脑皮质电刺激对氯化铁诱发大鼠癫痫的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是神经系统常见疾病,发病率约1%,全球共约5千万患者,我国约有900万患者。目前癫痫的治疗主要是药物和手术治疗,但仍然有约25%的患者无有效治疗,特别是癫痫灶定位于大脑功能皮质区的难治性癫痫患者是癫痫治疗的一大难点,因此寻求新的治疗方法十分必要。神经电刺激治疗癫痫是一种非常有前途的方法,刺激靶点包括迷走神经、小脑、尾状核、丘脑核团、黑质网状结构等,这些方法多为非特异性方法,直接进行癫痫灶刺激,特别是新皮质癫痫的脑皮质电刺激,是目前新的研究方向,但目前脑皮质电刺激治疗癫痫还仅仅是初步的探索,尚缺乏系统的研究。
     本研究利用运动感觉区脑皮质注射氯化铁诱发急性和慢性癫痫大鼠模型,一方面通过检测发作频率和发作时程探讨脑皮质电刺激对氯化铁诱发大鼠急性癫痫发作的抑制作用,另一方面通过检测脑皮质后放电阈值、后放电时程和行为学评分探讨脑皮质电刺激对氯化铁诱发慢性癫痫大鼠模型脑皮质兴奋性的影响。实验结果如下:(1)脑皮质注射氯化铁诱发大鼠癫痫模型均出现程度不同的急性癫痫发作。(2)氯化铁诱发急性癫痫大鼠6h脑电图(electroencephalogram,EEG)记录中,平均发作次数1-Hz电刺激组(6.67±5.65)与对照组(18.33±6.93)相比有显著性差异(P<0.01),100-Hz电刺激组(8.33±5.38)与对照组相比有显著性差异(P<0.05)。(3)氯化铁诱发大鼠急性癫痫发作的平均发作时程1-Hz电刺激组(37.38±15.53s)和100-Hz电刺激组(39.60±11.82s)与对照组(61.43±16.61s)相比均有显著性差异(P<0.05)。(4)氯化铁诱发急性癫痫大鼠发作次数在1-Hz电刺激组和100-Hz电刺激组显示逐步下降的变化趋势,而对照组显示先短暂升高后随之下降的变化趋势。(5)氯化铁诱发慢性癫痫大鼠模型重复脑皮质电刺激5d后测脑皮质后放电阈值低频低强度组(2.10±0.38mA)与对照组(1.50±0.33mA)相比组间有显著性差异(P<0.05),与脑皮质电刺激前初测脑皮质后放电阈值(1.55±0.35mA)相比组内有显著性差异(P<0.01)。低频高强度组、高频低强度组和高频高强度组脑皮质后放电阈值与对照组相比组间无统计学差异,但低频高强度组脑皮质后放电阈值终测值(1.85±0.35mA)与脑皮质电刺激前初测值(1.45±0.35mA)相比组内有显著性差异(P<0.05)。(6)氯化铁诱发慢性癫痫大鼠模型重复脑皮质电刺激5d后行为学评分各组与对照组相比组间无统计学差异,但是低频低强度组行为学评分终测值(3.83±0.98)与脑皮质电刺激前初测值(4.83±1.17)相比组内有显著性差异(P<0.05)。(7)氯化铁诱发慢性癫痫大鼠模型重复脑皮质电刺激5d后测后放电时程各组与对照组相比组间无统计学差异。(8)氯化铁诱发慢性癫痫大鼠模型重复脑皮质电刺激5d后行为学评分与后放电阈值的比值低频低强度组(1.88±0.60)与对照组(3.22±0.67)相比组间有显著性差异(P<0.01),与脑皮质电刺激前初测值(3.22±1.05)相比组内有显著性差异(P<0.01)。低频高强度组(2.18±0.38)与对照组相比组间有显著性差异(P<0.05),与初测值(3.17±0.71)相比组内有显著性差异(P<0.01)。高频低强度组(2.50±0.33)和高频高强度组(3.66±0.73)与对照组相比组间无统计学差异,但高频高强度组终测值与初测值(3.10±0.37)相比组内有显著性差异(P<0.05)。
     综合上述实验结果,本研究结论如下:(1)脑皮质注射氯化铁溶液后即给予1-Hz的方波脉冲脑皮质电刺激,可以明显降低氯化铁诱发大鼠急性癫痫发作的发作次数和发作时程。(2)脑皮质注射氯化铁溶液后即给予100-Hz的方波脉冲脑皮质电刺激,可以明显降低氯化铁诱发大鼠急性癫痫发作的发作次数和发作时程。(3)、重复的低频低强度或者低频高强度脑皮质电刺激可以升高氯化铁诱发慢性癫痫大鼠模型的脑皮质后放电阈值,提示脑皮质兴奋性降低,以低频低强度脑皮质电刺激的作用更明显。(4)、重复的高频高强度脑皮质电刺激后氯化铁诱发慢性癫痫大鼠模型的行为学评分与后放电阈值的比值较脑皮质电刺激前升高,提示脑皮质兴奋性升高。(5)、实验结果提示合适参数的脑皮质电刺激对氯化铁诱发大鼠癫痫具有抑制作用,为脑皮质电刺激治疗癫痫提供了新的依据。
Epilepsy is a common disorder of nervous system, which affects more than 50 million individuals worldwide and 9 million individuals in China—about 1% of the population. By now about 75% patients are controlled by antiepileptic drugs and operation. But there are at least 25% patients cannot be controlled by any available therapy, especially the patients whose epileptogenic cortex is overlapped with eloquent cortex. So the clinic treatment of epilepsy with epileptic focus overlapped with eloquent cortex is difficult and it is necessary to set up new therapies. Electric stimulation is an encouraging strategy for the treatment of intractable epilepsy. The targets of electric stimulation include vagus nerve, cerebellum, caudate nucleus, thalamic nuclei and reticular formation of substantia nigra. But the stimulation of targets above is non-specific. So it is maybe a good way to stimulate the epileptic focus directly. However, the effect of electric cortical stimulation on epileptic focus localized on the neocortex is not clear.
