脊髓背角无髓鞘纤维初级传入突触的仿真模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背根节神经元是感觉传入的第一级神经元,其胞体发出的轴突分为两支:外周突伸向外周组织其末梢结构接受外界感觉信息;中枢突负责将已编码的刺激信息传入中枢。除了末梢结构以外的外周突部分与背根节神经元的中枢突一起称为初级传入纤维。脊髓背角是源于DRG神经元的初级传入纤维终止并与位于脊髓背角的中枢神经元形成突触的区域。这一区域在躯体感觉系统中起着重要的中继及处理感觉信息的作用,故透彻地研究初级传入纤维与脊髓背角神经元之间的突触传递过程具有重要的生物学意义。
     神经元接受刺激后产生动作电位,是神经元最主要的功能反应之一。以往对神经元电生理基本性质的研究中,发现了神经元产生动作电位具有多种不同排列组合的时间模式,也称为放电模式。并且证实这种组成序列的动作电位会通过突触向其它神经元进行传递,也即是说,神经元的放电模式很可能携带了要传递的信息。但是对于不同放电模式如何参与信息的传递还了解得很少。突触传递是中枢神经系统神经元之间信息传递的基本方式。突触前神经元接受刺激后产生具有一定时间排列特征动作电位,形成某种放电模式,该放电模式通过轴突传递到纤维末梢,引起末梢释放神经递质,完成电信号向化学信号的转换,达到信息传递的目的。神经元放电模式和神经递质释放之间、电信号与化学信号之间究竟存在什么相互关系的问题至今尚不清楚。
     突触传递效率是指突触对神经信息传递能力的大小。目前关于判定突触传递效率的指标,主要是对单个脉冲刺激诱发兴奋性和抑制性突触后电位(EPSPs和IPSPs)的幅度和斜率,兴奋性和抑制性突触后电流(EPSCs和IPSCs)的幅度和面积。传递效率的另一个直观指标是突触前/后序列的互信息值,突触传递互信息简单来说就是突触后信号保留突触前信息的能力。
     按照目前的观点,一系列动作电位才可能真正携带信息,所以应该综合考察不同排列组合的多个刺激脉冲引起突触后神经元产生EPSC和突触前后放电序列互信息的情况,以此检验突触前神经元不同放电模式对突触传递效率的影响。我们认为通过对不同模式放电序列的突触后EPSC和突触前后互信息的综合分析比较能够真实地反映突触传递效率。
     在本课题中,我们的主要研究内容包括以下三方面:(1)以实验数据为基础建立了脊髓背角无髓鞘纤维初级传入突触的计算机仿真模型,(2)分析模型中产生突触前不同放电模式的动力学机制(3)结合实验和模型,研究由短簇脉冲与单个脉冲所构成的两种不同时间结构的突触前放电模式的突触传递规律及其突触机制。
     主要结果:
     1.建立了脊髓背角无髓鞘纤维初级传入突触的仿真模型
     a.参考Scriven的工作建立了突触前无髓鞘纤维的放电模型。
     b.在Destexhe建立的突触模型基础上,结合脊髓背角初级传入突触的实验数据建立了此突触的传递模型。
     c.将突触前的放电模型和突触传递模型结合起来拟合实验数据建立脊髓背角无髓鞘纤维初级传入突触的仿真模型
     d.此模型可以修改成突触短时程可塑性模型而进行相关研究。作为一个双室模型,模型的适应范围很广,如可以修改模型的突触前部分使之成为脊髓背角有髓鞘纤维初级传入突触模型。
     2.突触前不同放电模式的动力学机制分析
     a.连续和簇这两种不同的放电模式是由不同的动力学机制决定的。
     b.这种动力学机制不同可以由Na-K泵的活动和刺激电流共同引起。
     3.脊髓背角初级传入突触不同突触前模式的突触传递-实验和模型的对比
     a.两种不同序列的突触前刺激时,总的说来,低频连续刺激(0.5~4Hz)更容易引起突触后的EPSC反应,其变异系数更小。
     b.突触后EPSC变异系数分析表明,连续刺激在只有AMPA受体介导的情况下更小、更稳定。簇刺激在AMPA+NMDA共同介导的情况下突触后EPSC变异系数更小、更稳定。
     c.通过计算突触前与突触后序列的互信息,他人实验证实短簇脉冲序列突触前后的互信息值显着地大于连续连续单个脉冲序列时的情况,但在模型中去掉NMDA受体成分后,我们发现短簇脉冲序列情况下的互信息值显著下降。
     结论:
     在本课题中,我们首次建立了脊髓背角无髓鞘纤维初级传入突触的仿真模型来研究不同动作电位模式通过此突触的传递过程。动力学分析表明:突触前产生不同放电模式是由于不同的动力学机制引起的。低频连续刺激(0.5~4Hz)更容易引起突触后的EPSC反应,其变异系数更小。簇刺激在AMPA+NMDA共同介导的情况下突触后EPSC变异系数更小、更稳定。通过计算突触前/后序列的互信息,发现在短簇脉冲序列刺激下,突触前脉冲序列所包含的信息可以更为可靠地通过突触传递。在模型中对突触前的释放概率进行扰动,发现突触前释放概率变异的增大对两种模式的突触传递过程没有明显的影响。在仿真模型和实验中都阻断NMDA受体成分后,发现短簇脉冲突触传递可靠性明显下降,提示短簇脉冲突触传递的可靠性主要是突触后机制,并且和NMDA受体成分关系密切。脊髓背角无髓鞘纤维初级传入突触的仿真模型可以较好地拟合在不同条件下所记录到的关于突触传递的实验数据,并分析在不同放电模式下突触传递效率差异的机制;此外,做为双室模型,模型可以方便的改动来进行其他方面的研究。
Neurons in dorsal root ganglion are primary sensory neurons, whose axon has two branches: one projecting to the periphery and one prejecting to the central nervous system. The terminal of the peripheral branch of the axon is the only portion of the dorsal root ganlion neuron that is sensitive to natural stimuli. The properties of the nerve terminal determine the sensory function of each dorsal root ganglion neuron. The remainder of the peripheral branch, together with the central branch, is called the primary afferent fiber; it transmits the encoded stimulus information to the spinal cord or brain stem. Spinal dorsal horn is the region where the primary afferent fibers terminate and form synaptic contacts with the central neurons. In somatosensory system, spinal dorsal horn plays an important role in relaying and processing the sensory information. So it is of great biological significance to comprehensively study the syanptic transmission bentween primary afferent fiber and spinal dorsal horn neuron.
