血管内皮祖细胞移植应用于兔尿道缺损修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     先天畸形、外伤或肿瘤等疾病致使尿道损伤、狭窄或缺损,都需要进行尿道的修复、重建。尽管目前有300多种尿道修复的术式可供选择,但是术后尿瘘、尿道狭窄等并发症的发生率却依然居高不下。临床观察证实,这些并发症的出现几率与术后尿道的血供丰富与否成反比。目前大量的动物实验研究和临床资料均表明,血管内皮祖细胞(EPC)能帮助改善机体缺血部位和损伤部位的血供。
     血管内皮祖细胞(EPC)是血管内皮细胞的前体细胞,又称为成血管细胞或者血管母细胞(angioblast),是干细胞分化成熟过程中的一个细胞阶段。研究表明,在脐带静脉血、成体外周血和骨髓中的CD34~+单个核细胞或CD133~+单个核细胞离体培养均能分化为内皮样细胞,从而认定这些细胞即为原始的血管内皮祖细胞(EPC),进一步的研究发现人脐带血、外周血中的血管内皮祖细胞(EPC)均来自于骨髓。机体的损伤或缺血可以通过引起内源性VEGF的水平升高来动员骨髓中的血管内皮祖细胞(EPC)向靶组织归巢、分化,而且在向成熟血管内皮细胞(endothelial cell,EC)分化、参与靶组织的血管再生过程中对CD133的表达逐渐转弱甚至消失。
     国内外尚未见到有关血管内皮祖细胞(EPC)移植应用于尿道缺损修复方面的文献报道。
     研究目的:
     观察血管内皮祖细胞(EPC)在尿道缺损修复术后改善新尿道组织血液循环的效果。为减少和避免临床上尿道缺损修复术后尿瘘等并发症的出现以及提高一期尿道修复的成功率提供一个新的思路。
     研究方法:
     无菌取兔双下肢骨髓,应用密度梯度离心法分离并在体外培养其中单个核细胞层细胞,诱导其向血管内皮祖细胞(EPC)方向分化,将细胞传至第3代后备用。
     人为去除雄性兔尿道中段长约1cm,制作成兔尿道缺损模型。然后应用制备好的人脱细胞羊膜基质修复尿道缺损。同时,在实验组中,将诱导培养后的第3代细胞点状注射于修复后的尿道吻合口处及其外层的皮下组织中,对照组中应用等量的空白细胞培养液处理,术后按尿道下裂手术后常规护理。然后分别于术后4w、12w切取修复后的尿道组织,10%福尔马林固定,石蜡包埋切片后行HE染色,观察新尿道组织中血管再生情况,并随机计数100倍光镜下20个视野内毛细血管断面的数目,应用SPSS10.0统计学软件进行数据处理,比较实验组与对照组间的差异有无统计学意义。
     研究结果:
     1、兔骨髓源单个核细胞在体外呈贴壁生长,48h内即贴壁牢靠。前4d内生长较慢,近乎静止状态,4d后生长明显加速,呈现出克隆样生长;10d后细胞基本长满瓶底,表现出典型的铺路石样改变;经VEGF和bFGF在体外联合诱导培养后,细胞表现出条索状和草束状的排列方式。细胞免疫化学染色显示,目标细胞对CD133的表达水平下调,由具有CD34~+/CD133~+/CD31~+表型的细胞群逐渐分化成具有CD34~+/CD133~-/CD31~+表面特征的细胞群;
     2、术后4w、12w分别行尿道组织学观察,发现实验组中毛细血管数目明显多于对照组。4w时实验组和对照组的数据对比为:4.40±0.82和1.30±0.66,12w时的数据对比为:6.55±0.76和2.50±0.83。应用SPSS10.0统计学软件分别对两次数据行统计学处理,结果显示两次数据之间的差异均有统计学意义(P<0.01)。
     研究结论:
     1、兔骨髓源单个核细胞在体外能诱导分化成血管内皮祖细胞(EPC);
     2、血管内皮祖细胞(EPC)在改善尿道缺损修复术后新尿道血液循环方面效果明显。
Background: Congenital malformation, trauma, or tumor and other urinary diseases can lead to urethra injury, stricture, or defect. All these should repair or reconstruct the urethra. At the present, there are more than 300 operation manners can be used to treat these urethral damage, but fistula, stricture , diverticulum and other complications after the operation still keep a high incidence rate. The clinical data confirmed that the rate of these complications keep inverse ratio to whether the new urethra have an abundant blood circulation. Now, many experimental research of animal and clinical data indicated that the endothelial progenitor cell (EPC) can help to improve the blood circulation of the ischemia or damaged organism.
