氟对茶树幼苗生理生化的影响及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树是自然界中一类富集氟能力较强的植物,能从土壤、大气及水中吸收大量的氟,比一般植物高出2-3个数量级,但氟对茶树生理生化方面的影响的研究还较少。本试验以中国主栽品种福鼎大白茶为材料,研究了氟对茶树品质成分、超微结构、生理指标方面的影响;分析了抗氧化系统及抗坏血酸-谷胱甘肽循环在茶树耐氟性方面的作用及机理,解析了氟在亚细胞中的分布及与氟铝钙之间在茶树中的相互作用。本研究主要结果如下:
     1氟对茶叶品质成分的影响
     采用水培法,研究了不同浓度的氟对茶叶品质成分的影响。结果表明:随着氟浓度的增加,茶多酚、蛋白质、总儿茶素及其单体含量降低;氨基酸和可溶性糖含量显著升高;氨基酸组分大部分先升高后降低;金属元素Ca, K、Cu、Zn的含量显著下降,Mn的含量显著升高,Fe的含量先升高后降低,Mg先降后升,但各处理间差异不显著;各类香气成分的相对含量变化趋势不尽相同,但香气成分总量降低。以上结果表明氟对茶叶品质成分的影响与氟水平有关,随着氟浓度的升高,茶叶品质下降。
     2氟对茶树叶片光合特性及细胞超微结构的影响
     采用水培法,研究了不同浓度的氟对茶苗光合特性及细胞超微结构的影响,结果表明:在低氟浓度(<2 mg/L)范围,叶绿素含量和光合速率轻微增加,但无显著差异;超过2 mg/L,随氟浓度的增加,叶绿素含量和光合速率均显著下降。通过透射电镜发现,在低浓度氟(<4 mg/L)处理下细胞超微结构有轻微损伤,如质壁分离现象、类囊体轻微膨胀等,当氟浓度达到6 mg/L时,细胞超微结构遭到严重破坏,且随着氟浓度的增加破坏越来越重,如叶绿体降解、线粒体空化等。以上结果说明,氟对茶叶细胞超微结构的破坏导致了叶绿素含量和光合作用的下降。
     3氟对茶树体内活性氧代谢的影响
     3.1不同氟浓度对茶树活性氧代谢的影响
     采用水培法,茶苗在不同氟浓度下培养,发现低浓度氟(2 mg/L)处理的茶苗叶片中的MDA和H202含量与对照比均无显著差异,但随着氟浓度的升高,两者含量显著升高;总SOD及分型SOD活性显著下降,这对清除ROS是不利的,POD及CAT活性均是先升高后降低,最大值分别在6 mg/L和4 mg/L,脯氨酸含量显著增加,表明了抗氧化系统在低浓度范围内对氟胁迫作出了积极响应;在ASA-GSH循环系统中,随着氟浓度的增加,APX、GR、MDHAR均是先升高后降低,分别在4,2,2 mg/L达到最大值,之后活性下降,DHAR活性显著下降;抗氧化剂ASA先升高后降低,这些均表明了在低浓度氟处理下大部分的抗氧化酶及抗氧化物质对氟胁迫做出了抵御响应,保护茶树不受ROS的破坏,但随着氟浓度的增加,超出了这些酶及抗氧化物质的清除能力,导致过量的ROS积累。GSH显著下降,ASA/DHA和GSH/GSSG的比值均显著下降,也说明了茶苗遭到了过量积累的ROS的破坏。以上结果表明了,通过抗氧化系统及ASA-GSH循环只能在一定程度上(低氟范围)清除过量的ROS,随着氟浓度的升高,这两大系统的防御机能达到最大后下降。
     3.2茶树体内活性氧代谢对氟胁迫的动态响应
     采用水培法,一年生扦插苗在氟浓度为16 mg/L的条件下培养0,6,12,24,48,72 h(不加氟为对照),结果表明:随着处理时间的延长,MDA和H202与对照均无显著差异,SOD活性显著下降,POD、CAT、APX、GR等酶活性先升高后降低,在48h达到最大值;MDHAR、DHAR的活性及抗氧化剂ASA均显著高于对照,GSH与对照差别不明显;ASA/DHA及GSH/GSSG比值升高,这些结果均说明茶树在短期内完全可以通过抗氧化酶及ASA-GSH循环系统清除过多的ROS,从而保护茶树不受ROS伤害,这也正是茶树耐氟的机制之一。
     4钙减轻茶苗氟铝毒害的原因及茶树耐氟的机制
     不论是氟铝单独处理还是氟铝交互处理对茶树叶片及根尖超微结构的破坏均非常严重,而增施钙后明显减轻了叶片及根尖超微结构的破坏程度,说明钙能有效的减轻氟铝对茶树的伤害。铝处理和氟铝交互处理的茶苗根细胞壁中的果胶含量均高于对照,增施钙后即铝钙处理的茶苗根细胞壁中果胶含量比铝单独处理显著下降,氟铝钙处理的茶苗根细胞壁中果胶含量比氟铝交互处理显著下降。这说明钙减轻氟铝对茶树的伤害是因为钙改变了细胞壁的组分。
     通过不同比例的氟铝处理,结果表明在所设比例范围内铝均未减轻氟对茶苗的伤害程度,反而加重了对茶苗的伤害。因此,氟和铝以形成氟铝络合物而相互解毒的观点还有待于进一步的验证。在本试验中还发现,无论是大田茶园的福安大白、乌牛早品种还是营养液培养的福鼎大白品种,氟在亚细胞中的分布均是细胞壁(F1)>细胞核和叶绿体(F2)>含核糖体的可溶性组分(F4)>线粒体(F3)。大部分的氟(60%)被固定在细胞壁中,因此,细胞壁阻止了氟进一步进入细胞正是茶树耐氟的重要机制,结合大田中的茶树含有大量氟茶树并未出现中毒现象,而水溶液培养的茶苗却出现了中毒现象,这说明了茶树耐氟机制除与叶片细胞壁有关外,还与土壤中的某种成分关系密切。因此,氟-土壤中的某种成分-细胞壁正是茶树耐氟的模式。
Camellia sinensis (L.) is a kind of plant that can concentrate fluoride in nature; it can absorb a large amount of fluorine from the soil, air and water, higher than other plants of 2 to 3 orders-of-magnitude. However, research of fluoride on the physiological and biochemical of tea plant are less. In this experiment Chinese cultivars Fu ding da bai was used as the material to made a study of fluoride effect on the tea quality components, cell ultrastructure, physiological indicators of tea, analysed the the role and mechanism of antioxidant system and ascorbic acid-glutathione cycle in fluoride resistance of tea, analysis, investigated the fluoride distribution in sub-cellular and the effects on the interaction among fluoride, aluminum and calcium in tea. The results of this study are as follows:
     1. Effect of F on the chemical composition in tea leaves.