     Neurons are able to generate action potentials when the stimulation occurred. This is one of the most important functional responses for neurons. In the past study of basic electrophysiological properties of neurons it is found that action potentials have many types of timing pattern, which is also termed as firing pattern. Moreover, it is confirmed that the timing series of action potentials composed can be transmitted to other neurons via synapses. That is, firing pattern in neurons may contain information which needed to be conveyed. However, it is not confirmed whether firing pattern is coding mode of information transmission in nervous system. In addition, it is not known that whether firing pattern have biological significance. Synapse transmission is basic mode of information transmission in central nervous system. Chemical synapse and electrical synapse have two different structure and function. Presynaptic neurons generate action potentials with certain timing series when stimulated. These action potentials form firing pattern, which are delivered to fiber terminal via axon, thus cause transmitter release. In the end, transformation from electrical signal to chemical signal is completed and information transmission is fulfilled. What is the relationship between firing pattern and transmitter release? How do electrical signal transform to chemical signal?
     The efficiency of synapse transmission is the capability of neural information transmission between synapses. The assessed indexes of synapse transmission are as follows: the magnitude and slope rate of PSPs evoked by signal pulse stimulus; the magnitude and area of PSCs. The another indicator of synaptic transmission efficiency is mutual information.Mutual information,in a word,is the ability of postsynapse in keeping the presynaptic information completely.
     According to popular views, information can be carried by a series action potential only.As a result,to evaluate the impact factors of transmission efficiency,we should consider the different postsynaptic EPSCs induced by different presynaptic action potential and the mutual information both.So it is in great need of developing the further study how we establish a set of reasonable indexes of evaluation the efficiency of synapse transmission.
     The present research includes three objectives: (1) We created the simulational model of primary afferent synapses in unmyelinated nerve fiber based on the electrophysiological experimental data.(2)We analyze the dynamical mechanisms who caused different presynaptic firing patterns.
     (3)Combining the simulational model and the experimental data,we investigated the rules of synaptic transmission and synaptic mechanisms which dominate the bursting firing pattern and the single firing pattern.
