烧结配料、高炉生产及调度过程优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉炼铁系统是钢铁冶金过程中的重要部分,整个流程工序繁多,工艺机理复杂,现象解释困难。对关键过程工艺操作建立优化模型,对维系生产稳定,提高生产效率,改进产品质量,降低生产成本具有重要作用。
     迄今为止,国内外已有许多针对高炉炼铁过程优化的研究,建立了各具特色的数学模型,但是这些研究中仍存在着一些不足,如烧结配料优化中仅着眼于化学成分的约束;高炉布料优化缺乏系统性的研究,模型的一些假设条件与现实难以吻合;高炉炉况判断及预测模型复杂,知识获取困难等。而对于“烧结-高炉”工艺过程的调度优化模型研究也鲜有报道。
     本文针对高炉炼铁系统中,烧结配料,高炉布料,高炉炉况判断以及区域调度分别建立了工艺预测及优化模型。
     ①烧结配料优化模型中:
     1)运用遗传算法对重钢烧结配料进行了优化,在保证烧结矿化学成分、物理性能等综合指标符合入炉要求的前提下,降低了成本,增加了烧结矿各项指标的稳定性。
     2)运用多元逐步回归方法,建立起了烧结矿物理性能与配矿的函数关系。对指导当前配料基础上的优化配矿有良好效果。解决配料过程中烧结矿冶金性能的约束可以用同样的方法。
     ②高炉布料模型中:
     1)运用传统力学理论,结合炉料布料过程中运动关系、炉料堆积堆角修正O/C比预测等模块建立了高炉无料钟布料模型。其中,对于料流轨迹采用了两条料股的方式,更符合物理规律,对于料面形状的处理采用了多段线性化处理。
     2)结合遗传算法,建立了基于目标O/C比布料操作优化模型,可较好的实现目标O/C比下的布料参数优化。
     3)建立1:15的物理模型,通过实验验证了模型主料流轨迹及下料流轨迹;并通过实验验证了操作参数对于不同粒度的原料布料堆尖位置的影响。
     4)建立了基于图像处理检测固体散料的方法,以此测量了实验布沙形成的堆角,研究了不同操作参量下堆积过程中堆角的变化规律。
     ③高炉炉况判断模型中:
     1)结合遗传算法以及模糊聚类,建立了基于数据挖掘的炉况判断模型。通过优化可自主选择最佳的建模方法及相应参数;可完全经由数据分析而自行生成基础规则库,打破传统专家系统知识获取的困难;模型简易,程序编写简单,易于维护与进一步的开发。今后将实时数据存库,定期重复上述过程,将会使系统具有自适应进化功能。
     2)提出以小波分析结合支持向量的技术路线对高炉生产中的透气性指数进行预测,通过与其它人工智能方法建立的预测模型比较,其预测精度高,拟合与推广能力也比较好。
     ④“烧结-高炉”工序调度优化模型中:
     1)以炼钢需求为订单,使用弧赋时Petri网(TAPN)对“烧结-高炉”工序进行建模,提出了包括关键操作的连续性函数、满足订单的供应函数和关键仓贮的稳定性函数在内的复合目标函数。最小化目标函数为目标通过遗传算法搜索最优的调度参数。
     2)以某炼铁厂生产数据代入模型,通过仿真优化后的调度参数:可以满足关键操作连续;可以保证最大限度完成订单;可以保持关键仓储最佳的稳定性。
     3)将模型逆转可实现物流追踪功能。
     4)模型进行简单的修改,引入检修计划,可以实现检修计划下的调度优化。
The procedure in blast furnace ironmaking includes many complicated sub process. It is hard to explain some phenomena clearly. Prediction and optimization for operation of the section can maintain stable process, improve quality and quantity of products and reduce the cost of products.
     Presently, there are some limits in the known forecasting and optimal model for ironmaking. Most model only emphasis on optimization of processing operation, there are no mature scheduling models reported or used in this section.
     Aiming at sinter proportioning, burden distribution of blast furnace, judge and prediction of operational state of BF and scheduling in“Sinter-BF”section, forecasting and optimal models are built.
     ①In the optimized model for sinter proportioning:
     1) GA (Genetic Algorithm) is used in optimizing sinter proportioning. The model can guarantee the chemical and physical demand of sinter and reduce the cost of sinter.