     Seedlings of the tea plant, Camellia sinensis (L.), were grown hydroponically for 30 days to study the effect of fluoride (F) on the chemical composition in the leaves. Polyphenols, protein, total catechins and monomeric catechins decreased significantly with increasing F concentration. On the other hand, the content of amino acids and soluble-sugars increased significantly, but the differences in caffeine and water-soluble extracts were not statistically significant, in the same time, most of the amino acid composition are first increased and then decreased. Metallic elements content of Ca, K, Cu, Zn decreased significantly, except for content of Mn increased significantly yet Fe first increased and then decreased and Mg appeared in contradiction to Fe, However, differences among treatments were not significant. The changing trend of the relative content of aroma components was different; however, the relative content of total aroma components was decreased. These results suggestted that quality of tea was related to fluoride level and the main chemical constituents of tea leaves decreased with F increasing.
     2. Effect of F on tea leaves photosynthesis feature and ultrastructure
     Seedlings of Camellia sinensis were grown hydroponically for 30 d in order to study the effect of fluoride (F) on photosynthesis and leaf ultrastructure. Chl content and PN increased slightly at low F concentration (2 mg/L) but not significantly. However, these two parameters decreased significantly (P<0.05) with increasing F. concentration. The cell ultrastructure had little change under 0-4 mg/L F, e.g. plastoglobulus and thylakoid expanded slightly, however, an irreversible destruction under the concentration of F higher than 6 mg/L was observed, such as membrane rupture, thylakoid expantion and even disintegration was found. These results were interpreted that the destruction of F to tea leaves ultrastructure leaded the decreased of Chl content and photosynthesis.
     3. Effect of F on metabolism of active oxygen in tea plant.
     3.1 Effect on metabolism of active oxygen in tea plant under different fluoride concentrations
     Seedlings of Camellia sinensis were grown hydroponically for 30 d in order to study the effect of fluorine (F) on antioxidant defence and ascorbate-glutathione cycle system. MDA and H2O2 content did not have a significant difference compared to control at low F concentration (2 mg/L), however, these two parameters increased significantly with increasing F concentration. SOD activity was significantly decreased, which was detrimental to remove ROS, POD and CAT activity that was first increased then decreased, and the maximum at 6 and 4 mg/L, proline increased significantly, indicating that at low F concentration the antioxidant system had made a positive action to fluoride stress. In the ASA-GSH cycle system, APX, GR, MDHAR activities increased first and decreased afterwards, reached maximun under 4,2,2 mg/L, respectively, DHAR activity was significantly decreased; ASA increased first and then decreased, which showed that the antioxidant enzymes had made a positive action to fluoride stress in a degree and protected cells from ROS. However, the balance between formation and detoxification of ROS was lost with increasing of F concentrations. GSH content, ASA/DHA and GSH/GSSG were significantly decreased, and also showed an excessive accumulation of ROS resulting in the destruction of tea seedlings. Therefore, our results suggestted that at low F concentrations, the leaf antioxidant defence system and ascorbate-glutathione cycle system can scavenge reactive oxygen species and sufficiently protect cells from free radical injury. However, antioxidant defence system and ascorbate-glutathione cycle system couldn't scavenge excessive reactive oxygen species to protect the tissue from free radical injury under the stress of higher F.