     Main results:
     1. We finished the simulational model of primary afferent synapses in unmyelinated nerve fiber
     a.We created the presynaptic C-fiber firing model by referred Sriven’s work
     b.Based on Destexhe’s model and the experimental data,we created the synaptic transmission model of primary afferent synapses in unmyelinated nerve fiber.
     c. Based on experimental data,we merge the presynaptic firing model and the synaptic transmission model to our model.
     d. This model can be modified to short-term plasticity model easily.As a two compartments model,the model can be widely used.For example,it can be modified to the model of primary afferent synapses in myelinated nerve fiber easily.
     2. We analyzed the dynamical mechanisms of different presynaptic firing patterns.
     a. Realized repetitive firing and busrting due to different dynamical mechanism
     b. The different dynamical mechanism can be induced by Na-K pump and inject current jointly.
     3. Synatpic transmission of different firing pattern on primary afferent synapse-the contrasting between model and experiment.
     a. In the different presynaptic condition,the low frequency presynaptic firing pattern(0.5~4Hz) can induce the postsynaptic EPSC more easily.And also,the CV is small in the low frequency presynaptic firing pattern condition.
     b. The CV analyzing show us,in the AMPA ONLY condition,the consecutive stimulus can make the CV stable.At the same , bursing stimulus accommodated the MPA&NMDA condition more.
     c. By calculating the mutual information between input and output trains, we found that under brief-burst stimulation, the information carried by input trains can be more reliably relayed during synaptic transmission. Conclusion:
     In the present research, we established our simulation model to study the mechanism of synaptic transmission at primary afferent synapse originally.
     To analyze the dynamical mechanism,we found the different firing patterns due to different dynamical mechanisms.The low frenquency(0.5~4Hz) repetitive stimulus can indue the EPSC easily and stably. By calculate the mutual information,we found the main temporal structure of presynaptic firing patterns can transfer to the postsynapse,especially in the presynaptic bursting firing patterns.According to distube the presynaptic release function in the model,we found that it has little effect in synaptic transmission process.After cuting off the NMDA component,we found that the reliability of bursting firing pattern transferring slow down sharply.It indicated that the mechanism of reliability of bursting firing pattern transferring is the postsynaptic mechanism,more over,the mechanism is related to NMDA tightly.
     Experimental data recorded under different conditions were fitted with small errors, using the model of synaptic transmission. This model can also be used to analyze the mechanism of change in transmission synaptic effiency. This method provides a good computational way to study the synaptic transmission in spinal dorsal horn. Our research systematically explored the transmission efficiency at primary afferent synapse and its mechanism. Moreover, the model is a double compartment model,it can be modified to other model easily,just like short-term plasticity model and simulational model of primary afferent synapse in myelinated nerve fiber.
引文
1. Woolf CJ, Fitzgerald M. The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. The Journal of comparative neurology, 1983; 221(3):313-328.
    2. Ralston HJ, Ralston DD. The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: a quantitative electron microscope study. The Journal of comparative neurology, 1979; 184(4):643-684.
    3. Light AR, Perl ER. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. The Journal of comparative neurology 1979; 186(2):117-131.
    4. Cervero F, Iggo A. The substantia gelatinosa of the spinal cord: a critical review. Brain : a journal of neurology,1980; 103(4):717-772.
    5. 王克模.无髓神经纤维的生理功能.生理科学进展,1992;23 (2) :126.
    6. Gardner EP, Martin JH, Jessell TM. The bodily senses. In: Principles of neural science (Kandel ER, Schwartz JH, Jessell TM eds). New York: McGraw-Hill Press. 2000, pp 430-450.
    7. Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol, 1979b, 186: 133-150.
    8. Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science, 1986, 234: 358-361.
    9. Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. NewYork: Plenum Press. 1978.
    10. Kandel, et al. Princilples of NeuralScience, 4th ed. New York: McGraw-Hill, 2000.
    11. Simmons PJ, et al. Presynaptic depolarization rate controls transmission at an invertebrate synapse. Neuron, 2002; 35: 749-758.
    12. Eshete F, Fields D, et al. Spike frequency decoding and autonomous activation of Ca2+ calmodulim-dependent protein kinase II in dorsal root ganglion neurons. J Neuroscience, 2001; 21(17): 6693-6705.
    13. Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation. Nature Review Neuroscience, 2001; 2: 881-888.
