大型离岸结构的快速三维水弹性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文着重研究提高三维水弹性分析计算效率的方法,为三维水弹性分析方法在海洋工程中的广泛应用创造条件。首先提出了使用Arnoldi过程确定GMRES方法重启动数的方法,按照向后误差分析的方法给出了GMRES方法的终止准则,使用GMRES方法求解了大型离岸结构的水弹性响应和平均二阶力(矩),通过对大型离岸结构的水弹性分析表明GMRES方法的计算效率高于常规方法,可在工程应用中发挥巨大的作用。
     随后,将预修正快速傅里叶变换方法由刚体水动力分析扩展到水弹性分析中,提出了一种使预修正快速傅里叶变换方法具有较少计算时间与较低占用内存的网格奇点布置方法,使用预修正快速傅里叶变换方法进行了单个弹性浮体和多个弹性浮体的水弹性分析,由于预修正快速傅里叶变换方法具有较高的计算效率,使得造船工程师使用预修正快速傅里叶变换方法在微机上就可以进行以往只有在工作站和并行机上才能实现的大型离岸结构的水弹性分析,满足了工程应用的要求。
     由于海洋工程结构物湿表面各点的波浪压力各不相同,在经水动力或水弹性分析后,如何将波浪压力添加到数量众多的有限元单元上以对海洋工程结构物进行结构强度分析一直是造船工程师关心的问题。本文提出了一种基于PCL语言的对海洋工程结构物进行频域有限元分析的波浪压力自动加载方法,将水线处面元和水线以下面元分开处理,水线以下面元所承受的压力直接用PCL语言添加到面元上,把水线处四边形面元转化为三角形面元,将作用在三角形面元的分布压力转化为节点力用PCL语言添加到节点上,这一方法的提出解决了多年以来困扰造船工程师的一个难题。
This paper lays emphasis on the method which can improve the calculating efficiency of 3-D hydroelastic analysis, and provides a good environment for the wide application of this analysis in ocean engineering. Firstly, the method of determining the restarted number of GMRES by using Arnoldi process is put forward, the stop criterion of GMRES is given by the backward error analysis. The hydroelastic response and the second-order mean force (and moment) of large offshore structure are solved by GMRES. Numerical tests show that the computational efficiency of GMRES is higher than that of conventional method and this method can exert tremendous effect in engineering application.
    Secondly, the precorrected-FFT method is expanded to the hydroelastic analysis from the rigid body hydrodynamic analysis, and a grid singularity collocation method is presented which can make the precorrected-FFT method use less calculating time and occupy less memory. The hydroelastic analysis of single and multiple elastic floating bodies is carried out by the precorrected-FFT method. Due to the high computational efficiency of the precorrected-FFT method, the naval architects now can use this method on personal computers to solve the hydroelastic response of large offshore structures that could be computed only on workstations or parallel computers many years ago, which means that the precorrected-FFT method has met the demand of engineering application.
    Because of the difference of the hydrodynamic pressure on the wet surface of marine structures, it is the naval architects' concern for a long time that after the hydrodynamic or hydroelastic analysis how to add the hydrodynamic pressure
    
    
    onto numerous finite elements so as to analyze the structure strength of marine architecture. In this paper we propose a method based on the Patran Command Language which can automatically load the hydrodynamic pressure for the FEM analysis of marine structures in frequency domain. The elements on waterline and below waterline are treated separately. The pressures acting on elements below waterline are added onto the panels directly using PCL. The quadrilateral elements on the waterline are translated into triangle elements. The distributed pressure on the triangle elements are translated into concentrated force and added onto the nodes using PCL. This method thoroughly solves the difficult problem that has puzzled the naval architects for many years.
引文
[1] Saad, Y. and Schultz, M.H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linera systems. SIAM J. Sci. Comput., 1986, 7(3): 856-869P.
    [2] Kane, J.H., Keyes, D.E. and Prasad, K.G. Iteration solution techniques in boundary elements analysis. Int. J. Numerical Methods Engng., 1991, 31:1511-1536P.
    [3] Zhao, Y. and Graham, J. M.R. An iterative method for boundary solution of large offshore structures using the GMRES solver. Ocean Engng, 1996,23(6):483-495P.
    [4] 卢志明.Krylov子空间投影法研究进展.上海大学学报(自然科学版),1996,2(3):265-273页.
    [5] I. C. F. Ipsen, C.D. Meyer. The idea behind krylov methods. Amer. Math. Monthly, 1998,105:889-899P.
    [6] V. Simoncini and E. Gallopoulos. An iterative method for nonsymmtric systems with multiple right-hand side, SIAM J. Sci. Comput., 1995, 16:917-933P.
    [7] K. Jbilou, A. Messaoudi, H. Sadok. Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math., 1999, 31:49-63P.
    [8] Jun Zhang. Preconditioned krylov subspace methods for solving nonsymmtric matrices from CFD applications. Comput. Methods Appl. Mech. Engrg., 2000, 189:825-840P.
    [9] 王人鹏,沈祖炎,钱若军.应用Krylov子空间方法求解边界元方程.同
    