     3.2 Dynamic response of activity oxygen metabolism in tea plant under fluoride stress
     Through nutrient fluid culturing, annual cuttings were exposed to 16 mg/L fluoride concentrations and cultivited for 0,6,12,24,48,72 h (without fluoride as control), the results indicated that with the time increasing, MDA and H2O2 had no significant difference, the activities of SOD decreased significantly, activities of POD, CAT, APX, GR increased first and then decreased, reached the highest at 48 h, the activities of antioxidases above MDHAR、DHAR and antioxidant ASA increased significantly, GSH had no obvious difference, ASA/DHA and GSH/GSSG increased, all these suggested that to protect tea from injury, tea could eliminate redundant ROS in the short term through antioxidases and AsA-GSH cycle, this is one of the mechanisms of fluoride-resistant of tea.
     4. Cause of Ca can alleviate the toxicity of Al-F to tea seedlings and fluoride-resistant mechanisms of tea
     Ultrastructure of tea leaves and roots were severely damaged no matter under the separated treating of Al and For or the interaction of them, yet after adding Ca, it can significantly reduced the damage degree of the ultrastructure of leaves and roots, which explained that Ca could effectively reduce the damage of Al-F to tea cell. Under the processing of Al or interaction treatment of F-Al, content of pectin in root cell wall were both higher than the control. After adding Ca, when tea under the treatment of Ca-Al, the content of pectin in root cell wall decreased significantly than Al treatment alone, whereas under the treatment of F-Al-Ca, pectin content was significantly decreased than under interaction treatment of Al-F. This showed that Ca could reduce the damage of F-Al to tea may be due to Ca could change the composition of tea cell wall.
     Through the treating of F-Al of different proportions, the results showed that during the range, Al did not reduce the damage of F to tea seedlings, actually the damage was worsened. Therefore, the argument of F-Al compounds that could detoxify the damage needed further verification. In this study also found that, no matter cultivars Fu an da bai and Wu niu zao cultivated in field, or Fu ding da bai cultured in nutrient solution, Fluoride distribution in the sub-cells were Cell wall (F1)>Nuclear and chloroplast (F2) > Soluble fraction containing ribosomal (F4)>Mitochondria (F3).
     Most of the fluoride (60%) was fixed in the cell wall, so that cell wall could prevent F get into the cell which was an important mechanism of fluoride-resistant of tea. Combining with the phenomenon that field-cultivated tea bush containing amount of F but did not appear F-poisoning, while solution-cultured tea was poisoned by F, we inferred that the mechanism of fluoride-resistant in tea besides the protection of cell wall of tea leaves, also had relationship with some other components existing in soil, so that F-poisoning occurred in solution-cultured tea just because of lacking this composition in the solution. Therefore, we believed that fluoride-some components in the soil-the cell wall may be the fluoride-resistant mode of tea.
引文
1.白信学.砖茶高氟的原因调查.茶叶科学,2000,20:77-79
    2.曹进,陈罕.砖茶型氟中毒大鼠的氟斑牙.湖南医科大学学报,1998,23:257-260
    3.曹进,罗得武.中国藏、蒙、裕固、哈萨克族儿童的砖茶型氟中毒.湖南医科大学学报,1996,21:520-524
    4.曹进,赵燕.少数民族少年儿童砖茶型氟中毒流行病学调查.营养学报,1997,3:310-315
    5.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002
    6.陈瑞鸿,梁月荣,陆建良等.茶树对氟富集作用的研究.茶叶,2002,28:187-190
    7.陈宗懋.茶·微量元素·人体健康.茶叶文摘,1990,4:1-10
    8.地方病氟中毒流行病学调查协作组.饮水中化学成分与地方性氟中毒关系的调查报告.中国地方病学杂志,1987,6:302-034
    9.杜海荣.氟污染对玉米幼苗生长及生理特性的影响.农业环境科学学报,2010,29:216-222
    10.高向阳.《食品分析与检验》.中国计量出版社,2006,152
    11.高绪评,王萍,王之让等.环境氟迁移与茶叶氟富集的关系.植物资源与环境,1997,6:43-47
    12.龚雪莲.普洱茶氟研究.[硕士论文].西南大学,2007
    13.龚雨顺,黄建安,崔湘兴等.离子对色谱法测定茶叶中的茶氨酸.茶叶科学,2008,28:89-92
    14.昊茂江.镁与人体健康.微量元素与人体健康研究,2006,23:65-66
    15.黄晓琴.山东茶树冰核细菌的分离、鉴定及其与霜冻害关系研究.[博士学位论文],山东农业大学,2009