     Endothelial progenitor cell (EPC) is the ancestral cell of endothelial cell, it can be called angioblast, too. It is one of the phases in the stem cells differentiate into mature cells. Research indicated that all of the mononuclear cells of CD34~+ or CD133~+ from vein blood of umbilical cord, distal vessels blood of adult body and bone marrow can differentiate into the cells like endothelia cells in vitro.So these cells are considered to be the original endothelial progenitor cells(EPCs). Further research found out that all the endothelial progenitor cells are from the bone marrow in mankind. Through increase the level of internal VEGF, the damage or ischemia of body can mobilize the endothelial progenitor cells to move and differentiate from the bone marrow to the target tissue. When the endothelial progenitor cells differentiate into endothelial cells and participate in the vascular regeneration, the level of CD133 in these cells gradually weaken and almost disappear finally.
     There were no reports about endothelial progenitor cells were used in the urethral defect repair whether in inland or overseas.
     Object: To observe the effect of endothelial progenitor cell (EPC) in improving blood circulation of the new urethra after the repair of urethral defect. Offer a new idea to descend and avoid fistula and other complications after the repair operation of urethral defect, then increase the successful rate of urethral repair only once.
     Methods: Aseptically extract the bone marrow from the both lower extremities of the rabbit, density gradient centrifugation is used to disbranch and get the mononuclear cells, then culture the cells in vitro and induct them to differentiate into endothelial progenitor cells (EPCs). And the 3rd generation cells will be the spare parts. Male rabbits are the experimental objects, remove the middle part of their urethrae artificially, about 1 cm long, and then we have the model of urethral defect. In the following, repair the urethral defect with human amnion extracellular matrix (HAECM). In the study team, the 3rd generation EPCs are injected in the junction sites and the corresponding site of the subcutaneous tissue; and the control team are treated with isometric culture solution only in the same manner. After the operation, nurse them according to the operation of hypospadias. 4 and 12 weeks after the operation, cut the repaired urethra tissue, and fix them by formalin, then embed the tissue by olefin, then slice up them and colorate by HE. Observe the vascular regeneration in the new urethra, and count the number of the capillary vessels microscopically (enlarge 100 times, chose 20 fields of vision randomly). Eventually calculate the numbers by SPSS10.0—a kind of statistics software, and check whether the difference between the two teams has statistics significance or not.
     Results:
     1. The mononuclear cells from the rabbits' bone marrow grow in the manner of keeping close to the wall in vitro, and this process completed just in the first 48 hours. The cells grew slowly in the early 4 days, it seemed to be resting. But the growth obviously accelerated after that, and the grow manner is like cloning. 10 days after the culture, the cells can almost be a layer on the bottom of the culture-bottle, and the cells' shape just like slabstone. Induce the cells by VEGF and bFGF in vitro, then the cells have a cord-like or strip-like form, and the colorate result indicated that the level of CD133 in the cells fell gradually. The surface marker of the cells changed from CD34~+/CD133~+/CD31~+ to CD34~+/CD133~-/CD31~+;
     2. Both 4 and 12 weeks after the operation, observe the new urethra tissue of both teams in histologically, and the results indicates that the number of the capillary vessels in the new urethra of the study team are more than the control team obviously. 4 weeks later, the number of capillary vessels in one vision which enlarged 100 times are 4.40±0.82 VS 1.30±0.66 , and 12 weeks later, the parallel number are 6.55±0.76 VS 2.50±0.83. Treat the numbers with SPSS10.0, and the result indicates that the difference between both teams has statistics significance whether in 4 weeks or 12 weeks after the operation.(P<0.01).