     In this study, the rat models of acute and chronic focal epilepsy induced by intracortical injection of ferric chloride solution were used. In the first part, we studied the suppressive effects of the electric cortical stimulation on the seizures in the acute epileptic rat by investigated the frequency and duration of seizures induced by ferric chloride. In the second part, we studied the effects of the electric cortical stimulation on the cortical excitability in the chronic epileptic rat by investigated the threshold and duration of cortical afterdischarge and the behavior score. Results: (1) Spontaneous seizures were observed in all acute epileptic rats following intracortical injection of ferric chloride solution. (2) In 6h EEG recording, 1-Hz and 100-Hz electric cortical stimulation significantly decreased the number of seizures in the acute epileptic rat (6.67±5.65 and 8.33±5.38, respectively) compared with that of the control group (18.33±6.93, P<0.01 and P<0.05, respectively). (3) In 6h EEG recording, 1-Hz and 100-Hz electric cortical stimulation significantly decreased the duration of seizures in the acute epileptic rat (37.38±15.53s and 39.60±11.82s, respectively) compared with that of the control group (61.43±16.61s, P<0.05). (4) When we calculated the number of seizures in each hour in 6h EEG recording after electric cortical stimulation, we found that downtrend was observed in 1-Hz and 100-Hz electric cortical stimulation groups and transient upgrade followed downtrend was observed in control group. (5) After 1-Hz and 0.1mA repetitive electric cortical stimulation in 5d, the cortical afterdischarge threshold (2.10±0.38mA) significantly ascended in the chronic epileptic rat induced by intracortical injection of ferric chloride solution compared with that of the control group (1.5±0.33mA, P<0.05) and compared with the initial cortical afterdischarge threshold before electric cortical stimulation (1.55±0.35mA, P<0.01). There was no statistic difference of cortical afterdischarge thresholds after 1-Hz and 1.0mA, 100-Hz and 0.1mA, 100-Hz and 1.0mA repetitive electric cortical stimulation compared with that of the control group. But the cortical afterdischarge threshold after 1-Hz and 1.0mA repetitive electric cortical stimulation (1.85±0.35mA) significantly ascended compared with the initial cortical afterdischarge threshold before electric cortical stimulation (1.45±0.35mA, P<0.05). (6) There was no statistic difference of behavior score after repetitive electric cortical stimulation in 5d compared with that of the control group. But there was significantly difference of behavior score after 1-Hz and 0.1mA repetitive electric cortical stimulation (3.83±0.98) compared with the initial behavior score before electric cortical stimulation (4.83±1.17, P<0.05). (7) There was no statistic difference of duration of cortical afterdischarge after repetitive electric cortical stimulation in 5d compared with that of the control group. (8) The ratio of behavior score and cortical afterdischarge threshold after 1-Hz and 0.1mA (1.88±0.60) or 1-Hz and 1.0mA (2.18±0.38) repetitive electric cortical stimulation in 5d was significantly lower than that of the control group (3.22±0.67, P<0.01 and P<0.05, respectively). At the same time, the ratio of behavior score and cortical afterdischarge threshold after 1-Hz and 0.1mA or 1-Hz and 1.0mA repetitive electric cortical stimulation was significantly lower than initial ratio before electric cortical stimulation (3.22±1.05 or 3.17±0.71, respectively, P<0.01). There was no statistic difference of the ratio of behavior score and cortical afterdischarge threshold after 100-Hz and 0.1mA (2.50±0.33) or 1-Hz and 1.0mA (3.66±0.73) repetitive electric cortical stimulation in 5d compared with that of the control group. But the ratio of behavior score and cortical afterdischarge threshold after 100-Hz and 1.0mA repetitive electric cortical stimulation was significantly higher than initial ratio before electric cortical stimulation (3.10±0.37, P<0.05).
