向保护原理与仿真研究.中国电机工程学报,2005,25(21):92-97.
    [112]H. Gao, and P. A. Crossley, "Design and evaluation of a directional algorithm for transmission-line protection based on positive sequence fault components," IEE Proc.-Gener. Transm. Distrib., vol.153, no.6, pp.711-718, Nov.2006.
    [113]李振兴,尹项根,张哲,等.广域继电保护系统故障区域的自适应识别方法.电力系统自动化,2011,35(16):15-20.
    [114]李振兴,尹项根,张哲,等.分区域广域继电保护的系统结构与故障识别.中国电机工程学报,2011,31(28):95-103.
    [115]童晓阳,王晓茹,汤俊.电网广域后备保护代理的结构和工作机制研究.中国电机工程学报,2008,28(13):91-98.
    [116]M. A. Pai, Energy Function Analysis for Power System Stability. Boston, MA: Kluwer,1989, pp.223-227.
    [117]赵曼勇,周红阳,陈朝晖,等.基于IEC16850标准的广域保护一体化方案.电力系统自动化,2010,34(6):58-60.
    [118]G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ:Princeton University Press,1976, pp.1-302.
    [119]刘嘉,徐国爱,高洋,等.基于证据理论改进合成法则的电力系统安全检验综合判定算法.电工技术学报,2011,26(7):247-255.
    [120]L. Nordstrom, "Assessment of information security levels in power communication systems using evidential reasoning," IEEE Trans. Power Del, vol.23, no.3, pp.1384-1391, Jul.2008.
    [121]L. Zhu, D. Y. Shi, X. Z. Duan, "Evidence theory-based fake measurement identification and fault-tolerant protection in digital substations," IET Gener. Transm. Distrib., vol.5, no.1, pp.119-126, Jan.2011.
    [122]R. J. Liao, H. B. Zheng, S. Grzybowski, et al, "An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning," IEEE Trans. Power Del., vol.26, no.2, pp.1111-1118, Apr. 2011.
    [123]杨风暴,王肖霞.D-S证据理论的冲突证据合成方法.北京:国防工业出版社,2010:95-153.
    [124]A. L. Jousselme, C. S. Liu, D. Grenier, et al, "Measuring Ambiguity in the Evidence Theory," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol.36, no.5, pp.890-903, Sep.2006.
    [125]Y. Lemeret, E. Lefevre, D. Jolly, "Improvement of an association algorithm for obstacle tracking," Information Fusion, vol.9, no.2, pp.234-245, Apr.2008.
    [126]K. H. Guo, W. L. Li, "Combination rule of D-S evidence theory based on the strategy of cross merging between evidences," Expert Systems with Applications, vol.38, no.10, pp.13360-13366, Sep.2011.
    [127]L. He, S. L. Yang, X. J. Hu, et al, "Agent oriented intelligent fault diagnosis system using evidence theory," Expert Systems with Applications, vol.39, no.3, pp. 2524-2531, Feb.2012.
    [128]卢正才,覃征,等.证据合成的一般框架及高度冲突证据合成方法.清华大学学报(自然科学版),2011,51(11):1611-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700