    16.焦有.氟病流行区不同土壤类型氟含量状况的研究.农业环境保护,1997,16:129-130
    17.李品武,吴永胜,梁琪慧.氟胁迫对茶树氟积累特性及其生理生化指标的影响.西南大学学报,2010,32:38-42
    18.李琼,阮建云。氟对茶叶品质成分代谢的的影响.茶叶科学,2009,29:207-211
    19.李银花.刘仲华.黄建安等.高效液相色谱-蒸发光散射检测器测定茶叶中茶氨酸.茶叶科学,2005,25:225-228
    20.李丽霞.茶树吸收富集氟的特性及初步调控研究.[硕士学位论文],四川农业大学,2008
    21.梁月荣,傅柳松,张凌云.不同茶类和产区茶叶氟含量研究.茶叶,2001,27:32-34
    22.梁致远,徐慈鸿,林鸿淇.茶树木质部汁液中的铝复合物之研究.中国农业化学会志,1996,34:695-702
    23.刘超,吴方正.茶叶中的氟含量及测定方法研究.农业环境保护,1998,17:132-135
    24.刘晓静.茶园土壤-茶树-茶汤系统中氟和铝的迁移、转化特征及饮茶型氟中毒的防治探索.[博士学位论文].中国科学院研究生院,2006
    25.刘晓秋,李广生.氟化物对骨形成中成骨细胞的影响及机制.中国地方病学杂志,2000,5:394-395
    26.刘玉英,王三根,徐泽.不同茶树品种干旱胁迫下抗氧化能力的比较研究.中国农学通报,2006,22:264-268
    27.陆开形.盐胁迫对大豆光合作用和抗氧化系统的影响及其调控机制.[博士论文],浙江大学,2008
    28.吕毅.氟与茶叶品质化学和微生物学的研究.[博士学位论文],浙江大学,2004
    29.骆少君,吕毅编.饮茶与健康.北京:中国农业出版社.2003
    30.马立峰,阮建云,石元值等.茶树氟累积特性研究.浙江农业学报,2004,16:96-98
    31.马立峰,阮建云,石元值等.中国茶叶中的氟近十年来的研究进展.生态环境,2003,12:342-345
    32.马立峰,阮建云.钙对茶树氟吸收的影响.土壤通报,2005,36,85-87
    33.马立峰.茶树对氟吸收累积特性及降氟措施研究.[硕士学位论文].浙江大学,2004
    34.孟范平.HF对梅树超氧化物歧化酶和纤维素酶活性的影响.生态学杂志,1997,16:28-31
    35.缪崑,王雁.植物对氟化物的吸收积累及抗性作用.东北林业大学学报,2002,30:100-106
    36.潘瑞炽.植物生理学.北京:人民教育出版社,1980,139-142
    37.庞廷祥.大气氟污染对作物的危害及防治对策.热带农业工程,2000,1:3-6
    38.任向红.氟与人体健康.化学世界,1998,8,443-445
    39.沙济琴,郑达贤.茶树黄旦对氟的生物积累特征.福建茶叶,1993,3:25-28
    40.沙济琴.福建茶树鲜叶含氟量的研究.茶叶科学.1994,14:37-42
    41.佘大富.土壤氟污染及其危害.环境科学,1980,3:70-74
    42.施嘉璠,杜晓,何春雷.降低黑茶含氟量的研究.四川农业大学学报,1991,9:404-410
    43.宋凤鸣,郑重.活性氧及膜脂过氧化在植物-病原物互作中的作用.植物生理学通讯,1996,32:377-385
    44.唐茜,赵先明等.氟对茶树生长、叶片生理生化指标与茶叶品质的影响.植物营养与肥料学报,2011,17:186-194
    45.宛晓春.茶叶生物化学.中国农业出版社,2003
    46.汪嘉熙,李正方,钱大复.大气污染的植物检测.环境科学,1978,5:7-12
    47.王根志.微量元素与人体健康.微量元素与健康研究,2004,21,54-56
    48.王五一,李永华.氟与健康的环境流行病学研究.土壤与环境,2002,11:383-387
    49.王小平.茶树(Camellia sinensis L.)幼苗品质及生理对铝氟交互处理响应的研究.[硕士学位论文],浙江师范大学,2009
    50.王惠忠.匍匐翦股颖和多年生黑麦草对镉、铅胁迫的响应及部分基因表达调控机理研究.[博士学位论文],四川农业大学,2006
    51.王悠.海带对高温胁迫的生理生化响应和耐高温机理的初步研究.[博士学位论文].中国海洋大学,2003
    52.王云,魏复盛.土壤元素环境化学.北京:中国环境科学出版社,1995
    53.魏世勇.恩施茶园土壤中氟的赋存特征及其生物有效性.安徽农业科学,2007,35:2328-2329
    54.吴伯千,潘根生.茶树对水分胁迫的生理生化反应.浙江农业大学学报,1995,21:451-456
    55.吴洵.茶生物圈中氟的研究现状及进展.茶叶文摘,1992,2:1-8
    56.向勤锃,刘德华.氟对人体的作用及茶树富氟的研究进展与展望.茶叶通讯,2002,34-37
    57.谢正苗,叶兰军,黄昌勇.红壤利用方式对铝形态和毒性的影响.广州微量元素,1996,3:59-63
    58.谢忠磊.茶叶中氟含量及其影响因素.吉林大学自然科学学报,2001,2:81-84
    59.熊毅,李庆魁.中国土壤.北京:科学出版社,1987,39
    60.徐丽珊,申秀英,许晓路等.氟化物对金华佛手碳代谢及花粉的影响.农业环境科学学报,2003,22:30-33
    61.杨贤强,王岳飞,陈留记等.茶多酚化学.上海:上海科学技术出版社,2003
    62.岳松龄.现代龋病学.北京:中国协和医科大学联合出版社,1993,176-182
    63.曾清如,吴方正.氟化物对植物的衰老效应及其机理探讨.农业环境保护,1996,15:231-233
    64.张乃明.山西土壤氟含量分布及影响因素研究.土壤学报,2002,38:284-287
    65.张纤纹.钾的作用.心血管病防治知识,2008,12,51
    66.张忠诚.镁与人体健康.微量元素与健康研究,2006,23(4):67-69
    67.郑宝山.是“氟铝联合中毒”,还是重症氟中毒?中国地方病学杂志,1993,12:53-57
    68.郑达贤,沙济琴.福建茶区土壤中的氟.土壤通报,1994,25:230-233
    69.钟地长.人体微量元素平衡与健康饮食.广东微量元素科学,2007,14:1-6
    70.朱文江,吴卫.上海市郊氟化物污染对农业的影响.中国环境科学,1990,10:393-396
    71.Alscher R G, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot,2002,53:1331-1341
    72. Alscher R G. Biosynthesis and antioxidant function of glutamylcysteine synthetase in tomato cells selected for glutathione in plants. Physiol Plant,1989,77:457-464
    73. Amor N B, Jimenez A, Megdiche W et al. Response of antioxidant systems to NaCI stress in the halophyte Cakile maritime. Physiologia Plantarunz,2006,126:446-457
    74. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55,373-399
    75. Asada K. The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol,1999,50: 601-639
    76. Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot,2007,59:206-216
    77. Asthir B, Kaur S, Mann S. Effect of salicylic and abscisic acid administered through detached tillers on antioxidant system in developing wheat grains under heat stress. Acta Physiol Plant,2009,31:1091-1096
    78. Attipalli R R, Kolluru V C, Munusamy V. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004,161:1189-1202
    79. Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil,1973,39:205-207