    济大学学报,1997,25(2):212-216页.
    [10] 贾仲孝.解非对称线性方程组的不完全广义最小残量法.中国科学(A辑),1998,28(8):694-702页.
    [11] 刘晓明,卢志明,刘宇陆.Krylov子空间投影法及其在油藏数值模拟中的应用,应用数学和力学,2000,21(6):551-560页。
    [12] 周钟,赵金熙.一种改进的利用特征向量的GMRES方法.南京大学学报(自然科学版),2001,37(1):1-11页.
    [13] Rokhlin, V. Rapid solution of integral equations of classical potential theory. Journal of computation physics,1985,60:187-207P.
    [14] Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations. Journal of computation physics, 1987, 73:325-348P.
    [15] Nabors, K., Korsmeyer, F.T., Leighton, F.T. and White, J.K. Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory. SIAM J. Sci. Comput., 1994,15(3):713-735P.
    [16] Scorpio, S.M. Fully nonlinear ship-wave computations using a multipole accelerated desingularized methods. PhD Thesis, Department of Naval Architecture and Marine Engineering, The University, of Michigan, 1997.
    [17] Ken-ichi Yoshida, Naoshi Nishimura, Shoichi Kobayashi. ipplication new fast multipole boundary integral equation method to crack problems in 3D. Engineering Analysis with Boundary Elements, 2001,25:239-247P.
    [18] J. Helsing, A. Jonsson. Complex variable boundary integral equations for perforated infinite planes. Engineering Analysis
    
    with Boundary Elements, 2001,25:191-202P.
    [19] J. Helsing, A. Jonsson. Stress calculations on multiply connected domains. Journal of computation physics, 2002,176:456-482P.
    [20] Jonas Englund. Fast, accurate, and stable algorithm for the stress field around a zig-zag-shaped crack. Engineering Fracture Mechanics, 2003,70:355-364P.
    [21] Phillips, J. R. and White, J. K. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. on Computer-Aided Design, 1997, 16(10):1059-1072P.
    [22] Korsmeyer, F. T., Klemas, T. J., White, J. K. and Phillips, J.R. Fast hydrodynamic analysis of large offshore structures. ISOPE' 99, Brest, France, 1999.
    [23] Kring, D, Korsmeyer, F.T., Singer, J. and White, J.,K.. Analyzing mobile offshore bases using accelerated boundary-element methods, Marine Structures, 2000,13:301-313P.
    [24] Newman, J. N. and Lee, C.,-H. Boundary-element methods in offshore structure analysis, Proc. OMAEO1/OFT-1351, 2001.
    [25] Bishop, R. E.D. and Price, W.G. Hydroelasticity of Ships, Cambridge University Press, 1979.
    [26] Bishop, R. E.D. and Price, W. G. and Tam, P.K.Y. The dynamical characteristics of some dry hulls. Journal of Sound and Vibration, 1977, 54:29-38P.
    [27] Belik, O., Bishop, R. E.D. and Price, W.G. On the slamming response of ships to regular head waves. Trans. RINA, 1980, 122:325-337P.
    [28] Bishop, R. E. D., Clarke, J. D. and Price, W.G. Comparison of full scale and predicted responses of two frigates in server weather
    