     2) Multiple stepwise regression is used to build the relation between physical property of sinter and sinter proportioning. It is helpful to optimize sinter proportioning.
     ②In the model for burden distribution of blast furnace:
     1) Combined Newton law of motion with angle correction, prediction of O/C, a simulation model for burden distribution of BF is built. In the model, two trajectory lines are used as burden flow trajectory, which is accord with reality. The burden profile is used linearization treatment.
     2) Aiming at minimal difference of O/C between model and object, model can optimize operational parameter accord to object O/C with GA.
     3) An experimental setup that proportion of size is 1:15 is used to verity the burden trajectory and effect of operational parameters to different size burden.
     4) Image processing method is used to study change law of dumping angel with experiment.
     ③In the model for intelligent forecasting and judge operational state of BF:
     1) An intelligent judging model for operational state of BF is built with GA and fuzzy cluster. The model can be built in data mining automatically.
     2) An intelligent forecasting model for permeability index is built with wavelet analysis and support vector machine. Compared with other intelligent techniques, the model has higher forecasting accuracy and generalized ability.
     ④In the scheduling model:
     1) The model integrated Petri Net and GA (genetic algorithm) as suitable tools for simulation and optimization of scheduling to sintering and BF process.
     2) By analysis, the conclusion is drawn that scheduling with optimized values can maintain continuity of key operations , can satisfy order of hot metal in maximal degree and can keep the best stability of key storages.
     3) The model can easily fulfill logistics traceability with reversing model.
     4) The model can fulfill optimization scheduling in maintenance plan.
引文
[1] Kurkin V. M., Kobelev V. A., Naroditskis A., Gurkin M. A., Nevraev V. P., Detkova T. V. Ways of optimizing the preparation of sintering-machine charges[J]. METALLURGIST, 2005,49(3-4). 79-82.
    [2] Willmott A. J. The effect of gas heat storage upon the performance of the thermal regenerator[J]. INTERNATIONAL JOURNAL OF HEAT MASS TRANSFEN, 1976, 19(8): 821.
    [3] Hellander J. How high emissivity ceramic coatings function advantage in furnace applications [J]. INDUSTRY HEATING, 1987, 57(8): 18-21.
    [4] Niemeije F. T. Hot blast stoves for the 21st century[J]. IRON AND STEEL, 2005, 40(7): 84-86.
    [5] J.Piret,N.Mousel R. Dhondt. Method for protectiong a tuyere assembly and a refractory lining of a furnace[J]. LUSEMBOURG, 2005, 26(1): 36-41.
    [6] Gecan Lou,OHRT, Herman. Tuyere cooling system[J]. CA, 2003, 12(11): 22-24.
    [7] Shen Y.S, Liu Z.M, Zhu T et al. The new technology and the partial thermotechnical computation for air-cooled blast furnace tuyere[J]. APPLIED THERMAL ENGINEERING, 2008, 6(1).
    [8] Martin R., Peter W.. Design and operation of a Gimbal Top distribution system for ironmaking plants[J]. IRONMAKING & STEELMAKING, 2007, 34(3): 221-223.
    [9]温良英,张生富,欧阳奇等.高炉风口CCD成像监测系统的研制[J].重庆大学学报(自然科学版), 2006, 29(3): 55-57.
    [10]吴俐俊,徐迅,周伟国.高炉冷却壁智能监测方法的研究[J].钢铁, 2008, 43(1): 13-16.
    [11]李家新,苏宇,唐成润.高炉炉底侵蚀状况动态监测模型的开发[J].炼铁, 2001, 20(2): 28-30.
    [12]董建园,东亚斌,段志善.高炉鼓风机状态监测与故障诊断系统[J].风机技术, 2002, (5): 54-57.
    [13]程正东,严定鎏,王玉珠等.高炉喷煤支管喷吹状态监测系统[J].钢铁, 2000, 35(3): 6-8.
    [14] Zhao H. B., Cheng S. S.. Optimization for the structure of BF hearth bottom and the arrangement of thermal couples[J]. JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING. 2006. 13(6). 497-503.
    [15] Kumar S. Heat transfer analysis and estimation of refractory wear in an iron blast furnace hearth using finite element method[J]. ISIJ INTERNATIONAL. 2005. 45(8). 1122-1128.
    [16]高征凯,杨天钧,赵永福,等.无钟布料仿真模型在美钢联Fairfield厂8号高炉的应用[A].全国炼铁生产技术会议暨炼铁年会,北京:冶金工业出版社,2002:646-653.