     Conclusions: (1) 1-Hz square pulse electric cortical stimulation can significantly decreased the number and the duration of seizures in the acute epileptic rat just following the intracortical injection of ferric chloride solution. (2) 100-Hz square pulse electric cortical stimulation can also significantly decreased the number and the duration of seizures in the acute epileptic rat just following the intracortical injection of ferric chloride solution. (3) After the repetitive low frequency and low amplitude or low frequency and high amplitude electric cortical stimulation the cortical afterdischarge threshold significantly ascended in the chronic epileptic rat induced by intracortical injection of ferric chloride solution. It means the depression of cortical excitability after electric cortical stimulation, especially the repetitive low frequency and low amplitude electric cortical stimulation. (4) After the repetitive high frequency and high amplitude electric cortical stimulation the ratio of behavior score and cortical afterdischarge threshold was significantly higher than initial ratio before electric cortical stimulation. It means the rise of cortical excitability. (5) The results of this study showed that electric cortical stimulation with suitable parameter can produce a suppressive effect on the epileptic rat induced by intracortical injection of ferric chloride solution. The results of this study provide a new proof for the treatment of epilepsy by electric cortical stimulation.
引文
Akamatsu N, Fueta Y, Endo Y, et al. Decreased susceptibility to pentylenetetrazol-induced seizures after low-frequency transcranial magnetic stimulation in rats. Neurosci Lett. 2001, 310(2-3):153-156
    Alarcón G. Electrical stimulation in epilepsy. Clin Neurophysiol. 2005, 116(3):716-717
    Albensi BC, Ata G, Schmidt E, et al. Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res. 2004, 998(1):56-64
    Auriel E, Chistik V, Blatt I, et al. Efficacy and safety of levetiracetam (keppra) add-on treatment in adult patients with refractory epilepsy in two tertiary centers. Harefuah. 2007, 146(4):269-271, 318
    Bae EH, Schrader LM, Machii K, et al. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 2007, 10(4):521-528
    Barcia-Salorio JL, Barcia JA, Hernández G, et al. Radiosurgery of epilepsy. Long-term results. Acta Neurochir Suppl. 1994, 62:111-113
    Barclay J, Rees M. Mouse models of spike-wave epilepsy. Epilepsia. 1999, 40 Suppl 3:17-22
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985, 1(8437):1106-1107
    Bartolomei F, Hayashi M, Tamura M, et al. Long-term efficacy of gamma knife radiosurgery in mesial temporal lobe epilepsy. Neurology. 2008 Apr 9 [Epub ahead of print]
    Bausch SB, Chavkin C. Changes in hippocampal circuitry after pilocarpine-induced seizures as revealed by opioid receptor distribution and activation. J Neurosci. 1997, 17(1):477-492
    Belluardo N, Mudo G, Jiang XH, et al. Induction of astroglial gene expression by experimental seizures in the rat: spatio-temporal patterns of the early stages. Glia. 1996, 16(2):174-186
    Benabid AL, Koudsié A, Pollak P, et al. Future prospects of brain stimulation. Neurol Res. 2000, 22(3):237-246
    Benabid AL, Minotti L, Koudsié A, et al. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report. Neurosurgery. 2002, 50(6):1385-1391
    Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 2000, 23(11):580-587
    Ben-Menachem E, Hamberger A, Hedner T, et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995, 20(3):221-227
    Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol. 2001, 18(5):415-418
    Beyenburg S, Bauer J, Reuber M. New drugs for the treatment of epilepsy: a practical approach. Postgrad Med J. 2004, 80(948):581-587
    Bikson M, Lian J, Hahn PJ, et al. Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. J Physiol. 2001, 531(Pt 1):181-191
    Bj?rklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000, 3(6):537-544
    Bragin A, Wilson CL, Engel J Jr. Increased afterdischarge threshold during kindling in epileptic rats. Exp Brain Res. 2002, 144(1):30-37
    Brasil-Neto JP, de Araujo DP, Teixeira WA, et al. Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr. 2004, 62(1):21-25
    Buchhalter JR. Animal models of inherited epilepsy. Epilepsia. 1993, 34 Suppl 3:S31-41