    trial. Trans. RINA, 1984,126:153-166P.
    [29] Clarke, J. D. Wave loading in warships, Advances in Marine Structures (ed:C.S. Smith and J.D. Clarke), Elsevier Apllied Science Publishers, 1986, 1-25P.
    [30] 董艳秋、林维学、朱建国,浅吃水肥大船波激振动研究,中国造船,1989,1:76-83页.
    [31] Dong, Y. and Lin W., Hydroelasticity and wave loads for hullform ship with shallow draft. Journal of Ship Research, 1992,36(3):280-285P.
    [32] Aksu, S., Price, W. G. and Temearel, P. A comparion of two-dimensional and three-dimensional hydroelasticity theories including the effect of slamming. Journal of Mechanical Engineering Science, 1991,205:3-15P.
    [33] Oiu, O. and Lin, J. R, A Two-dimensional Hydroelasticity Theory of Ships and its Application, Proceedings of ICAHE' 93, Beijing, China, 1993.
    [34] Bishop, R. E. D., Price, W.G. and Temarel, P. A unified dynamic analysis of antisymmetric ship response to waves. Suppl. Papers RINA, 1980,122:S49-S65P.
    [35] Wu Yousheng, Xia Jinzhu and Du Shuangxing. Two engineering approaches to hydroelastic analysis of slender ships, Dynamics of Marine Vehicles and structures in Waves, Elsevier Science Publishers, 1991, 157-165P.
    [36] Newman, J.N. The theory of ship motions. Advances in applied mechanics, 1978,18:221-225P.
    [37] Sclavounos, P.D. The diffraction of free surface waves by
    
    a slender ship. Journal of Ship Research, 1984, 28(1): 29-47P.
    [38] Jensen, J. J. and Pederson, P.T. Wave-lnduced bending moments in ships—a Quadratic Theory, Trans. RINA, 1979,121:151-165P.
    [39] Jensen, J.J. and Pederson, P.T. Bending moments and shear forces in ships Sailing in irregular waves. Journal of Ship Research, 1981,25(4):243-251P.
    [40] Yamamoto, Y., Fujino, M., Fukasawa, T. and Ohtsubo, H. Slamming and whipping of ship among rough seas, Symp. Numerical Analysis of the Dynamics of Ship Structures, Association Technique Maritime at Aeronautique, 1978.
    [41] Yamamoto, Y., Sugai, K., Inoue, H., et al., Wave loads and response of ships and offshore structures from the viewpoint of hydroelasticity, Advances in Marine Structure, ed. by Smith C. S. and Clarke J. D., London, Elsevier, 1986.
    [42] Gu Maoxiang, Wu Yousheng and Xia Jinzhu. Time simulation of non-linear hydroelastic response on ships, Selected Papers of Chinese Society of Naval Architecture and Marine Engineering, 1988,3:125-134P.
    [43] S?ding, H. Leckstabilitat in Seegang, Report 429 of the Institut fur Schiffbau Hamburg, 1982.
    [44] Bottcher, H. Simulation of ship motions in a seaway, Report 498 of the Institute fur Schiffbau der Universitat, Hamberg, 1989.
    [45] Schlachter, G. Hull Grider Loads in a seaway including non linear effects, Schiffstechnik, 1989,36:169-180P.
    [46] 王朝晖.船舶二维非线性水弹性分析方法。中国船舶科学研究中心硕士
    
    论文,1992.
    [47] 宋竞正,任慧龙,戴仰山.船体非线性波激载荷的水弹性分析,中国造船,1994,2:22-31页.
    [48] 任慧龙,宋竞正,戴仰山.关于船舶规范中计算载荷的分析,中国造船,1995,2:32-40页.
    [49] Jensen, J. J. and Dogliani, M. Wave-induced ship hull vibrations In stochastic seaways. Marine Structures, 1996, 9(3):353-387.
    [50] Xia, J., Wang, Z. and Jensen, J. J. Non-linear wave loads and ship Responses by a time domain strip theory, Marine Strutures, 1998,11(3):101-123P.
    [51] Jensen, J. J. and Wang, Z. Wave-induced hydroelastic response of fast monohull displacement ships, Proc. 2nd Int. Conference Hydro-elastic in Marine Technology, 1998, 411-417P.
    [52] Wu Yousheng. Hydroelasticity of floating bodies, PhD Thesis, Brunel University, U. K.,1984.
    [53] Price, W. G. and Wu, Yousheng. Hydroelasticityof marine structures, Theoretical and Applied Mechanics, ed. F. 1. Niordson and N. Olhoff, Elsevier Science Publishers B.V.,The Netherlands, 1985: 311-337P.
    [54] 夏锦祝,吴有生.流固耦合问题的一个一般交接面条件,舰船性能研究,1993,2:73-79页.
    [55] Timman, R. and Newman, J. N. The coupled damping coefficients of a symmetric ship. Journal of Ship Research, 1962, 5(4):22-44P.
    [56] Fu, Yuning, Price, W. G. and Temarel, P. The 'dry' and'wet' towage of a jack-up in regular and irregular waves, 1987, Trans. RINA, 129:149-159P.
    