     Conclusions:
     1. The mononuclear cells from rabbit's bone marrow can differentiate to endothelial progenitor cells (EPCs) in vitro;
     2. Endothelial progenitor cell (EPC) can apparently improve the blood circulation of the new urethra after the urethral repair.
引文
1.徐路生,张金明.尿道修复材料的研究进展.国外医学:泌尿系统分册,2005,25(2),192-195.
    2. Asahara T,Murohara T,Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997, 275(5302):964-967.
    3. Isner J,Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest,1999, 103(9): 1231-1236.
    4. Urbich C,Heeschen C,Aicher A,et al. Ralevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation,2003,108(20):2511-2516.
    5.易成刚,郭树忠等.血管内皮祖细胞移植提高裸鼠缺血皮瓣存活率.中国整形外科杂志,2005,21(6):429-432.
    6.梁雪梅,马学毅.骨髓来源的血管内皮祖细胞移植治疗实验性大鼠股动脉闭塞症观察.中国康复理论与实践,2004,10(6):348-349.
    7. Ghani U,Shuaib A, Salam A, et al. Endothelial progenitor cells during cerebrovascular diseas. Stroke,2005,36(1): 151-153.
    8. Capla JM, Grogan RH, Callaghan MJ, et al. Diabetes impairs endothel-ial progenitor cell-mediated blood vessel formation in response to hypoxia. Plas Reconstr Surg,2007,119(1): 59-70.
    9. Asai J, Takenaka H, Kusano KF, et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation, 2006,113(20):2413-2424.
    10. Iizuka K,Muraishi O,Maejima T,et al. Total replacement of urethral mucosa with oral mucosa in dogs.J Urol,1996,156(2Pt1):498-501.
    11. El-Sherbiny MT,Abol-Enein H,Dawaba MS,et al. Treatment of urethral defects: skin,buccal or bladder mucosa, tube or patch? An experimental study in dogs. J Urol,2002,167(5):2225-2228.
    12. Mitchell ME,Adams MC,Rink RC. Urethral replacement with ureter.J Urol, 1988,139(6): 1282-1285.
    13. Theodorescu D, Balcom A, Smith CR, et al. Urethral replacemtn with vascularized tunica vaginalis: defining the optimal form of use. J Urol, 1998,159(5): 1708-1711.
    14.徐月敏,乔勇,吴登龙等.游离黏膜组织重建尿道治疗复杂性尿道狭窄的临床研究.中华泌尿外科杂志,2005,26(7):485-487.
    15. Perovic Sv, Radojicic Zi. Vascularization of the hypospadiac prepuce and its impact on hypospadias repair. J Urol, 2003,Mar, 169(3): 1098-100.
    16.杨志明 主编.组织工程.北京:化学工业出版社.2002年9月,第1版:1-5.
    17. Parnigotto PP, Gamba PG, Conconi MT, et al. Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res,2000, 28(1):46-51.
    18. Kropp BP, Ludlow JK, Spicer D,et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology, 1998,52(1): 138-142.
    19. Chen F,Yoo JJ, Atala A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology,1999,54(3): 407-410.
    20. Sievert KD, Bakircioglu ME, Nunes L, et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Uro,2000,163(6):1958-1965.
    21. Rotariu P, Yohannes P, Alexianu M, et al. Reconstruction of rabbit urethra with surgisis small intestinal submucosa. J Endourol,2002, 16(8):617-620.
    22. Mantovani F, Trinchieri A, Mangiarotti B, et al. Reconstructive urethroplasty using porcine acellular matrix: preliminary results. Arch Ital Urol Androl, 2002,74(3): 127-128.
    23. Ei-Kassaby AW, Retik AB, Yoo JJ, et al. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol,2003,169(1): 170-173.
    24. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000, 6(4):389-395.
    25. Choi K, Kennedy M, Kazarov A,et al. A common precursor for hematopoietic and endothelial cells. Development,1998,125(4):725-732.
    26. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor calls augment postnatal neovascularization. J Clin Invest,2000, 105(11):1527-1536.
