运动对后肢悬吊大鼠骨骼肌MyoD、myogenin、MEF2mRNA表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     本研究建立模拟失重模型——后肢悬吊,以期研究后肢悬吊引起骨骼肌萎缩现象的发生及其分子机理;同时建立耐力训练模型,探讨运动引起MyoD、myogenin、MEF2mRNA的变化在抗肌萎缩中的作用。
     研究方法:
     本研究采用四周龄健康雄性SD大鼠28只,平均体重为134.02g,随机分为对照组(C,n=7)、跑台组(E,n=7)、失重组(U,n=7)和跑台失重组(EU,n=7)。跑台组前3天在跑步机上先进行适应性训练,每天半小时;以后跑步机按20m/min、坡度为5°设定,每天训练一个小时。每周训练六天,周末休息,共训练8周。实验过程中,每周称体重一次。失重组前8周不做任何特殊处理,第9、10周悬吊。跑台失重组前8周按跑台组的方案进行训练,第9、10周悬吊。8周跑台训练后取血液检测血乳酸:跑台组和对照组大鼠处死,取腓肠肌以备测试。悬吊2周后,跑台失重组和失重组处死,取大鼠腓肠肌,用HE染色测试横截面积,用RT-PCR方法测试腓肠肌MEF2mRNA、MyoDmRNA和myogeninmRNA表达水平。
     研究结果:
     1、与对照组相比,跑台组体重下降,两组大鼠体重有极显著性差异(P<0.01)。
     2、大鼠后肢悬吊2周后,与失重组相比,跑台失重组大鼠体重稍微增加,而跑台失重组大鼠腓肠肌湿重和横截面积下降的幅度均小于失重组大鼠腓肠肌湿重和横截面积下降的幅度,且有显著性差异(P<0.05)
     3、跑台训练8周后,与对照组相比,跑台组的MEF2mRNA、MyoD和myogeninmRNA表达量都有所上升,且有显著性差异(P<0.05)
     结论:
     1、与对照组比较,失重组和跑台失重组两组的大鼠体重、腓肠肌湿重和横截面积均有显著的下降,说明后肢悬吊可以引起大鼠体重、骨骼肌重量和横截面积的减少,提示本实验中后肢悬吊失重模型的建立是成功的。
     2、与失重组相比,跑台失重组的大鼠悬吊前后腓肠肌湿重和横截面积下降的幅度较小,说明跑台运动对预防失重后肌萎缩有一定效果。
     3、8周的跑台训练后,与对照组相比,跑台组大鼠腓肠肌的MyoD、yogenin和MEF2mRNA表达量均有所上升,且有显著性差异(P<0.05)。大鼠后肢悬吊两周前后,失重组和跑台失重组两组的MyoD、myogenin和MEF2mRNA表达量变化也有差别,跑台失重组悬吊前后MyoD、myogenin和MEF2mRNA表达量下降的幅度,小于失重组MyoD、myogenin和MEF2mRNA表达量下降的幅度,有显著性差异(P<0.05)。而且MyoD和MEF2mRNA表达趋势相似,说明这两个因子MyoD、MEF2在对抗肌萎缩机制中起正协同作用。这三个因子在失重前后表达量的变化也说明它们可以作为研究肌萎缩的分子生物学指标。
Objects:
     The model of weightlessness was simulated in this study-hindlimb suspension in order to study the phenomenon of skeletal muscle atrophy caused by hindlimb suspension and molecular mechanism of the occurrence; while establishing endurance training model of exercise-induced MyoD, myogenin, MEF2mRNA change in the role of dystrophin.
     Methods:
     The experiment use 28 4-week-old male Sprague-Dawley rats, weighing134.02g.They were randomly divided into 4 groups, control group (C, n=7); treadmill group (E group, n =7); suspension group (U, n=7); treadmill suspension group (EU, n=7). Treadmill Group: the first 3 days, adaptive training, half an hour a day, and then 1.2KM/h, gradient of 5 Every Monday to Saturday, a total of six days, an hour a day, breaks at weekend, trained a total of 8 weeks. Weighed once every week. suspension group:without any special treatment for 8 weeks, suspension for the 9,10-week.Treadmill suspension group: programmed by treadmill training group, then suspension for the 9,10-week.After 8-week treadmill training, taking blood tests of blood lactic acid; suspended after 2 weeks, HE for measuring cross-sectional area, Using RT-PCR method for measuring expression of MEF2mRNA, MyoD, myogeninmRNA.