    
    [57] Lundgren, J., Price, W. G. and Wu, Y. S. A hydroelastic investigation into the behaviour of a floating 'dry' dock in waves, 1988, Spring Meeting, RINA, London.
    [58] Newman, J. N. Wave effects on deformable bodies. Applied Ocean Reseach, 1994,16:47-59P.
    [59] 王大云.三维船舶水弹性力学的时域分析方法.博士学位论文,中国船舶科学研究中心,1996.
    [60] Miao, S. H., Price, W. G. and Temarel, P. The hydroelastic behaviour of multi-hulls travelling in a seaway. Proc. 3rd Int. Conf. Advances in Marine Structures, 1997, paper 18.
    [61] Mc Taggart, K., Datta, I., Stitling, A., Gibson, S. and Glen, Ⅰ. Motions and loads of a hydroeleastic frigate model insevere seas. Trans. SNAME, 1997, 105: 427-453P.
    [62] Louarn, F. and remarel, P. An investigation of the structural dynamics of a racing yacht. Proc. 14th Chesapeake Sailing Yacht Symposium, 1999:123-142P.
    [63] 杜双兴.完善的三维航行船体线性水弹性力学频域分析方法.博士学位论文,中国船舶科学研究中心,1996.
    [64] Wu, Y. S., Maeda, H. and Kinoshita, T. The second order hydrodynamic actions on a flexible body. Tokyo, 1997.
    [65] Maeda, H., Masuda, K. and Ikoma, T. Hydroelastic responses of pontoon type very large floating offshore structure(The 3rd report), the effects of 2nd-order wave loads. Journal of Society of Naval Architects of Japan, 1997, 182:319-328P.
    [66] Ikoma, T., Maeda, H. and Masuda, K. Effects of second-order hydroelatic responses on pontoon type Mega-Float, Proc.
    
    OMAE98-4346,1998.
    [67] 陈徐均.浮体二阶非线性水弹性力学分析方法.博士学位论文,中国船舶科学研究中心,2001.
    [68] Newman, J. N., Maniar, H. D. and Lee, C.-H. Analysis of wave effects for very large floating structures. Proc. Int. Workshop on VLFS, 1996:135-142P.
    [69] Price, W. G., Salas-Inzunza, M. and Temarel, P. Behavior of large type structures in waves. Proc. Int. Workshop on VLFS, 1996:173-182P.
    [70] Ma, N. and Hirayama, T. Hydroelastic responses of two types of very large floating structure. Proc. 16th Int. Conf. on OMAE, 1997, Vol. 6:211-218P.
    [71] Maeda, H., Masuda, K., Miyajima, D., and Ikoma, T. Hydroelastic responses of pontoon type very large floating offshore structure. Journal of Society of Naval Architects of Japan, 1995, 178:203-212P.
    [72] Takaki, M and Gu, X. Motions of a floating elastic plate in waves. Journal of Society of Naval Architects of Japan, 1996,180:331-339P.
    [73] Yasuzawa, Y., Kagawa, K., Kawano, D. and Kitabayashi, K. Dynamic response of a large flexible floating structure in regular waves. Proc. 16th Int. Conf. on OMAE, 1997, Vol. 6:187-194P.
    [74] Hamamoto, r., Suzuki, A. and Fujita, K. Hybrid dynamic analysis of large tension leg floating structures using plate element. ISOPE' 97, 1997, Vol. 1:285-292P.
    [75] Hamamoto, T., Suzuki, A., ,Tsujioka, N. andFujita, K. 3D BEM-FEM
    