    14. Hu SJ, Yang HJ, Jian Z, et al. Neuroscience, 2000; 101: 689-698
    15. Ren W, Hu SJ, Zhang BJ, ea al. Int J Bifur Chaos, 1997; 7: 1867-1872.
    16. Xing JL, Hu SJ, Long KP. Subthreshold membrane potential oscillations of type A neurons in injured DRG.. Brain Research, 2001; 12: 128-136.
    17. Lundberg JM, Rudehill A, Sollrvi A, Fried G, Wallin G. Co-release of neuropeptide Y and noradrenaline from pig spleen in vivo: importance of subcellular storage, neve impulse frequency and pattern, feedback regulation and resupply by axonal transport. Neuroscience, 1989; 28: 475-486.
    18. Balkowiec A, David M. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neuroscience, 2000; 20(19): 7417-7423.
    19. Lundberg JM, Rudehill A, Sollevi A, Theodorsson-Norheim E, Hamberger B. Frequency- and reserpine-dependent chemical coding of sympathetic transmission: differential release of noradrenaline andneuropeptide Y from pig spleen. Neuroscience Letter, 1986; 63: 96-100.
    20. Pernow J, Schwieler J, Kahan T, Hjemdahl P, Oberle J, Wallin BG, Lundberg JM. Influence of sympathetic discharge pattern on norepinephrine and neuropeptide Y release. Am J Physiology, 1989; 257: H866-H872.
    21. Julia TrommershaUser,Biophysical model of a single synaptic connection:Transmission properties are determined by the cooperation of pre- and postsynaptic mechanisms.Neurocomputing, 2001
    22. Bo Cartling,Stochastic and Reduced Biophysical Models of Synaptic Transmission. Journal of Biological Physics,2000
    23. Shouval HZ, Kalantzis G, Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol, 2005, 93:1069-73
    24. Rall W, Burke RE, Smith TG, Nelson PG, Frank K, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons.J Neurophysiol, 1967,30:1169-93
    25. Segundo JP, Perkel DH, Wyman H, Hegstad H, Moore GP. Input-output relations in computer-simulated nerve cells. Influence of the statistical properties, strength, number and inter-dependence of excitatory pre-synaptic terminals. Kybernetik, 1968, 4: 157-171.
    26. Hasegawa H. Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs. Phys Rev E, 2000, 61: 718-726.
    27. Svirskis G, Rinzel J. Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J, 2000, 79: 629-637.
    28. Feng J, Zhang P. Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs. Phys Rev E Stat Nonlin Soft Matter Phys, 2001, 63: 051902.
    29. Murakoshi K, Nakamura K. Firing patterns depending on model neurons. IEICE Trans Inf & Syst, 2001, E84-D: 393-402.
    30. Segundo JP, Moore GP, Stensaas LJ, Bullock TH. Sensitivity of neurones in Aplysia to temporal pattern of arriving impulses. J Exp Biol, 1963, 40: 643-667.
    31. Segundo JP, Stiber M, Altshuler E, Vibert JF. Transients in the inhibitory driving of neurons and their postsynaptic consequences. Neuroscience, 1994, 62: 459-480.
    32. Segundo JP, Vibert JF, Stiber M, Hanneton S. Periodically modulated inhibition and its postsynaptic consequences I. General features. Influence of modulation frequency. Neuroscience, 1995, 68: 657-692.
    33. Segundo JP, Stiber M, Vibert JF, Hanneton S. Periodically modulated inhibition and its postsynaptic consequences II. Influence of modulation slope, depth, range, noise and of postsynaptic natural discharges. Neuroscience, 1995, 68: 693-719.
    34. Segundo JP, Vibert JF, Stiber M. Periodically-modulated inhibition of living pacemaker neurons III. The heterogeneity of the postsynaptic spike trains, and how control parameters affect it. Neuroscience, 1998, 87: 15-47.
    35. Segundo JP, Sugihara G, Dixon P, Stiber M, Bersier LF. The spike trains of inhibited pacemaker neurons seen through the magnifying glass of nonlinear analyses. Neuroscience, 1998, 87:741-766.
    36. Bennett BD, Wilson CJ. Synaptic regulationof action potential timing in neostriatal cholinergic interneurons. J Neurosci, 1998, 18: 8539-8549.
    37. Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci, 1999, 19: 5586-5596.
    38. Dénes Budai. Neurotransmitters and receptors in the dorsal horn of the spinal cord. Acta Biologica Szegediensis, 2000; 44(1-4): 21-38.