     Results:
     1. Compared with the control group, the body weight of treadmill group reduced, there was significant difference in body weight of two groups of rats (P<0.05).
     2. Hindlimb suspended for 2 weeks, compared with the suspension group, the decrease margin of gastrocnemius muscle wet weight and cross sectional area of treadmill suspension group is smaller than that in suspension group, and there was significant difference (P<0.05).
     3. After 8 weeks of treadmill training, compared with the control group, the expression of MEF2mRNA, MyoD and myogeninmRNA have risen, and there was significant difference (P<0.05).
     Conclusions:
     1. Compared with the control group, the weight, gastrocnemius muscle wet weight and cross-sectional area decrease significantly, indicating hindlimb suspension can cause reduction in body weight, muscle weight and cross-sectional area, suggesting that the model of hindlimb suspension is successful.
     2. Compared with the suspension group, body weight of treadmill suspension group increases slightly,but the decrease margin of gastrocnemius muscle wet weight and cross sectional area of treadmill suspension group is smaller, indicating treadmill exercise on prevention of muscle atrophy after suspension has some effect.
     3. After 8 weeks treadmill training, compared with the control group, the expression of gastrocnemius MyoD, myogenin and MEF2mRNA increase, and there was significant difference (P<0.05). After two weeks of hindlimb suspension, the changes of expression of MyoD, myogenin and MEF2mRNA of two groups have also a big difference, the change of expression of MyoD, myogenin and MEF2mRNA of treadmill suspension group is less than suspension group, there was significant difference (P<0.05). And the trend of expression of MyoD and MEF2mRNA is similar, indicating the mechanism of these two factors in the fight against muscle atrophy is coordinated. The change of expression of these three factors before and after suspension also shows that they can be used as the molecular biology of muscle atrophy.
引文
[1]Spangenburg EE.et al.Am J Physiol Regul Integr Comp Physiol,2001,280(4):1256-1260
    [2]Fitts RH,et al.J Appl physiololgy,2000,(2):823-839
    [3]李伟刚,杨芬等.肌管细化是失重性肌萎缩结构和功能变化的基础[J].动物学报,2007,53(2):339-345
    [4]吴苏娣,樊小力.模拟失重对大鼠比目鱼肌肌梭超微结构的影响[J].航天医学与医学工程,2002,15(1):32-35
    [5]周继斌,邢东琦.模拟失重影响大鼠比目鱼肌梭内外肌纤维肌球蛋白重链的表达[J].中山医科大学学报,2002,23(1):33-36
    [6]Cameron Blewett,et al.J Appl Physiol,1993,74(5):2057-2066
    [7]Anderson J,et al.Exp Biol.1999,202(19):2701-2707
    [8]Leterme D,et al.Pflugers Arch,1994,426(122):155-601
    [9]Vernikos J.Human physiology in space.BioEssays,1996,18:1029-1037.
    [10]Fitts RH,Metzger JM,Riley DA,et al.Models of disuse:a comparison of hindlimb suspension and immobilization[J].J Appl Physiol,1986,60:1946-1953.
    [11]Barger PM, Browning A C, Kelly D P. P38 mitogen-activated protein kinase activates peroxisome proliferators-activated receptor alpha[J].BiolChem,2001,276 (48):44495-44501.
    [12]Tang HY.The improving muscle training on idiopathic facial palsy[J]. Zhongguo Yundong Yixue Zazhi,2002,6(5):643
    [13]郭绮云,葛兆希.运动疗法加综合治疗周围性面神经麻痹的疗效观察[J].中国临床康复,2002,6(5):686-687
    [14]Naito H.Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats[J]. Appl Physiol 2000,88:359-363
    [15]Naya FJ,Black BL, Wu Hd. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor[J]. Nature Med,2002,8(11):1303—1309.
    [16]Molkenfin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factor[J]. Proc NaⅡAcad Sci USA,1996,93(18):9366—9373.
    [17]张进,余强,冠心病易感基因MEF2A的研究进展[J].医学综述,2005,11(8):694-695.
    [18]李婧,陈汉想,杨钧国等,冠心病新致病基因MEF2A第一、第八外显子突变的检测[J].中国优生与遗传杂志,2006,14(1):19-21.
    [19]Nigel J B. Molecules in focus myocyte enhancer factor 2(MEF2) [J]. Biochem Cell Biol,1997, 29(12):1467-1470.