    Buzsáki G, Ponomareff G, Bayardo F, et al. Suppression and induction of epileptic activity by neuronal grafts. Proc Natl Acad Sci USA. 1988, 85(23):9327-9330
    Cassel JC, Neufang B, Kelche C, et al. Effects of septal and/or raphe cell suspension grafts on hippocampal choline acetyltransferase activity, high affinity synaptosomal uptake of choline and serotonin, and behavior in rats with extensive septohippocampal lesions. Brain Res. 1992, 585(1-2):243-254
    Chabardès S, Kahane P, Minotti L, et al. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002, 4 Suppl 3:S83-93
    Chai RS, Bikson M, Durand DM. Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol. 2000, 84(1):274-280
    Chen WR, Lee S, Kato K, et al. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. Proc Natl Acad Sci USA. 1996, 93(15):8011-8015
    Chkhenkeli SA, Chkhenkeli IS. Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy. Stereotact Funct Neurosurg. 1997, 69(1-4 Pt 2):221-224
    Cooper IS, Amin I, Upton A, et al. Safety and efficacy of chronic cerebellar stimulation. Appl Neurophysiol. 1977-1978, 40(2-4):124-134
    Cuellar-Herrera M, Velasco M, Velasco F, et al. Evaluation of GABA system and cell damage in parahippocampus of patients with temporal lobe epilepsy showing antiepileptic effects after subacute electrical stimulation. Epilepsia. 2004, 45(5):459-466
    Daniele O, Brighina F, Piazza A, et al. Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia - a preliminary study. J Neurol. 2003, 250(6):761-762
    Davis R, Emmonds SE. Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg. 1992, 58(l-4):200-208
    Davis R. Cerebellar stimulation for cerebral palsy spasticity, function, and seizures. Arch Med Res. 2000, 31(3):290-299
    Doi T, Ueda Y, Tokumaru J, et al. Sequential changes in glutamate transporter mRNA levels during Fe3+-induced epileptogenesis. Brain Res Mol Brain Res.2000, 75(l):105-112
    Doi T, Ueda Y, Tokumaru J, et al. Sequential changes in AMP A and NMD A protein levels during Fe3+-induced epileptogenesis. Brain Res Mol Brain Res.2001, 92(1-2): 107-114
    Engstrom ER, Hillered L, Flink R, et al. Extracellular amino acid levels measuredwith intracerebral microdialysis in the model of posttraumatic epilepsyinduced by intracortical iron injection. Epilepsy Res. 2001, 43(2): 135-144
    Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev. 1989,14(3):245-278
    Fregni F, Thome-Souza S, Bermpohl F, et al. Antiepileptic effects of repetitivetranscranial magnetic stimulation in patients with cortical malformations:an EEG and clinical study. Stereotact Funct Neurosurg. 2005,83(2-3):57-62
    Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats withpilocarpine: low mortality but high proportion of rats developing epilepsy.Epilepsy Res. 2001, 46(2): 111-119
    Godlevskii LS, Shandra AA. Effect of electric stimulation of the dentate nucleuson focal complexes of epileptic activity in the cerebral cortex. Biull EkspBiolMed. 1983, 95(4):23-25
    Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000,406(6792): 147-150
    Hammond EJ, Ramsay RE, Villarreal HJ, et al. Effects of intracortical injection of blood and blood components on the electrocorticogram. Epilepsia. 1980,21(1):3-14
    Hammond EJ, Uthman BM, Wilder BJ, et al. Neurochemical effects of vagusnerve stimulation in humans. Brain Res. 1992, 583(l-2):300-303
    Henry TR, Bakay RA, Votaw JR, et al. Brain blood flow alterations induced bytherapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects athigh and low levels of stimulation. Epilepsia. 1998, 39(9):983-990
    Henry TR, Votaw JR, Pennell PB, et al. Acute blood flow changes and efficacy ofvagus nerve stimulation in partial epilepsy. Neurology. 1999,52(6):1166-1173
    Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002,59(6 Suppl4):S3-14
    Henry TR, Bakay RA, Pennell PB, et al. Brain blood-flow alterations induced bytherapeutic vagus nerve stimulation in partial epilepsy: II. prolongedeffects at high and low levels of stimulation. Epilepsia. 2004,45(9):1064-1070
    Hess G, Donoghue JP Long-term depression of horizontal connections in ratmotor cortex. Eur JNeurosci. 1996, 8(4):658-665
    Hodaie M, Wennberg RA, Dostrovsky JO, et al. Chronic anterior thalamusstimulation for intractable epilepsy. Epilepsia. 2002, 43(6):603-608