    80. Bellaloui N, Brown P. Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant and Soil,1998,198:153-158
    81. Blarney F, Dowling A. Antagonism between aluminium and calcium for sorption by calcium pectate. Plant Soil,1995,171,137-140
    82. Bowen H J M. Environmental Chemistry of the Element. Academic Press, New York, 1979,38-47134
    83. Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol,1992,43:83-86
    84. Campbell P G C. Interactions between Trace Metals and Aquatic Organisms:A Critique of the Free-ion Activity Model. Metal Speciation and Bioavailability in Aquatic Systems,1995,45-102
    85. Cao J, Bai X Zhao Y. The relationship between fluorosis and brick tea drinking in Chinese Tibetans. Environ Health Persp,1996,104,1340-1343
    86. Cao J, Zhao Y, Liu J. Brick tea consumption as the cause of dental fluorosis among children from Mongol, Kazak and Yugu populations in China. Food Chem Toxicol, 1997,35,827-833
    87. Cao J. Safety Evaluation and Fluorine Concentration of Pu'er Brick Tea and Bianxiao Brick Tea. Food Chem Toxicol,1998,36,1061-1063
    88. Cao J. Safety evaluation on fluoride content in black tea. Food Chem,2004,88, 233-236
    89. Carr H P, Lombi E, Kupper H et al. Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. Agronomie,2003,23:705-710
    90. Cavalcanti F R. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytologist,2004,163,563-571
    91. Chang Y C, Yamamoto Y, Matsumoto H. Accumulation of aluminumin the cell wall pectin in cultured tobacco (Nicotiana tabacum L) cellstreated with a combination of aluminum andiron. Plant cell Environ,1999,22:1009-1017
    92. Chaparzadeh N, D'Amico M L, Khavari-Nejad R A et al. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol and Bioch,2004, 42:695-701
    93. Chen Q, Guo Z, Zhao J. Identification of green tea's (Camellia sinensis (L.)) quality level according to measurement of main catechins and caffeine contents by HPLC and support vector classification pattern recognition. J Pharmaceut Biomed, 2008,48:1321-1325
    94. Chinoy N J, Momin R, Jhala D D et al. Fluoride and aluminium induced toxicity in mice epididymis and its mitigation by vitamin C. Fluoride,2005,38:115-121
    95. Chong W C and Thompson C R. Site of Fluoride Accumulation in Navel Orange Leaves. Plant Physiol,1966,41,211-213
    96. Chu D, Kobayashi K, Juneja L et al. Theanine-its synthesis, isolation, and physiological activity. Chemistry and Application of Green Tea,1997,129-136
    97. Ciamporova M, Mistrik I. The ultrastructural response of root cells to stressful conditions. Envir Exp Bot,1993,33:11-26
    98. Cosgrove D. Growth of the plant cell wall. Nat Rev Mol Cell Bio,2005,6,850-861
    99. Cronin S J, Neall V E, Lecointre J A et al. Environmental hazards of fluoride in volcanic ash:a case study from Ruapehu volcano. New Zealand. J Volcanol Geoth Res,2003,121:271-91
    100. Das T K, Susbeela A K, Gupta IP et al. Toxic effects if chronic fluoride ingestion on the upper gastrointestinal tract. J Clin Gastroencerol,1994,18:194-199
    101. Dhindsa R, Plumb-Dhindsa P, Thorpe T. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot,1981,32:93
    102. Dhiraj V, Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem,2005,43,383-388
    103. Ding R X, Huang X. Biogeochemical cycle Aluminum and Fluoride in tea garden soil system and its relationship to soil acidification. Acta Pedolngica sinica,1991, 28:229-236
    104. Dipierro N, Mondelli D, Paciolla, C et al. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol, 2005,16,529-536
    105. Edwards E A, Rawsthorne S, Mullineaux P M. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (pisum sativum). Planta,1990,180: 278-284
    106. Eleftherios P, Eleftheriou, Ioannes T. Fluoride effects on leaf cell ultrastructure of olive trees growing in the vicinity of the Aluminium Factory of Greece. Trees Structure and Fuct,1991,5:83-89.