    [20]Duan H, Nguyen HT. Distinct posttranscriptional mechanisms regulate the activity of the Zn finger factor lame duck during Drosophila myogenesis[J].Mol. Cell,2006:644-650.
    [21]Sean L. Exercise and Myocyte Enhancer Factor 2 Regulation in Human Skeletal Muscle[J]. Diabetes, 2004(53):1208-1214.
    [22]Barker PW, Tanaka KK, Klitgord N. Adult myogenesis in Drosophila melanogaster can proceed independently of myocyte enhancer factor-2[J]. Genetics,2005,11:1595~1606.
    [23]Olson E N, Perry M, Schulz R A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors[J]. Dev Biol,1995(172):2-14.
    [24]Lilly B, Zhao B, Ranganayakulu G, et al. Require2 ment of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila[J]. Science,1995(267):688-693.
    [25]Edmondson D G, Olson E N. A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program[J].Genes Dev,1989,3:628-640.
    [26]Lin Q, SchwarzJ, Bucnan C, et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C[J].Science,1997,276:1404-1407.
    [27]MolkencH J D, Blackb L, Martin J F, et al. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins[J]. Cell,1995,83:1125-1136.
    [28]姜运良,李宁,吴常信.肌肉生成的分子生物学研究进展综述[J].1999,7(2):201-204.
    [29]Naidu P S, Ludolph D C. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis[J]. Mol Cell Biol.1995,15(5):2707-2718.
    [30]Sean L. Mcgee and Mark Hargereaves. Exercise and Myocyte Enhancer Factor 2 Regulation in Human Skeletal Muscle[J]. Diabetes,2004(53):1208-1214.
    [31]Thai MV, GuruswamyS, Cao KT, et al. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes[J]. Biol Chem,1998,273:14285-14292.
    [32]Mei YU, Eva Blomstrand, Alexander V, etal. Marathon running increases ERK1/2 and p38MAP kinase signalling to downstream targets in human skeletal muscle Journal of Physiology[J],2001, 536:273-282.
    [33]Silva JLT, Giannocco G, Furuya DT, etal. NF-kappa B, MEF2A, MEF2D and HIF1-a involvement on insulin-and contractioninduced regulation of GLUT4 gene expression in soleus muscle[J]. Mol Cell Endocrinol,2005,240:82-93.
    [34]HUDMON A, SCHULMAN H. Neuronal Ca2+/calmodulin-dependent protein kinase Ⅱ:the role of structure and autoregulation in cellular function[J]. Ann Rev Biochem,2002,71:473-510.
    [35]Sean L, Mark Hargreaves. Exercise and skeletal muscle glucose transporter 4 expression:molecular mechanism[J]. Clinical and Experimental Pharmacology and Physiology,2006,33:395-399.
    [36]McGee SL, Howlett KF, Starkie RL, et al. Exercise increases nuclear AMPK in human skeletal muscle[J]. Diabetes 2003; 52:926-928.
    [37]Rescan PY. Regulation and functions of myogenic regulatory factors in lower vertebrates[J]. Biochem. Physiol,2001:1147-1153.
    [38]Baker PW, Tanaka KK, Klitgord N. Adult myogenesis in Drosophila melanogaster can proceed independently of myocyte enhancer factor-2[J]. Genetics,2005,11:1595~1606
    [39]Olson E N, Perry M, Schulz R A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors[J]. Dev Biol,1995,172:2-14.
    [40]Ranganayakulu G, Zhao B, Dokodis A, et al. A series of mutations in the D- MEF2 transcription factor reveals multiple functions in larval and adult myogenesis in Drosohpila[J]. Dev Biol,1995,171:169-181.
    [41]Liliy B, Zhao B, Ranganayakulu G, et al. Require2 ment of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila[J]. Science,1995,267:688-693.
    [42]Allen DL, Leinwand LA. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the Ⅱa myosin heavy chain promoter[J].Biol Chem 2002,277:45323-45330.
    [43]Miyazaki M, Hitomi Y, Kizaki T, et al. Calcineurin-mediated slow-type fiber expression and growth in reloading condition[J]. Med Sci Sports Exerc,2006,38(6):1065-1072.
    [44]Eva R. Chin, Eric N. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type[J]. Genes and Dev.1998,12:2499-2509.
    [45]Sean L. McGee. Exercise and Myocyte Enhancer Factor 2 Regulation in Human Skeletal Muscle[J]. Diabetes,2004(53):1208-1214.