    Hsieh CL, Chang CH, Chiang SY, et al. Anticonvulsive and free radical scavenging activities of vanillyl alcohol in ferric chloride-induced epileptic seizures in Sprague-Dawley rats. Life Sci. 2000, 67(10): 1185-1195
    Janszky J, Hoppe M, Behne F, et al. Vagus nerve stimulation: predictors ofseizure freedom. J Neurol Neurosurg Psychiatry. 2005, 76(3):384-389
     Jennum P, Friberg L, Fuglsang-Frederiksen A, et al. Speech localization usingrepetitive transcranial magnetic stimulation. Neurology. 1994, 44(2):269-273
    Jun Lian, Marom Bikson, Christopher Sciortino, et al. Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol. 2003, 547(2):427-434
    Kabuto H, Yokoi I, Habu H, et al. Reduction in nitric oxide synthase activity with development of an epileptogenic focus induced by ferric chloride in the rat brain.Epilepsy Res. 1996, 25(2):65-68
    Karhunen H, Jolkkonen J, Sivenius J, et al. Epileptogenesis after experimentalfocal cerebral ischemia. Neurochem Res. 2005, 30(12): 1529-1542
    Karpiak SE, Mahadik SP, Graf L, et al. An immunological model of epilepsy:seizures induced by antibodies to GM1 ganglioside. Epilepsia. 1981,22(2):189-196
    Keck ME, Welt T, Muller M, et al.Repetitive transcranial magnetic stimulation increases the relerse of dopamine in the mesolimbic and mesostriatalsystem. Neuropharmacology. 2002, 43(1): 101-109
    Kerrigan JF, Litt B, Fisher RS, et al. Electrical stimulation of the anterior nucleusof the thalamus for the treatment of intractable epilepsy. Epilepsia. 2004, 45(4):346-354
    Kinoshita M, Ikeda A, Matsuhashi M, et al. Electric cortical stimulation suppresses epileptic and background activities in neocortical epilepsy and mesial temporal lobe epilepsy. Clin Neurophysiol. 2005a, 116(6):1291-1299
    Kinoshita M, Ikeda A, Begum T, et al. Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy-a pilot study. Seizure. 2005b, 14(6):387-392
    Koo B. EEG changes with vagus nerve stimulation. J Clin Neurophysiol. 2001,18(5):434-441
    Krahl SE, Clark KB, Smith DC, et al. Locus coeruleus lesions suppress theseizure-attenuating effects of vagus nerve stimulation. Epilepsia. 1998,39(7):709-714
    Kuba R, Guzaninova M, Brazdil M, et al. Effect of vagal nerve stimulation oninterictal epileptiform discharges: a scalp EEG study. Epilepsia. 2002,43(10):1181-1188
    Kucukkaya B, Aker R, Yuksel M, et al. Low dose MK-801 protects againstiron-induced oxidative changes in a rat model of focal epilepsy. Brain Res. 1998,788(1-2):133-136
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med.2000, 342(5):314-319
    La Grutta V, Sabatino M, Gravante G, et al. A study of caudate inhibition on an epileptic focus in the cat hippocampus. Arch Int Physiol Biochim. 1988,96(2): 113-120
    Lange SC, Neafsey EJ, Wyler AR. Neuronal activity in chronic ferric chloride epileptic foci in cats and monkey. Epilepsia. 1980, 21(3):251-254
    Lhatoo SD, Sander JW. The epidemiology of epilepsy and learning disability.Epilepsia. 2001, 42 Suppl 1:6-9
     Limousin P, Martinez-Torres I. Deep brain stimulation for Parkinson's disease.Neurotherapeutics. 2008, 5(2):309-319
    LittB, Echauz J. Prediction of epileptic seizures. Lancet Neurol 2002, l(l):22-30 Lopez-Meraz ML, Neri-Bazan L, Rocha L. Low frequency stimulation modifiesreceptor binding in rat brain. Epilepsy Res. 2004, 59(2-3):95-105
     Loscher W. Animal models of intractable epilepsy. Prog Neurobiol. 1997,53(2):239-258
    Loscher W. Current status and future directions in the pharmacotherapy ofepilepsy. Trends Pharmacol Sci. 2002, 23(3): 113-118
    Loscher W, Schmidt D. New horizons in the development of antiepileptic drugs:the search for new targets. Epilepsy Res. 2004, 60(2-3):77-159
    Macdonell RA, King MA, Newton MR, et al. Prolonged cortical silent periodafter transcranial magnetic stimulation in generalized epilepsy. Neurology.2001, 57(4):706-708
    Marrosu F, Serra A, Maleci A, et al. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistantpartial epilepsy. Epilepsy Res. 2003, 55(l-2):59-70
    McDonagh J, Stephen LJ, Dolan FM, et al. Peripheral retinal dysfunction inpatients taking vigabatrin. Neurology. 2003, 61(12): 1690-1694
     McLachlan RS. Vagus nerve stimulation for intractable epilepsy: a review. J ClinNeurophysiol. 1997, 14(5):358-368
    Menkes DL, Gruenthal M. Slow-frequency repetitive transcranial magneticstimulation in a patient with focal cortical dysplasia. Epilepsia. 2000,41(2):240-242