    39. Raymond D, Karin B, Derek B, Stephen F, Traynelis. The Glutamate Receptor Ion Channels. Current Opinion in Neurobiology, 2005; 15: 282-288.
    40. Ascher P, Nowak L.The role of divalent cations in the N-methyl-Daspartate responses of mouse central neurones in culture. J Physiology, 1998; 399: 247–266.
    41. Burnashev N, Zhou Z, Neher E and Sakmann B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA, and kainate receptor types. J Physiology, 1995; 485: 403–418.
    42. Chen YH, Wu ML and Fu WM. Regulation of presynaptic NMDA responses by external and intracellular pH changes at developing neuromuscular synapses. J Neuroscience, 1998; 18: 2982–2990.
    43. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiology, 1973; 232(2): 331-56.
    44. Mendell LM. Modifiability of spinal synapse. Physiology Review, 1984; 64: 260-324.
    45. Zucker RS. Short-term synaptic plasticity. Ann Review Neuroscience, 1989; 12: 13-31.
    46. Siegelbaum SA, Kandel ER. Learning-related synaptic plasticity: LTP and LTD. Current Opinion Neurobiology. 1991; 1(1): 113-20. Review.
    47. Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Current Opinion Neurobiology. 1994; 4(3): 389-99. Review.
    48. Ji R, Kohno T, Moore A, Woolf J. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neuroscience. 2003; 26(12): 696-705. Review.
    49. Bi Q, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neuroscience. 1998; 8(24): 10463-72.
    50. Randic M, Jiang C, Cerne R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neuroscience. 1993; 3(12): 5228-5241.
    51. Kim U, McCormick DA. The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neuroscience. 1998; 18(22): 9500-9516.
    52. Aaron GB, Dichter MA. Excitatory synapses from CA3 pyramidal cells onto neighboring pyramidal cells differ from those onto inhibitory interneurons. Synapse. 2001; 42(4): 199-202.
    53. Rossi DJ, Alford S, Mugnaini E, Slater NT. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. J Neurophysiology, 1995; 74(1): 23-42.
    54. Hebb DO. The organization of behavior. Mew York: Wiley, 1949.
    55. Bi GQ, Poo MM. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Review Neuroscience. 2001;24:139-66. Review.
    56. Hines ML, Carnevale NT, The NEURON simulation environment.Neural Comput, 1997,9:1179-209
    57. 陆启韶. 分岔与奇异性. 上海 : 上海科技教育出版社,1999
    58. 张伟江. 非线性动力系统的动态分析. 上海 : 上海交通大学出版社,1996
    59. Randic M, Jiang MC, Cerne R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci, 1993, 13: 5228-5241.
    60. Sandkuhler J, Chen JG, Cheng G, Randic M. Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. J Neurosci, 1997, 17: 6483-6491.
    61. Svendsen F, Tjolsen A, Gjerstad J, Hole K. Long term potentiation of single WDR neurons in spinalized rats. Brain Res, 1999, 816: 487-492.
    62. Sandkuhler J. Learning and memory in pain pathways. Pain, 2000, 88: 113-118.
    63. Randic M, Jiang MC, Cerne R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. The Journal of neuroscience 1993; 13(12):5228-5241.
    64. Sandkuhler J, Chen JG, Cheng G, Randic M. Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. The Journal of neuroscience 1997; 17(16):6483-6491.
    65. Wan YH, Wang YY, Dai F, Hu SJ. Visually guided patch-clamp recording of spinal dorsal horn neuron's postsynaptic current evoked by primaryafferent fiber. Sheng li xue bao 2004; 56(4):550-557.
    66. Rossi DJ, Alford S, Mugnaini E, Slater NT. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. J Neurophysiology, 1995; 74(1): 23-42.
    67. Hebb DO. The organization of behavior. Mew York: Wiley, 1949.
    68. Malcangio M, Ramer MS, Jones MG, McMahon SB. Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Europe J Neuroscience, 2000; 12: 397-399.
    69. Marvizón JCG, Martínez V, Grady EF, Bunnett NW, Mayer EA. Neurokinin receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neuroscience, 1997; 17: 8129-8136.
    70. Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1994;1(3):195-230.
    71. Maxwell, D. J, Rethelyi, M. Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. Trends in Neurosciences. 10(3), 1987. 117-123.
    72. Scriven DR. Modeling repetitive firing and bursting in a small unmyelinated nerve fiber. Biophys J 1981;35(3):715-30.