    [46]Nigel J B. Molecules in focus myocyte enhancer factor 2(MEF2) [J]. Biochem Cell Biol,1997, 29(12):1467-1470.
    [47]Lilly B, Galewsky S, Fickett JW.Quantitative discrimination of MEF2 sites[J]. Mol Cell Biol.1996, 16(1):437-441.
    [48]张文炜,徐列明.转录因子MEF2对多种信号通路的调节及其生物学作用[J].中国生物化学与分子生物学报,2004,20(4):423-427.
    [49]Duan H, Nguyen HT. Distinct posttranscriptional mechanisms regulate the activity of the Zn finger factor lame duck during Drosophila myogenesis[J].Mol. Cell,2006:644-650.
    [50]Lin Q, Schwarz J, Bucana C, Olson E N. Control of mouse car—diac morphogenesis and myogenesis by tranfcription factorMEF2C[J]. Science,1997,276(531 7):1404-1407.
    [51]Spicer D B, Rhee J, Cheung W L, Lassar A B. Inhibition of my—ogenic bHLH and MEF2 transcription factors by the bHLHprotein Twist[J]. Science,1996,272(5267):1476-1480.
    [52]Cripps R M, Black B L, Zhao B, Lien C L, Schulz R A, Olson EN. The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Tw ist during Drosophila m yogen—esis[J]. Genes Dev,1998,12(3):422-434.
    [53]Gajewski K, Kim Y, Lee Y M, Olson E N, Schulz R A. D—MEF2 is a target for Tinman activation during Drosophila heart developmen[J]t. EMBOJ,1997,16(3):515-522.
    [54]Siu PM,Donley DA,Bryner RW,Always SE.Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training[J]. Appl Physiol,2004,97(1):277-285
    [55]Suhramanian S V, Nadal—Ginard B. Early expression of the different isoforms of the myocyte enhancer factor—2(MEF2)protein in myogenic as well as non——myogenic cell lineagesduring mouse embryogenesis[J]. Mech Dev,1996,57(1):103-112.
    [56]Jeffery D. Molkentin, Li Li, Eric N. Olson. Phosphorylation ofthe M ADS— Box Transcription Factor M EF2C Enhances ItsDNA Binding Activity [J]. J Biol Chem,1996,271:17199-17204.
    [57]Lu J, McKinsey T A, Nicol R L, Olson E N. signal—dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases[J]. Proc Natl Acad Sci U S A,2000,97(8):4070-4075.
    [58]Tamir Y, Bengal E. PhOsphOin Ositide 3—kinase induces the transcriptional activity of M EF2 proteins during muscle differ—entiation[J]. J Biol Chem,2000,275(44):34424-34432.
    [59]Quinn z A, Yang C C, Wrana J L, McDermott J C. Smad proteins function as comodulators for M EF2 transcriptional regulato——ryproteins[J]. Nucleic Acids Res,2001,29(3):732-742.
    [60]Edmondson D G, Olson E N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program[J]. Genes Dev,1989,3:628-640.
    [61]Lin N Q, Schwarzj, Bucana C, et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C[J]. Science,1997,276:1404-1407.
    [62]Molkentin J D, Blackb L, Martin J F, et al. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins[J]. Cell,1995,83:1125-1136.
    [63]姜运良,李宁,吴常信.肌肉生成的分子生物学研究进展综述[J].1999,7(2):201-204.
    [64]Naidu P S, Ludolph D C. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis[J]. Mol Cell Biol.1995,15 (5):2707-2718.
    [65]Liu ML, Olson AL, Edgington NP, Moyerowley WS, et al. Myocyte enhancer factor-2 (Mef2) binding-site is essential for C2C12 myotube-specific expression of the rat Glut4 muscle-adipose facilitative glucose-transporter gene[J]. Biol Chem 1994,269:28514-28521.
    [66]Thai MV, Guruswamy S, Cao KT, et al. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes[J]. Biol Chem,1998,273:14285-14292.
    [67]Mei YU, Eva Blomstrand, Alexander V, etal. Marathon running increases ERK1/2 and p38MAP kinase signalling to downstream targets in human skeletal muscle[J]. Journal of Physiology,2001, 536:273-282.
    [68]Silva JLT, Giannocco G, Furuya DT, etal. NF-kappa B, MEF2A, MEF2D and HIF1-a involvement on insulin-and contractioninduced regulation of GLUT4 gene expression in soleus muscle[J]. Mol Cell Endocrinol,2005,240:82-93.