    Meyerhoff JL, Lee JK, Rittase BW, et al. Lipoic acid pretreatment attenuatesferric chloride-induced seizures in the rat. Brain Res. 2004, 1016(2): 139-144
    Misawa S, Kuwabara S, Shibuya K, et al. Low-frequency transcranial magneticstimulation for epilepsia partialis continua due to cortical dysplasia. JNeurol Sci. 2005, 234(l-2):37-39
    Mogilner AY, Rezai AR. Brain stimulation: history, current clinical application,and future prospects. Acta Neurochir Suppl. 2003, 87:115-120
    Mori A, Yokoi I, Noda Y, et al. Natural antioxidants may prevent posttraumatic epilepsy: a proposal based on experimental animal studies. Acta Med Okayama. 2004, 58(3):111-118
    Moriwaki A, Hattori Y, Hayashi Y, et al. The role of the corpus callosum in interhemispheric propagation of iron-induced epileptogenic activity in the rat.Acta Med Okayama. 1985, 39(5):421-424
    Moriwaki A, Hattori Y, Nishida N, et al. Electrocorticographic characterization of chronic iron-induced epilepsy in rats. Neurosci Lett. 1990, 110(l-2):72-76 Mormann F, Kreuz T, Andrzejak RG, et al. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 2003, 53(3): 173-185
    Morrell F. Microelectrode studies in chronic epileptic foci. Epilepsia. 1961,2:81-88
    Morrell F. Cellular pathophysiology of focal epilepsy. Epilepsia. 1969,10(4):495-505
    Morrell F, Whisler WW, Bleck TP. Multiple subpial transection: a new approachto the surgical treatment of focal epilepsy. J Neurosurg. 1989,70(2):231-239
     Nakagawa Y, Mishima T, Murashima YL, et al. Increased expression ofmitochondrial respiratory enzymes in the brain of epilepsy-prone, naiveEL mice. Brain Res Mol Brain Res. 2002, 101(l-2):59-61
    Narayanan JT, Watts R, Haddad N, et al. Cerebral activation during vagus nervestimulation: a functional MR study. Epilepsia. 2002, 43(12): 1509-1514
    Ng MS, Hwang P, Burnham WM. Afterdischarge threshold reduction in thekindling model of epilepsy. Epilepsy Res. 2006, 72(2-3):97-101
    Nylen K, Likhodii SS, Hum KM, et al. A ketogenic diet and diallyl sulfide do notelevate afterdischarge thresholds in adult kindled rats. Epilepsy Res. 2006,71(1):23-31
    Pascual-Leone A, Rubio B, Pallardo F, et al. Rapid-rate transcranial magneticstimulation of left dorsolateral prefrontal cortex in drug-resistantdepression. Lancet. 1996, 348(9022):233-237
    Racine, R. Modification of seizure activity by electrical stimulation. II. Motorseizure. Electroencephalogr Clin Neurophysiol. 1972, 32(3):281-294
    Rasche D, Ruppolt M, Stippich C, et al. Motor cortex stimulation for long-termrelief of chronic neuropathic pain: a 10 year experience. Pain. 2006,121(1-2):43-52
    Romanelli P, Anschel DJ. Radiosurgery for epilepsy. Lancet Neurol. 2006,5(7):613-620
    Rosen AD, Frumin NV. Focal epileptogenesis after intracortical hemoglobininjection. Exp Neurol. 1979, 66(2):277-284
    Saberi M, Pourgholami MH. Estradiol alters afterdischarge threshold andacquisition of amygdala kindled seizures in male rats. Neurosci Lett. 2003,340(1):41-44
    Samuelsson C, Kumlien E, Flink R, et al. Decreased cortical levels of astrocyticglutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy.Neurosci Lett. 2000, 289(3): 185-188
    Sandyk R. Resolution of dysarthria in multiple sclerosis by treatment with weakelectromagnetic fields. Int J Neurosci. 1995, 83(l-2):81-92
    Schachter SC. Vagus nerve stimulation therapy summary: five years after FDAapproval. Neurology. 2002, 59(6 Suppl 4):SI5-20
    Schouten A, Oostrom KJ, Pestman WR, et al. Learning and memory of schoolchildren with epilepsy: a prospective controlled longitudinal study. DevMed Child Neurol. 2002, 44(12):803-811
    Schrader LM, Stern JM, Wilson CL, et al. Low frequency electrical stimulationthrough subdural electrodes in a case of refractory status epilepticus. ClinNeurophysiol. 2006, 117(4):781-788
    Schutter DJ, van Honk J, d'Alfonso AA, et al. High frequency repetitivetranscranial magnetic over the medial cerebellum induces a shift in theprefrontal electroencephalography gamma spectrum: a pilot study inhumans. Neurosci Lett. 2003, 336(2):73-76
    Shetty AK, Turner DA. Development of long-distance efferent projections fromfetal hippocampal grafts depends upon pathway specificity and graftlocation in kainate-lesioned adult hippocampus. Neuroscience. 1997,76(4):1205-1219