    107. Finkel T. Redox-dependent signal transduction. FEBS Lett,2000,476:52-54
    108. Foyer C H, Hailiwell B. The presence of glutathione and glutathionereductase inchloroplasts:proposedrolein ascorbic acid metabolisim. Planta,1976,133:21-25
    109. Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physio Plant,2003,119:355-364
    110. Fridovich I. The biology of oxygen radicals.Sci,1978,201:875-880
    111. Fung K F, Zhang Z Q, Wong J WC et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut, 1999,104,197-205
    112. Fung K, Wong M. Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation. JSci Food Agr,2004,84:1469-1477
    113. Giannini J, Pushnik J C. and Miller, G W. The partial characterization of fluoride inhibition of chloroplast coupling factor. J of Fluo Chem,1988,41:79-93
    114. Green M A, Fry S. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature,2005,433:83-87
    115. Higdon J V, Frei B. Tea catechins and polyphenols:health effects, metabolism, and antioxidant functions. Crit Rev Food Sci,2003,43:89-143
    116. Hoagland D, Arnon D. The water culture method for growing plants without soil. Calif Agric Exp Stn Circ,1950,347:1-32
    117. Horst W J, Schmohl N, Kollmeier M et al. Does aluminum affect root growth of maize through interaction with cell wall plasma membrane cytoskeleton continuum? Plant Soil,1999,215:163-174
    118. Hossain A, Ohno T, Koyama H et al. Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance. Plant Soil,2005,276,193-204
    119. Imlay J A. Pathways of oxidative damage. Annu Rev Microbiol,2003,57: 395-418
    120. Jiang H, Yang J, Zhang J. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Pollut, 2007,147:750-756
    121. Jimenez A, Hernandez J A, Del L A et al. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol,1997,114:275-284
    122. Jorge Limon-Pacheco. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research,2009,674,137-147
    123. Juneja L R, Chu D C, Okubo T et al. L-theanine:a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci Tech,1999,10:199-204
    124. Kabata P A, Pendias H. Trace elements in soils and plants. Boca Raton, CRC Press, 1984,329
    125. Kampfenkel K, Van Montagu M, Inze D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem,1995,225:165-167
    126. Kimura K, Ozeki M, Juneja L R et al. L-theanine reduces psychological and physiological stress responses. Biol Psychol,2007,74:39-45
    127. Klaus S, Piiltz S, Thone-Reineke C et al. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes,2005,29:615-23
    128. Kobayashi-Hattori K, Mogi A, Matsumoto Y et al. Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotechnol Biochem,2005, 69:2219-2223
    129. Kochian L. Cellular mechanisms of aluminum toxicity and resistance in plants. Annl Rev Plant Biol,1995,46,237-260
    130. Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Plant Physiol,2001,113:158-164
    131. Kuge, S, Jones N and Nomoto, A. Regulation of YAP-1 nuclear localization in response to oxidative stress. Embo J,1997,16:1710-1720
    132. Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). JPlant Physiol,2001,158:737-745
    133. Li T, Yu L J, Li MT et al. A new approach to the standard addition method for the analysis of F, Al and K content in green tea. Microchim Acta,2006,153:109-14
    134. Li T, Yu L J, Li W et al. Analysis of zinc in Vitix negundo foliage by AAS and application of a new kind of standard addition method. Microchim Acta,2005,150, 153-7
    135. Liau Y, Wen L, Shaw J et al. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata:Expression in yeast and enzyme properties. J Biotechnol,2007,31,84-91
    136. Liebler D C, Kling D S, Reed D J. Antioxidant protection of phospholipid bilayers by a-tocopherol. Control of a-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem,1986,261:12114-12119.