    [69]Holmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise[J]. Med Sci Sports Exerc.2004,36(7):1202-1206.
    [70]程震龙,朱大海,张志谦.MEF2与肌肉发生[J].遗传,2002,24(5):581-585.
    [71]Nathalie Koulmann. And E-XavieR Bigard. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch.2006,18:1-15.
    [72]MartiN Fluck, M. Neal Waxham, Marc T. Hamilton, etal. Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running[J]. Appl Physiol 2000,88:352-358.
    [73]Adam J. Rose, Mark Hargreaves. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscl[J]e. Physiol,2003,1:303-309.
    [74]Adam J. Rose, Bente Kiens, Erik A. Ca2+-calmodulin dependent protein kinase expression and signalling in skeletal muscle during exercise[J]. Physiol.2006,3:889-903.
    [75]Herrmann TL, Morita CT, Lee K, et al. Calmodulin kinase Ⅱ regulates the maturation and antigen presentation of human dendritic cells[J]. J Leukoc Biol.2005,78(6):1397-1407.
    [76]Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity[J]. J Appl Physiol. 2005,99(2):414-423.
    [77]Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo[J]. Clin Invest,2000,105(10):1395-1406.
    [78]McKinsey T A, Zhang CL, Lu J et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation[J]. Nature,2000,408(6808):106-111.
    [79]Blaeser F, HO N, Prywes R, et al. Ca2+-dependent gene expression mediated by MEF2 transcription factors[J]. Biol Chem,2000,275(1):197-209.
    [80]James A. H. Smith, Malcolm CollinS. Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo[J]. Am J Physiol Endocrinol Metab,2007, 292:413-420.
    [81]Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase Ⅱ:the role of structure and autoregulation in cellular function[J]. Ann Rev Biochem,2002,71:473-510.
    [82]Kao HY, Verdel A, Tsai CC, et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. [J]. Biol.Chem.2001; 276:47496-507.
    [83]McKinsey T, Zhang C, Olson E. Signal-dependent nuclear export of a histone deactylase regulates muscle differentiation[J]. Nature 2000; 408:106-111.
    [84]Akimoto T, Ribar TJ, Williams RS, Yan Z. Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase Ⅳ-deficient mice[J].Physiol Cell Physiol.2004, 287(5):C1311-1319.
    [85]Sean L and Mark Hargreaves. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanism[J]. Clinical and Experimental Pharmacology and Physiology,2006,33:395-399.
    [86]McGee SL, Howlett KF, Starkie RL, et al. Exercise increases nuclear AMPK in human skeletal muscle[J]. Diabetes 2003; 52:926-928.
    [87]Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase Ⅱ activity in human skeletal muscle[J]. Physiol,2003,553:303-309.
    [88]Black B L, Olson E N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins[J]. Annu Rev Cell Dev Biol,1998,14:167-196.
    [89]Rao A, Luo C, Hogan P G. Transcription factors of the NFAT family:regulation and function[J]. Annu Rev Immunol,1997,15:707-747.
    [90]Sanna B, Brandt EB, Kaiser RA, et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo[J].Proc Natl Acad Sci U S A.2006,103(19):7327-7332.
    [91]Banzet S, Koulmann N, Simler N, et al. Fibre type specificity of IL-6 gene transcription during muscle contraction in rat:association with calcineurin activity[J]. Physiol 2005,566:839-847.
    [92]Allen DL, Leinwand LA. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the Ⅱa myosin heavy chain promoter[J]. Biol Chem 2002,277:45323-45330.
    [93]Miyazaki M, Hitomi Y, Kizaki T, et al. Calcineurin-mediated slow-type fiber expression and growth in reloading condition[J]. Med Sci Sports Exerc,2006,38(6):1065-1072.
    [94]Eva R. Chin, Eric N. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type[J]. Genes and Dev.1998,12:2499-2509.
    [95]孙亮,朱小泉,王沥等.核辅激活因子PGC-1表达的分子调控机制[J].中国生物化学与分子生物学报,2005,21(4):431-439.
    [96]Fan M, Rhee J, St-Pierre J, Handschin C, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1 alpha:Modulation by p38 mapk[J]. Genes Dev,2004, 18 (3):278-289.
    [97]Nutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK sensitive intersaction with a repressor [J]. Proc Natl Acad Sci USA,2001,98:9713-9718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700