    Siebner HR, Mentschel C, Auer C, et al. Repetitive transcranial magneticstimulation has a beneficial effect on bradykinesia in Parkinson's disease.Neuroreport. 1999, 10(3):589-594
    Sieroh A, Brus R, Szkilnik R, et al. Influence of alternating low frequencymagnetic fields on reactivity of central dopamine receptors in neonatal6-hydroxydopamine treated rats. Bioelectromagnetics. 2001,22(7):479-486
    Solger J, Heinemann U, Behr J. Electrical and chemical long-term depression donot attenuate low-Mg2+-induced epileptiform activity in the entorhinalcortex. Epilepsia. 2005, 46(4):509-516
    Sperk G. Kainic acid seizures in the rat. Prog Neurobiol. 1994, 42(1): 1-32
    Srikijvilaikul T, Najm I, Foldvary-Schaefer N, et al. Failure of gamma kniferadiosurgery for mesial temporal lobe epilepsy: report of five cases.Neurosurgery. 2004, 54(6): 1395-1402
    Srivastava AK, Gupta SK, Jain S, et al. Effect of melatonin and phenytoin on an intracortical ferric chloride model of posttraumatic seizures in rats. MethodsFind Exp Clin Pharmacol. 2002, 24(3): 145-149
    Suzer T, Coskun E, Demir S, et al. Lipid peroxidation and glutathione levels after cortical injection of ferric chloride in rats: effect of trimetazidine and deferoxamine. Res Exp Med (Berl). 2000, 199(4): 223-229 Tassinari CA, Cincotta M, Zaccara G, et al. Transcranial magnetic stimulation andepilepsy. ClinNeurophysiol. 2003, 114(5):777-798
    Taylor RB, Wennberg RA, Lozano AM, et al. Central nystagmus induced bydeep-brain stimulation for epilepsy. Epilepsia. 2000Dec;41(12):1637-1641
    Tergau F, Naumann U, Paulus W, et al. Low-frequency repetitive transcranialmagnetic stimulation improves intractable epilepsy. Lancet. 1999, 353(9171):2209
    Theodore WH, Hunter K, Chen R, et al. Transcranial magnetic stimulation for thetreatment of seizures: a controlled study. Neurology. 2002, 59(4):560-562
    Theodore WH, Fisher RS. Brain stimulation for epilepsy. Lancet Neurol. 2004,
    Todorova MT, Tandon P, Madore RA, et al. The ketogenic diet inhibits epileptogenesis in EL mice: a genetic model for idiopathic epilepsy. Epilepsia. 2000, 41(8):933-940
    Triggs WJ, Willmore LJ. In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem. 1984, 42(4):976-980
    Ueda Y, Willmore LJ, Triggs WJ. Amygdalar injection of FeCl3 causes spontaneous recurrent seizures. Exp Neurol. 1998, 153(1): 123-127
    Ueda Y, Willmore LJ. Hippocampal gamma-aminobutyric acid transporter alterations following focal epileptogenesis induced in rat amygdala. Brain ResBull. 2000, 52(5):357-361
    Ueda Y, Doi T, Tokumaru J, et al. Effect of zonisamide on molecular regulation of glutamate and GABA transporter proteins during epileptogenesis in rats with hippocampal seizures. Brain Res Mol Brain Res. 2003, 116(1-2): 1-6
    Uthman BM, Wilder BJ, Penry JK, et al. Treatment of epilepsy by stimulation ofthe vagus nerve. Neurology. 1993, 43(7): 1338-1345
    Van Laere K, Vonck K, Boon P, et al. Vagus nerve stimulation in refractoryepilepsy: SPECT activation study. JNucl Med. 2000, 41(7): 1145-1154
    Velasco AL, Velasco M, Velasco F, et al. Subacute and chronic electricalstimulation of the hippocampus on intractable temporal lobe seizures:preliminary report. Arch Med Res. 2000, 31(3):316-328
    Velasco F, Velasco M, Ogarrio C, et al. Electrical stimulation of the centromedianthalamic nucleus in the treatment of convulsive seizures: a preliminaryreport. Epilepsia. 1987, 28(4):421-430
    Velasco F, Velasco M, Jimenez F, et al. Predictors in the treatment ofdifficult-to-control seizures by electrical stimulation of the centromedianthalamic nucleus. Neurosurgery. 2000, 47(2):295-304
     Velasco M, Velasco F, Velasco AL, et al. Acute and chronic electrical stimulationof the centromedian thalamic nucleus: modulation of reticulo-corticalsystems and predictor factors for generalized seizure control. Arch MedRes. 2000a, 31(3):304-315
    Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of thehippocampus blocks intractable temporal lobe seizures and paroxysmalEEG activities. Epilepsia. 2000b, 41(2): 158-169
    Velisek L, Veliskova J, Moshe SL. Electrical stimulation of substantia nigra parsreticulata is anticonvulsant in adult and young male rats. Exp Neurol.2002, 173(1):145-152
    Velisek L, Veliskova J, Stanton PK. Low-frequency stimulation of the kindlingfocus delays basolateral amygdala kindling in immature rats. NeurosciLett. 2002, 326(l):61-63