    hybrid hydroelastic analysis of module linked large floating structures subjected to regular waves, ISOPE' 98,1998, Vol. 1: 192-199P.
    [76] Utsunomiya, T., Watanabe, E. and Eatock Taylor, R. Wave response analysis of a box-like VLFS close to a breakwater. Proc. OMAE 98-4331,1998.
    [77] Kashiwagi, M. A new solution method for hydroelastic problems of a very large floating structure in waves, Proc. OMAE98-4332, 1998.
    [78] Newman, J. N. Wave effects on hinged bodies, parts 1-4. http://rle-vlsi.mit,edu.1998,The reseach laboratory of electronics, MIT.
    [79] Riggs, H. R.,Ertekin, R. C. and Mills, T. R. J. Acomparative study of RMFC and FEA models for the wave-induced response of a MOB, Marine Structures, 2000, 13:217-232P.
    [80] Lee, C.,-H. and Newman, J. N. An assessment of hydroelasticity for very large hinged vessels. J. Fluids and Structures, 2000, 14:957-970P.
    [81] Tsubogo, T. A basic investigation on deflection wave propagation and strength of very large floating structures (3rd report) Journal of Society of Naval Architects of Japan, 1998,182:381-390P.
    [82] Seto, H. and Ochi, M. A hybrid element approach to hydroelastic behavior of a very large floating structure in regular waves, Proc. 2nd Int Conf. on Hydroelasticity in Marine Technology, 1998.
    [83] Lin, X.,and Takaki, M. A B-spline element method for predicting the hydroelastic response of very large floating structure in
    
    waves. Journal of Society of Naval Architects of Japan, 1998,183: 219-225P.
    [84] Murai, M. Kagemoto, H. and Fujino, M. On the prediction of hydroelastic behaviors of a huge floating structure in waves(2rd report). Journal of Society of Naval Architects of Japan, 1997, 181:123-134P.
    [85] Yasuzawa, Y., Kagawa, K., Kawano, D. and Kitabayashi, K. Dynamic response of a large flexible floating structure in regular waves, Proc. 16th Int. Conf. on OMAE, 1997, Vol. 6:187-194P.
    [86] Hamamoto, T., Suzuki, A., ,Tsujioka, N. and Fujita, K. 3D BEM-FEM hybrid hydroelastic analysis of module linked large floating structures subjected to regular waves, ISOPE' 98,1998, Vol. 1:192-199P.
    [87] lijima, K., Yoshida, K. and Suzuki, H. Hydrodynamic and hydroelastic analysis of very large floating structures in waves. Proc. 16th Int. Conf. on OMAE, 1997, Vol. 6:139-145P.
    [88] Mural, M. Kagemoto, H. and Fujino, M. On the prediction of hydroelastic behaviors of a huge floating structure in waves-3rd report. Journal of Society of Naval Architects of Japan, 1998, 183: 199-210P.
    [89] Kashiwagi, M. Hydrodynamic interactions among a great number of columns supporting a very large flexible structure, J. Fluids and Structures, 2000, 14:1013-1034P.
    [90] Wu, Y.S., Wang, D. Y., Riggs, H. R., and Ertekin, R.C. Composite singularity distribution method with application to hydroelasticity, Marine Structures, 1993,6:143-163P.
    
    
    [91] Garrison, C. J. Numerically Efficient Method for Analysis of Very Large Articulated Floating Structures. Journal of Ship Research, 1998, 42(3):174-186P.
    [92] Wang S Q, Ertekin R C, Riggs H R. Computationally efficient techniques in the hydroelasticity analysis of very large floating structures. Computers and Structures, 1997,62(4):603-610P.
    [93] Yago, K., Endo, H. Model experiment and numerical calculations of the hydroelastic behavior of matlike VLFS. VLFS' 96,1996, 209-216P.
    [94] Yamashita, S., Itoh, A. and Kabaya, T. An experimental investigation to wave loads on a matlike floating structure in waves with short length. Proc. 16th Int. Conf. on OMAE, 1997, Vol. 6:241-248P.
    [95] Ohta, M., Ikegami, K. and Yamaguchi, Y. Experimental study on elastic behaviour of a huge floating structure in waves. Transaction of the west Japan society of naval architecture, 1998,95:99-108P.
    [96] Shin, H., Lee, H. Y., Yang, Y.S., Chung, T. Y. and Chung, J. H. An experiment study on the hydroelastic behaviour of very large floating structures. Proc. Int. Workshop on VLFS, 1999, Vol. 2:521-527P.
    [97] Kamel, H. A.,Birchler, W., Liu, D.,McKinley, J. W., Reid, W. R. An automated approach to ship structure analysis. Trans. SNAME, 1969,77:233-268P.
    [98] 钱仍勋,吕云山.船舶结构有限元分析中分布载荷的离散化,中国造船,1996,2:44-52页.
    [99] 陈庆强,朱胜昌.船体结构强度直接计算中的外载荷节点化方法,船舶
    