    73. Baker PF, Blaustein MP, Keynes RD, Manil J, Shaw TI, Steinhardt RA. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol 1969;200(2):459-96.
    74. Brown AM, Akaike N, Lee KS. The calcium conductance of neurons. Ann N Y Acad Sci 1978;307:330-44.
    75. Sacchi, Oscar, Belluzzi, Ottorino, Canella, Rita, Fesce, Riccardo. A model of signal processing at a mammalian sympathetic neuron.Journal of Neuroscience Methods, 1998,80(2): 171-180.
    76. 杨福生。小波变换的工程分析与应用。北京: 科学出版社,2000
    77. 楼红卫。常微分方程。上海:复旦大学出版社,2007
    78. 钱祥征。非线性常微分方程、方法与应用。长沙:湖南大学出版社,2006
    79. 徐建学。非线性动力学现代理论-分岔、浑沌、分形。西安:西安交通大学出版社,1997
    80. 周纪卿,朱因远。非线性振动。西安:西安交通大学出版社,1998.9
    81. 朱俊岭,脑电满波与癫痫发作关系的研究。西安:西安交通大学博士论文,2002
    82. Fukai H, Doi S, Nomura T, et al. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions. Biol Cybern, 82: 215-222, 2000
    83. Fukai H, Nomura T, Doi S, et al. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations II. Singularity theoretic approach and highly degenerate bifurcations. Biol Cybern, 82: 223-229, 2000
    84. Rinzel J, Miller RN. Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations. Math Biosci, 49:27-59, 1980
    85. Bedrov YA. Akoev GN. Dick OE. Partition of the Hodgkin-Huxley type model parameter space into the region of qualitatively different solutions. Biol Cybern, 66: 413-418, 1992
    86. Koch C, Laurent G. Complexity and the nervous system. Science, 1999, 284: 96-98.
    87. Richmond BJ, Optican LM, Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol, 1990, 64: 351-369.
    88. Richmond BJ, Optican LM. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. J Neurophysiol, 1990, 64: 370-380.
    89. McClurkin JW, Optican LM, Richmond BJ, Gawne TJ. Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. Science, 1991, 253: 675-677.
    90. Bair W, Koch C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput, 1996, 8: 1185-1202.
    91. Buracas GT, Zador AM, DeWeese MR, Albright TD. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998, 20: 959-969.
    92. Mechler F, Victor JD, Purpura KP, Shapley R. Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J Neurosci, 1998, 18: 6583-6598.
    93. Li Y, Burke RE. Short-term synaptic depression in the neonatal mouse spinal cord: effects of calcium and temperature. J Neurophysiol, 2001, 85: 2047-2062.
    94. Li Y, Burke RE. Developmental changes in short-term synaptic depression in the neonatal mouse spinal cord. J Neurophysiol, 2002, 88: 3218-3231.
    95. Kantz H, Schreiber T. Nonlinera time series analysis. Cambridge: Cambridge University Press. 1997.
    96. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N. Chaos and physiology: Deterministic chaos in excitable cell assemblies. Phsiol Rev, 1994, 74: 1-47.
    97. Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL. Controlling chaos in the brain. Nature, 1994, 370: 615-620.
    98. Hayashi H, Ishizuka S. Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Res, 1995, 686: 194-206.
    99. Hoffman RE, Shi W-X, Bunney BS. Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns. Biophys J, 1995, 69: 128-137.
    100.So P, Francis JT, Netoff TI, Gluckman BJ, Schiff SJ. Periodic orbits: a new language for neuronal dynamics. Biophys J, 1998, 74: 2776-2785.
    101.Hu SJ, Yang HJ, Jian Z, Long KP, Duan YB, Wan YH, Xing JL, Xu H, Ju G. Adrenergic sensitivity of neurons with non-periodic firing activity in rat injured dorsal root ganglion. Neuroscience, 2000, 101: 689-698.
    102.Amaral DG. The function organization of perception and movement. In: Principles of neural science (Kandel ER, Schwartz JH, Jessell TM eds). New York: McGraw-Hill Press. 2000, pp 337-348.
    103.Dekhuijzen AJ, Bagust J. Analysis of neural bursting: nonrhythmic and rhythmic activity in isolated spinal cord. J Neurosci Meth, 1996, 67: 141-147.