    Vercueil L, Benazzouz A, Deransart C, et al. High-frequency stimulation of thesubthalamic nucleus suppresses absence seizures in the rat: comparisonwith neurotoxic lesions. Epilepsy Res. 1998, 31(l):39-46
    Vonck K, Boon P, Van Laere K, et al. Acute single photon emission computedtomographic study of vagus nerve stimulation in refractory epilepsy.Epilepsia. 2000, 41(5):601-609
    Vonck K, Boon P, Achten E, et al. Long-term amygdalohippocampal stimulationfor refractory temporal lobe epilepsy. Ann Neurol. 2002, 52(5):556-565
    Wagner JP, Corcoran ME. Conditioning of interictal behaviours, but not ictalbehaviours, seizures or after discharge threshold, by kindling of theamygdala in rats. Eur J Neurosci. 2008, 27(1): 169-176
    Weiss SR, Li XL, Rosen JB, et al. Quenching: inhibition of development andexpression of amygdala kindled seizures with low frequency stimulation.Neuroreport. 1995, 6(16):2171-2176
    Weiss SR, Eidsath A, Li XL, et al. Quenching revisited: low level direct currentinhibits amygdala-kindled seizures. Exp Neurol. 1998, 154(1): 185-192
    Willmore LJ, Sypert GW, Munson JV, et al. Chronic focal epileptiformdischarges induced by injection of iron into rat and cat cortex. Science. 1978a,200(4349):1501-1503
    Willmore LJ, Hurd RW, Sypert GW. Epileptiform activity initiated by pialiontophoresis of ferrous and ferric chloride on rat cerebral cortex. Brain Res.1978b, 152(2):406-410
    Willmore LJ, Sypert GW, Munson JB. Recurrent seizures induced by corticaliron injection: a model of posttraumatic epilepsy. Ann Neurol. 1978c,4(4):329-36
    Willmore LJ, Ballinger WE Jr, Boggs W, et al. Dendritic alterations in ratisocortex within an iron-induced chronic epileptic focus. Neurosurgery. 1980,7(2): 142-146
     Willmore LJ, Rubin JJ. Antiperoxidant pretreatment and iron-inducedepileptiform discharges in the rat: EEG and histopathologic studies. Neurology.1981, 31(l):63-69
    Willmore LJ, Rubin JJ. Formation of malonaldehyde and focal brain edemainduced by subpial injection of FeCl2 into rat isocortex. Brain Res. 1982,246(1):113-119
    Willmore LJ, Hiramatsu M, Kochi H, et al. Formation of superoxide radicalsafter FeCl3 injection into rat isocortex. Brain Res. 1983, 277(2):393-396
    Willmore LJ, Triggs WJ. Effect of phenytoin and corticosteroids on seizures andlipid peroxidation in experimental posttraumatic epilepsy. J Neurosurg. 1984,60(3):467-472
    Yamada Y, Nakano K. Increased expression of mitochondrial respiratory enzymesin the brain of activated epilepsy-prone El mice. Brain Res Mol Brain Res.1999, 73(1-2):186-188
    Yamamoto J, Ikeda A, Satow T, et al. Low-frequency electric cortical stimulationhas an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy.Epilepsia. 2002, 43(5):491-495
    Yamamoto N, Kabuto H, Matsumoto S, et al. alpha-Tocopheryl-L-ascorbate-2-O-phosphate diester, a hydroxyl radical scavenger, prevents the occurrence of epileptic foci in a rat model of post-traumatic epilepsy. Pathophysiology. 2002, 8(3):205-214
    Yao Y, Sun S, Kong Q, et al. 7beta-hydroxycholesterol reduces the extent of reactive gliosis caused by iron deposition in the hippocampus but does not attenuate the iron-induced seizures in rats. Neuroscience. 2006, 138(4): 1097-1103
    Yokoi I,Toma J,Liu J,et al.Adenosines scavenged hydroxyl radicals and prevented posttraumatic epilepsy.Free Radic Biol Med.1995,19(4):473-479
    Zaman V Shetty AK.Fetal hippocampal CA3 cell grafts transplanted to lesioned CA3 region of the adult hippocampus exhibit long-term survival in a rat model oftemporal lobe epilepsy.Neurobiol Dis.2001,8(6):942-952
    郭明霞,王明时,王学民,等.脉冲磁场对大鼠记忆能力和海马神经递质的 影响.中国生物医学工程学报.2002,21(2):179-181
    江长层,王振刚,丁红卫,等.稳态磁场对小鼠脑突触小体膜的影响.北京 医科大学学报.1994,26(2):142-143
    苗玲,沈沸,苏敏,等.旋磁场对癫痫大鼠模型的影响.上海第二医科大学 学报.2005,25(6):565-568
    宋毅军,田心.经颅磁刺激对癫痫病灶脑电相关维数的影响.生物物理学报. 2003,19(4):383-387
    宋毅军,田心.经颅磁刺激对颞叶癫痫大鼠海马代谢功能的影响.中华物理 医学与康复杂志.2005,27(2):75-78
    吴立文,卢强.癫痫患者的合理停药.临床药物治疗杂志.2005,3(3):27-30
    吴秀枝,牟永青,曾庆杏,等.硫酸亚铁制作家兔癫痫模型的病灶光镜和透 射电镜研究.卒中与神经疾病.1996,3(1):13-6
    徐淑梅,郝洪谦,郑开俊,等.癫痫大发作的一种动物模型.天津医科大学 学报.1995,1(1):54-55
    章军建,张锦华.迷走神经刺激对戊四氮致痫大鼠丘脑网状核NMDARl mRNA和GABAARRal mRNA的影响.生物医学工程学杂志.2002,19 (4):566-568
    郑乃智,阮旭中,李震中,等.青霉素、戊四氮、美解眠癫痫模型的比较.临 床脑电学杂志.1997,6(2):101-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700