    工程,1996,4:7-10页.
    [100] 朱胜昌,陈庆强,江南.整船准静态分析的有限元模型自动加载及载荷修正技术,船舶力学,1999,3(5):47-54页.
    [101] 汤明文.MSC.Patran中添加载荷施加模块程序的方法,MSC公司2001年中国用户会议论文集.
    [102] 任慧龙,冯国庆,戴愚志.基于PCL的船舶自动加载方法,MSC公司2002年中国用户会议论文集.
    [103] Newman, J. N. The Drift Force and Moment on Ships in Waves. Journal of Ship Research, 1967,11(1):51-60P.
    [104] O. M. Faltinsen. Sea loads on ships and offshore structures, Cambridge University Press, 1998.
    [105] 曹志浩,张玉德,李瑞遐.矩阵计算和方程求根,高等教育出版,1984.
    [106] 蔡大用,白峰杉.高等数值分析,清华大学出版社,1996.
    [107] J.H.威尔逊.代数特征值问题,石钟慈,邓健新译,科学出版社,1987.
    [108] W. Oettli, W. Prager. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math.,1964,6:405-409P.
    [109] Ohkawa, Yutaka. Concept and Outline of Mega-Float. VLFS' 96, 1996,45-52P.
    [110] Kashiwagi, M, Furukawa, C. A mode-expansion method for predicting hydroelastic behavior of a shallow-draft VLFS. Proc. 16th Int. Conf. on OMAE, 1997,179-186P.
    [111] Karniya N, Iwase H, Kita E. Parallel implementation of boundary element method with domain decomposition. Engineering Analysis with Boundary Elements, 1996, 18:206-216P.
    
    
    [112] Van Loan, C. Computional Frameworks for the Fast Fourier Transform. SIAM, Philadelphia, 1992.
    [113] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
    [114] G.H.戈卢布,C.F.范洛恩.矩阵计算,袁亚湘译,科学出版社,2001.
    [115] J. R. Phillips. Error and complexity analysis for a collocationgrid projection plus precorrected-FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels. in Proc. 1995 Copper Mountain Conf. Multigrid Methods, Apr. 1995.
    [116] R. Eatock Taylor and E. R. Jefferys. Variability of hydrodynamics Load Predictions for a Tension Leg Platform. Ocean Engineering, 1986,13(5): 449-490P.
    [117] J. N. Newman and P.D. Sclavounos. The computation of wave loads on large offshore structures. BOSS '88, Trondheim, Norway, 1988, 605-622P.
    [118] 王志军,舒志,李润培.三维水弹性力学中的结构广义质量计算.船舶工程,2001,2:5-8页.
    [119] 王小宁,崔志敏.MSC对船舶和海洋工程CAE仿真解决方案.中国造船,2000,41(1):82-86页.
    [120] 王小宁.亚太船舶行业MSC软件应用状况.中国造船,2001,42(1):86-89页.
    [121] MSC. Patran User' s Guide, Volume 4 Part 9: PCL and Customization.
    [122] MSC. Patran PCL Referance Manual, Volume Ⅰ: Function Description.
    [123] MSC. Patran PCL Referance Manual, Volume 2: Code Example.
    
    
    [124] 冯国庆.船舶结构疲劳评估方法研究.哈尔滨工程大学硕士学位论文,2003.
    [125] C.-H. Lee, J. N. Newman and Zhu X. An extended boundary integral equation method for the removal of irregular frequency effects. Int. J for Numerical Method in Fluids, 1996,23:637-660P.
    [126] Vavasis, S. A. Preconditioning for boundary integral equations. SIAM Journal of Matrix Analysis and Applications, 1992,13(3): 905-925P.
    [127] 刘应中,缪国平.船舶在波浪上的运动理论.上海交通大学出版社,1987.
    [128] 戴遗山.舰船在波浪中运动的频域与时域势流理论.国防工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700