    27. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol,2004,24(2): 288-293.
    28. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood,1998,92(2):362-367.
    29. Peichev M,Naiyer AJ,Pereira D,et al. Expression of VEGFR-2 and AC133 by circulating human CD34~+ cells identifies a population of functional endothelial precursors. Blood,2000,95(3):952-958.
    30. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenit-ors in human postnatal bone marrow. J Clin Inest,2002,109(3):337-346.
    31. Schmeisser A,Strasser RH. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res,2002,11(1):69-79.
    32. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood,2000, 95(10):3106-3112.
    33. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res,2000,86(12): 1198-1202.
    34. Shintani S, Murohara T, Ikeda H, et alo Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation, 2001,103(6): 897-903.
    35. Akita T, Murohara T, Ikeda H, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest,2003,83(1):65-73.
    36. Kawamoto A, Gwon HC, Iwagura H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001,103(5):634-637.
    37. Kamihata H,Matsubara H,Nishiue T,et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation,2001,104(9): 1046-1052.
    38. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation, 2002, 106(24):3009-3017.
    39. Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial porgenitor cells. Circulation,2003,108(7):889-895.
    40. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation, 2002,105(6):732-738.
    41. Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J,2001,65(9):845-847.
    42. Schatteman GC, Hanlon HD, Jiao C, et al. Blood derived angioblasts accelerate blood--flow restoration in diabetic mice. J Clin Invest, 2000,106(4):571-578.
    43. Edelberg JM, Tang L, Hattori K, et al. Young adult bone marrow- derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res,2002,90(10):e89-93.
    44. Cho HJ, Kim HS, Lee MM, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation, 2003,108(23):2918-2925.
    45. Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumor vasculature in non-small cell lung cancer. J Clin Pathol,2004,57(9):965-969.
    46. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res,2001,7(9):2870-2879.
    1. Iizuka K, Muraishi O, Maejima T, et al. Total replacement of urethral mucosa with oral mucosa in dogs. J Urol, 1996,156(2Pt1):498-501.
    2. El-Sherbiny MT, Abol-Enein H, Dawaba MS, et al. Treatment of urethral defects: skin,buccal or bladder mucosa,tube or patch? An experimental study in dogs. J Urol,2002,167(5):2225-2228.
    3. Mitchell ME, Adams MC, Rink RC. Urethral replacement with ureter.J Urol,1988, 139(6): 1282-1285.
    4. Theodorescu D, Balcom A, Smith CR, et al. Urethral replacement with vascularized tunica vaginalis: defining the optimal form of use. J Urol, 1998,159(5):1708-1711.
    5.徐月敏,乔勇,吴登龙等.游离黏膜组织重建尿道治疗复杂性尿道狭窄的临床研究.中华泌尿外科杂志,2005,26(7):485-487.
    6. Court B,Auvert J,Sausse A,et al. Replacement of a urethral segment with a silicone elastomer tube in the male dog(preliminary note).J Urol Nephrol(Paris), 1971,77:Suppl:562-564.
    7. Choi HK, Chang SK. A case of urethral replacement with polytetrafluoroethylene graft for multiple anterior urethral strictures. Yonsei Med J, 1989,30(2): 198-200.
    8. Italiano G, Abatangelo G Jr, Calabro A, et al. Guiding spontaneous tissue regeneration for urethral reconstruction: long-term studies in the rabbit. Urol Res, 1998,26(4): 281-284.
    9. Parnigotto PP, Gamba PG, Conconi MT, et al. Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res,2000,28(1):46-51.
    10. Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology,1998,52(1): 138-142.
    11. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology,1999,54(3):407-410.
    12. Atala A, Guzman L, Retik AB. A novel inert collagen matrix for hypospadias repair. J Urol, 1999,162(3Pt2): 1148-1151.
    13. Kassaby EA, Yoo JJ, et al. A novel inert collagen matrix for urethral stricture repair. J Urol,2000,163(S4):70.
    14. Shokeir A, Osman Y, Gabr M, et al. Acellular matrix.tube for canine urethral replacement: is it fact or fiction? J Urol,2004,171(1):453-456.