    137. Loganathan P, Hedley M, Wallace G C et al. Fluoride accumulation in pasture forages and soils following long-term applications of phosphorus fertilisers. Environ Pollut,2001,115:275-82
    138. Loganthan P., Hedley M. J., Grace N. D., Lee J., Cronin S. J., Bolan N. S. and Zanders J. M. Fertilizer Contaminants in New Zealand Grazed Pasture with Special Reference to Cadmium and Fluorine:a review. AustJSoil Res,2003,41:501-532
    139. Ma J F, Shen R F, Nagao S et al. Aluminum Targets Elongating Cells by Reducing Cell Wall Extensibility in Wheat Roots. Plant Cell Physiol,2004,45:583-589
    140. Mackowiak C L, Grossl P R, Bugbee B G. Biogeochemistry of fluoride in a plant-solution system. J Environ Qual,2003,32:2230-2237
    141. Maeda-Yamamoto M, Kawahara H, Tahara N et al. Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. JAgr Food Chem,1999,47,2350-2354
    142. Malinowska E. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. Food Chem Toxicol,2008,46,1055-1061
    143. Manoharan V, Loganathan P, Tillman R W et al. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth. Environ Pollut,2007,145,778-786
    144. Matsumoto H, Hirasawa E, Morimura S et al. Localization of aluminum in tea leaves. Plant Cell Physiol,1976,17:627-631
    145. Matsumoto H. Repressed template activity of chromatinof ea roots treated by aluminum. Plant Cell Physiology,1980,21:951-959
    146. May M J, Leaver C J. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol,1993,103:621-627
    147. Meyer A J. The integration of glutathione homeostasis and redox signaling. J Plant Physiol,2007,31:1-14
    148. Michael P W, Kevan E, Francis H G et al. Skeletal fuorosis and instant tea. Am J Med,2005,118:78-82
    149. Miller G W. The effect of fluoride on higher plants:with special emphasis on early physiological and biochemical disorders. Fluoride,1993,26:3-22
    150. Mittler R, Vanderauwera S, Gollery M et al. Reactive oxygen gene network of plants. Trends in Plant Sci,2004,9:490-497
    151. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci, 2002,9:405-410
    152. Mittova V, Tal M, Volokita M et al. Up-regulation of the leaf mitochondria and peroxisomal antioxidative systems in responses to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ,2003,26:845-856
    153. Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol,1992,33:541-553
    154. Moller I M, Jensen P E, Hansson A. Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol,2007,58:459-481
    155. Moran J F, James E K, Rubio M C et al. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiol, 2003,133,773-782
    156. Morita A., Horie H., Fujii Y et al. Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry,2004,65:2775-2780
    157. Morita A, Osamu Y, Satoshi T et al. Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry,2008, 69:147-153
    158. Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Eng Geol,2001,60, 193-207
    159. Munne B S, Penuelas J. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L) growing in Mediterranean field conditions. Plant Sci,2004,166: 1105-1110
    160. Murase T, Nagasawa A, Suzuki J et al. Beneficial effects of tea catechins on diet-induced obesity:stimulation of lipid catabolism in the liver. Int J Obes,2002, 26:1459-1464
    161.Nacer Bellaloui and Patrick Brown. Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esulentum) and wheat (Triticum aestivum). Plant and soil,1998,198:153-158
    162. Nagata T, Hayatsu M, Kosuge N. Aluminium kinetics in the tea plant using 27A1 and 19F NMR. Phytochemistry,1993,32:771-775
    163. Nagata. Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry,1992,31:1215-1218
    164. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867
    165. Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Current Opinion in Plant Bioloev,2002,5:388-395
    166. Nie Z J, Hu C X, Sun X C et al. Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Soil,2007,295:13-21
    167. Noctor G, Arisi ACM, Jouanin L et al. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Botany,1998, 49:623-647
    168. Noctor G, Gomez L, Vanacker H et al. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot,2002,53:1283-1304
    169. Parida A K and Das A B. Salt tolerance and salinity effects on plants:a review. Ecotox Environ Safe,2005,60:324-349
    170. Parry M A J, Schmidt C N G and Gutteridge S. Inhibition of Ribulose-P2 carboxylase/oxygenase by fluoride. J of Enperi Bot,1984,35:1177-1181
    171. Patra J, Panda B. A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environ. Pollut,1998,101:99-105
    172. Pereira, G, Molina S, Lea P et al. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil,2002,239:123-132
    173. Perry, A C F, Bhriain N N, Brown N L et al. Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa:determinants of substrate specificity among pyridine nucleotide disulphide oxidoreductases. Mol Microbiol,1991,5:163-171
    174. Prasad K, Saradhi P, Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot, 1999,42,1-10
    175. Ramiro D, Guerreiro-Filho O, Mazzafera P et al. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol, 2006,32:1977-1988
    176. Reddy M P and Kaur M. Sodium fluoride induced growth and metabolic changes in Salicornia brachiata roxb. Water Air Soil Pollution,2008,288,171-179