    104.Hu S-J, Xing J-L. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain, 1998, 77: 15-23.
    105.Xing JL, Hu SJ, Long KP. Subthreshold membrane potential oscillationsof type A neurons in injured DRG. Brain Res, 2001, 901: 128-136.
    106.Amir R, Michaelis M, Devor M. Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J Neurosci, 2002, 22: 1187-1198.
    107.段玉斌, 菅忠, 胡三觉, 龙开平. 大鼠损伤神经的三种诱发簇放电节律. 生理学报, 2002, 54: 329-332.
    108.Wan YH, Jian Z, Hu SJ, Xu H, Yang HJ, Duan YB. Detection of determinism within time series of irregular burst firing from the injured sensory neuron. Neuroreport, 2000, 11: 3295-3298.
    109.Bair W, Koch C, Newsome W, Britten K. Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci, 1994, 14: 2870-2892.
    110.Menendez de la Prida L, Stollenwerk N, Sanchez-Andrez JV. Bursting as a source for predictability in biological neural network activity. Phydica D, 1997, 110: 323-331.
    111.Cattaneo A, Maffei L, Morrone C. Two firing patterns in the discharge of complex cells encoding different attributes of the visual stimulus. Exp Brain Res, 1981, 43: 115-118.
    112.Muller RU, Kubie JL, Ranck JB. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J Neurosci, 1987, 7: 1935-1950.
    113.Otto T, Eichenbaum, H, Wiener SI, Wible CG. Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus, 1991, 1: 181-192.
    114.Snider RK, Kabara JF, Roig BR, Bonds AB. Burst firing and modulationof functional connectivity in cat striate cortex. J Neurophysiol, 1998, 80: 730-744.
    115.Jian Z, Xing JL, Yang GS, Hu SJ. A novel bursting mechanism of type A neurons in injured dorsal root ganglia. Neurosignal, 2004, 13: 150-156.
    116.Ren W, Hu SJ, Zhang BJ, Wang FZ, Gong YF, Xu JX. Period-adding bifurcation with chaos in the interspike intervals generated by an experimental pacemaker. Inter J of Bifurcation and Chaos, 1997, 7: 1867-1872.
    117.Stein RB, French AS, Holden AV. The frequency response, coherence, and information capacity of two neuronal models. Biophys J, 1972, 12: 295-322.
    118.Eckhorn R, Popel B. Rigorous and extended application of information theory to the afferent visual system of the cat. I. Basic concepts. Biol Cybern, 1974, 16: 191-200.
    119.Sherry CJ, Klemm WR. What is the meaningful measure of neuronal spike train activity? J Neurosci Methods, 1984, 10: 205-213.
    120.London M, Schreibman A, Hausser M, Larkum ME, Segev I. The information efficacy of a synapse. Nat Neurosci, 2002, 5: 332-340.
    121.Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 1994, 5: 537-550.
    122.Gong P, Xu J, Hu S. Stochastic resonance measured by the mutual information in the neurons that transmit chaotic spike trains. Acta Biophys Sina, 1999, 15: 721-732.
    123.Graben P. Estimating and improving the signal-to-noise ratio of timeseries by symbolic dynamics. Phys Rev E Stat Nonlin Soft Matter Phys, 2001, 64: 051104.
    124.Moore GP, Perkel DH, Segundo JP. Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol, 1966, 28: 493-522.
    125.Segundo JP, Perkel DH, Moore GP. Spike probability in neurones: influence of temporal structure in the train of synaptic events. Kybernetik, 1966, 3: 67-82.
    126.Lisman JE. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci, 1997, 20: 38-43.
    127.Jack JJ, Redman SJ, Wong K. The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. J Physiol, 1981, 321: 65-96.
    128.Korn H, Triller A, Mallet A, Faber DS. Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science, 1981, 213: 898-901.
    129.Rosenmund C, Clements JD, Westbrook GL. Nonuniform probability of glutamate release at a hippocampal synapse. Science, 1993, 262: 754-757.
    130.Murphy TH, Baraban JM, Wier WG, Blatter LA. Visualization of quantal synaptic transmission by dendritic calcium imaging. Science, 1994, 263: 529-532.
    131.Malinow R, Otmakhov N, Blum KI, Lisman J. Visualizing hippocampal synaptic function by optical detection of Ca2+ entry through the N-methyl-D-aspartate channel. Proc Natl Acad Sci USA, 1994, 91: 8170-8174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700