    15. Perovic Sv, Radojicic Zi. Vascularization of the hypospadiac prepuce and its impact on hypospadias repair. J Urol, 2003,Mar,169(3): 1098-1100.
    16. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000,6:389-395.
    17. Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoie-tic and endothelial cells. Development, 1998,125(4):725-732.
    18. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol, 2004, 24(2):288-293.
    19. Asahara T,Murohara T,Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997, 275(5302):964-967.
    20. Isner J,Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest,1999, 103(9): 1231-1236.
    21. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest,2000, 105(11):1527-1536.
    22. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood,1998,92(2):362-367.
    23.朱加亮,姚长海,孙大铭.血管内皮祖细胞的研究进展及其在治疗缺血性疾病中的应用.中国骨肿瘤骨病,2005,4(3):185-188.
    24. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34~+ cells identifies a population of functional endothelial precursors. Blood,2000, 95(3):952-958.
    25. Gehling UM,Ergun S,Schumacher U,et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood,2000, 95(10):3106-3112.
    26. Harraz M, Jiao C, Hanlon HD, et al. CD34 blood-derived human endothelial cell progenitors. Stem cells,2001,19(4):304-312.
    27. Reyes M, Dudek A, Jahagirdar B,et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Inest,2002,109(3):337-346.
    28. Schmeisser A, Strasser RH. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res,2002,11 (1):69-79.
    29. Asahara T,Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological pathological neovascularization. Circ Res,1999, 85(3):221-228.
    30. Takahashi T,Kalka C,Masuda H,et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med,1999,5(4):434-438.
    31. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation,2003,107(9): 1322-1328.
    32. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2~+ AC133~+ endothelial precursor cells. Circ Res,2001, 88(2):167-174.
    33. Heissig B,Hattori K,Dias S,et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell,2002,109(5):625-637.
    34. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int, 1999,56(3):794-814.
    35. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature, 1996,380(6573):435-439.
    36. Ferrara N,Carver-Moore K,Chen H,et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature,1996,380(6573): 439-442.
    37. Shalaby F, Ho J, Stanford WL, et al. A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 1997,89(6): 981 -990.
    38. Goukassian DA, Qin G, Dolan C, et al. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation. 2007,115(6): 752-762.
    39. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res,2004,95(4):343-353.
    40. Rosenzweig A. Endothelial progenitor cells. N Engl J Med,2003,348(7): 581-582.
    41. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor 165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res,2000, 86(12):1198-1202.
    42. Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg,2000,70(3):829-834.
    43. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow - derived endothelial progenitor cells. EMBO J,1999,18(14):3964-3972.
    44. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation,2001,103(23): 2776-2779.
    45. Hristov M,Erl W,Weber PC,et al. Endothelial progenitor cells: mobilization differentiation, and homing. Arterioscler Thromb Vase Biol, 2003, 23(7): 1185-1189.
    46. Hattori K,Dias S,Heissig B,et al. Vacular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med,2001,193(9): 1005-1014.
    47. Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood,2001,97(11):3354- 3360.
    48. Moore MA, Hattori K, Hessig B, et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci,2001, 938:36-45.
    49. Hiasa K,Ishibashi M,Ohtani K, et al. Gene transfer of stromal cell-derived factor-lalpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitricoxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation,2004,109(20): 2454-2461.
    50. Yamada M, Kubo H, Ishizawa K, et al. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax,2005,60(5): 410-413.
    51. Matsushima A, Ogura H, Matsumoto N, et al. Increased circulating endothelial progenitor cells in SIRS patients.Critical Care Med, 2006,34(12),Abstract Suppl:A2.
    52. Natori T, Sata M, Washida M, et al. G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun,2002, 297(4): 1058-1061.
    53. Cho HJ, Kim HS, Lee MM, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation,2003, 108(23):2918-2925.
    54. Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumor vasculature in non-small cell lung cancer. J Clin Pathol,2004,57(9):965-969.
    55. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res,2001,7(9):2870-2879.