    177. Rengel Z, Reid R J. Uptake of Al across the plasma membrane of plant cells. Plant Soil,1997,192:31-35 178. Roberta. Fluorides effects on Hypericum perforatum plants:first field observations. Plant Sci,2003,165,507-513 179. Rout NP, Shaw B P. Salt tolerance in aquatic acrophytes:possible involvement of the antioxidative enzymes. Plant Sci,2001,160:415-23 180. Ruan J Y, Ma L F, Shi Y Z et al. Uptake of fluoride by tea plant (Camellia sinensis) and the impact aluminium. J Sci FoodAgr,2003,83:1342-1348. 181. Ruan J Y. Accumulation of fluoride and Aluminium Related to Different Varieties of Tea Plant. Environ Geochem Health,2001,23:53-63 182. Rudolph A S, Crowe J H, Crowe M et al. Effects of three stabilizing agents-proline, betaine, and trehalose-on membrane phospholipids. Arch biochem biophys,1986,245:134-143 183. Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiol,1993, 101:7-12 184. Shalata A, MittovaV, Vololcita M et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system. Physiol Plantarum,2001,112:487-494 185. Shiegeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot,2002,372:1305-1319 186. Shigeoka S, Ishikawa T, Tamoi M et al. Regulation and function of ascorbate peroxidase isoenzymes. JExp Bot,2002,53:1305-1319 187. Shu W, Zhang Z, Lan C et al. Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere,2003, 52:1475-1482 188. Sickevitz P. Powerhouse of the cell. Sci Am,1957,197:131-149 189. Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry,1989,28:1057-1060 190. Smitha A G, Crofta M T, Moulina M et al. Plants need their vitamins too. Curr Opin Plant Biol,2007,10:266-275 191. Srinivas V, Balasubramanian D. Proline is a protein-compatible hydrotrope. Langmuir,1995,11:2830-2833 192. Stadtman E R. Protein oxidation and aging. Science,1992,257:1220-1224
    193. Stevene D P, Mclaughlin M J, Aleton A M. Phytotoxcity of the fluoride ion and its uptake from solution culture by Avens sativa and lycoperisico. Plant and soil,1998, 200:119-129
    194. Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCI salinity. Plant Sci,2001,161:613-619
    195. Thompson J E. The molecular basis for memdrane deterioration during senescence. Senescence and aging in plants. New York:Academic Press,1988,51-83
    196. Torres-Franklin M L, Contour-Ansel D, Zuily-Fodil Y et al. Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol,2008,165:514-521
    197. Toschi T G, Bordoni A, Hrelia S et al. The protective role of different green tea extracts after oxidative damage is related to their catechin composition. J Agric Food Chem,2000,48:3973-3978
    198. Trebst A. Energy conservation in photo synthetic transport of chloroplasts. Annu Rev Physiol,1974,25:423-458
    199. Tutic M, Lu X, Schirmer R H et al. Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem,188:523-528
    200. Unno K, Takabayashi F, Kishido T et al. Suppressive effect of green tea catechin on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP 10). Exp Gerontol,2004,39:1027-34
    201. Unno K, Takabayashi F, Yoshida H et al. Dail consumption of green tea catechin delays memory regression in aged mice. Biogerontology,2007,8:89-95
    202. Wang L F, Kim D M, Lee C Y et al. Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. J Agric Food Chem,2000,48: 4227-4432
    203. Weinstein, L H and Davison, A W. Fluorides in the Environment. CABI Publishing, United Kingdom.2004
    204. Wilde L G and Yu M. Effect of fluoride on superoxide dismutase (SOD) activity in germinating mung bean seedlings. Fluoride,1998,31,81 205. Wu F B, Dong J, Qian, Q Q et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere,2005,60, 1437-1446
    206. Yamada H, Hattori T. Relation between aluminum and fluorine in plants. Part 1. Relation between aluminum and fluorine in tea leaves. Sci Soil Mature,1977, 48:252-261
    207. Yamaguchi K, Mori H, Nishimura M. A novel isozyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol,1995,36:1157-1162
    208. Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends Plant Sci,2005,10:615-620
    209. Yao L H, Jiang Y M, Shi J et al. Flavonoids in food and their health benefits. Plant Foods for Hum Nutr (Formerly Qualitas Plantarum),2004,59:113-22
    210. Zhang G W, Liu Z L, Zhou J G et al. Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul,2008,56:7-19
    211. Zhao F G, Sun C, Liu Y L et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin,2003,45:295-300
    212. Zheng G, Sayama K, Okubo T et al. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo, 2004,18:55-62
    213. Zhong Z, Froh M, Connor H D et al. Prevention of hepatic ischemia-reperfusion injury by green tea extract. Am J Physiol Gastrointest Liver Physiol,2002, 283:957-64
    214. Zhou X, Wu W, Zeng Y et al, Industrial Fluoride pollution of vegetables in Hubei province, China. Fluoride,2006,39,31-34
    215. Zhu J, Bie Z L, Li Y N. Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. Soil Sci Plant Nutr,2008,54: 400-407
    216. Zhu L, Zhang H, Xia B et al. Total fluoride in Guangdong soil profiles, China: Spatial distribution and vertical variation. Environ Int,2007,33:302-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700