    56.杨波,庄德成,姜伟青等.血管内皮祖细胞参与人结肠腺癌肺转移灶血管新 生的实验研究.中国临床医学,2006,13(5),741-742.
    57. Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest, 2001,108(3):399-405.
    58. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI3-kinase/Akt pathway. J Clin Invest,2001,108(3):391-397.
    59. Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary Artery Disease, 2004, 15(5): 235-242.
    60. Laufs U, Urhausen A, Werner N, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J of Cardiovasc Pre Rehabil, 2005,12(4):407-414.
    61. Adams V, Lenk K, Linke A, et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol,2004,24(4): 684-690.
    62. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation,2004,109(2):220-226.
    63. Sumi M, Sata M, Miura S, et al. Reconstituted high-density lipopro-tein stimulates differentiation of endothelial progenitor ceils and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vase Biol, 2007,27(4): 813-818.
    64. Capillo M, Mancuso P, Gobbi A, et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res,2003,9(1):377-382.
    65. Watabe T, Nishihara A, Mishima K, et al. TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial calls. J Cell Biol,2003,163(6): 1303-1311.
    66. Verma S, Kuliszewski MA, Li SH, et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation,2004,109(17):2058-2067.
    67. Fujii H, Li SH, Szmitko PE, et al. C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vase Biol, 2006,26(11): 2476-2482.
    68. Sugawara J, Mitsui-Saito M, Hayashi C, et al. Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. Obstetrical & Gynecological Survey, 2006,61 (7):460-461.
    69. Van Royen N, Piek JJ,Buschmann I, et al. Stimulation of arteriogen-esis: a new concept for the treatment of arterial occlusive disease. Cardiovasc Res,2001, 49(3):543-553.
    70. Ribatti D, Vacca A, Nico B, et al. Postnatal vasculogenesis. Mech Dev,2001,100(2): 157-163.
    71. Barber CL, Iruela-Arispe ML. The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatr Res, 2006, 59(4Pt2):26R-32R.
    72.李崇剑,高润霖.血管内皮祖细胞研究进展.中国分子心脏病学杂志,2004,4(6):353-357.
    73. Shinatani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation, 2001,103(6): 897-903.
    74.易成刚,郭树忠等.血管内皮祖细胞移植提高裸鼠缺血皮瓣存活率.中国整形外科杂志,2005,21(6):429-432.
    75.董蔚,盖鲁粤等.血管内皮祖细胞对缺血肢体血管生成的影响.中华心血管病杂志,2004,32(12):1130-1134.
    76.梁雪梅,马学毅.骨髓来源的血管内皮祖细胞移植治疗实验性大鼠股动脉闭塞症观察.中国康复理论与实践,2004,10(6):348-349.
    77. Akita T, Murohara T, Ikeda H, Sasaki K, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest, 2003,83(1):65-73.
    78. Schatteman GC, Hanlon HD, Jiao C, et al. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest,2000,106(4):571-578.
    79. Capla JM, Ceradini DJ, Tepper OM, et al. Skin graft vascularization involves precisely regulated regression and replacement of endothelial cells through both Angiogenesis and Vasculogenesis. Plast Reconstruc Surg, 2006,117(3):836-844.
    80. Kawamoto A, Gwon HC, Iwagura H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001,103(5): 634-637.
    81. Kamihata H,Matsubara H,Nishiue T,et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation,2001,104(9): 1046-1052.
    82. Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial porgenitor cells. Circulation, 2003,108(7): 889-895.
    83. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation, 2002,105(6): 732-738.
    84. He H, Shirota T, Yasui H, et al. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J Thorac Cardiovasc Surg, 2003, 126(2):455-464.
    85. Shirota T, He H, Yasui H, et al. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro an fabrication processing. Tissue Eng, 2003,9(1): 127-136.
    86. Schultheiss D, Gabouev AI, Cebotari S, et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol, 2005,173(1):276-280.
    87.谢松涛,陈璧,陶克等.含内皮祖细胞的组织工程皮肤体外构建及裸鼠移植研究.中华实验外科杂志,2006,23(12):1531-1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700