    [17]成兰伯.高炉炼铁工艺计算[M].北京.冶金工业出版社, 1991: 404-413.
    [18]那树人.炼铁计算[M].北京.冶金工业出版社. 2005: 1-43.
    [19]王道群.线性规划在烧结矿配料中的应用[J].中国冶金,2005,15(8).
    [20]张艳允.邯钢烧结配料优化的探讨[J].烧结球团, 2002, 27(2): 8-11.
    [21]田卫红,吴敏.烧结配料优化控制专家系统[J].烧结球团, 2006, (01).
    [22]向齐良,吴敏,侯奔,向婕.基于成分预测模型的矿石烧结配料专家优化方法[J].山东大学学报(工学版), 2005, (04).
    [23]杜春雷.烧结配料的优化控制[J].科技信息(学术研究) , 2008,(09):255-258.
    [24]杨兆祥,杜继红.利用烧结废气成分分析判断烧结过程[J].烧结球团, 1990, (02).
    [25]张军红,谢安国,沈峰满等.烧结矿质量预测中神经网络的结构优化[J].钢铁, 2003, (04).
    [26]宋强,王爱民.基于灰色神经网络的烧结碱度预测与仿真[J].微计算机信息, 2007, (28)
    [27]向齐良,吴敏,向婕等.基于多元模糊线性回归的烧结终点预测方法[J].控制工程, 2007.
    [28] Budzik R., Pirikow A. Sintering of ore mixes containing iron concentrates of a low SiO2 concentration of below 1,0%[J]. METALURGIJA. 2007, 46(4). 301-303.
    [29] Bhagat R. P., Chattoraj U. S., Goswami M. C., Singh D. P., Sil S. K. Effect of size parameters of mix ingredients on the porosity and reduction characteristics of sinter[J]. STEEL RESEARCH INTERNATIONAL. 2007, 78(6). 451-454.
    [30] Hauck T., Klima R., Kofler A., Trager B. Improved process control of a sinter plant. STAHL UND EISEN[J], 2003, 123(4): 69-73.
    [31] Bettinger D., Widi M., Schurz B., Stohl K., Ehler W., Zwittag E. VAiron sinter - integrated optimisation of ore preparation and sintering[J]. IRONMAKING & STEELMAKING. 2007, 34(5). 372-377.
    [32]杜鹤桂.离散单元法高炉无钟炉顶布料模拟研究[J].钢铁,1998,33(3).
    [33]刘云彩.高炉布料规律[J].北京:冶金工业出版社, 2005:24-32.
    [34]傅世敏,周国凡.高炉无钟炉顶布料规律的试验研究[J].钢铁, 1989, (06).
    [35] Yoshio O.. Development of a mathematical model for burden distribution in a blast furnace[J]. 44th Iron Making Conference, Detroit, proc, 1985:543-552.
    [36] Jung S.K., Chung W.S.. Improvement of gas flow through analyzing discharge behavior in the bunker used in blast furnace [J]. ISIJ INTERNATIONAL, 2001, 41(11):1324-1330.
    [37] Danloy G, J.Mignon, R.Munnix, et al.. A blast furnace model to optimize the burden distribution [J]. Ironmaking Conference Proceedings, 2001:37-48.
    [38] J. JIMENEZ, J. MOCHON, J.S.AYALA. Mathematical model of gas flow distribution in a scalemodel of a blast furnace shaft [J]. ISIJ INTERNATIONAL, 2004, 44:518-526.
    [39] M. HATTORI, B. IINO, A. SHIMOMURA. Development of burden distribution simulation model for bell-less top in a lLarge blast furnace and its application [J]. ISIJ INTERNATIONAL, 1993, 32(10):1070-1077.
    [40] M. NIKUS, H. SAXEN. Prediction of a blast furnace burden distribution variable [J]. ISIJ INTERNATIONAL, 1996, 36:1142-1150.
    [41]姜慧研,许桂清,周建常.神经网络专家系统在高炉布料控制中的应用[J].基础自动化, 2000, (1):1-3.
    [42] Shimizu M., Naito M. Technological progresses and researches on blast furnace ironmaking in the new century[J]. TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2006, 92(12): 694-702.
    [43] Utsugi K., Obata A., Sato H. GO-STOP control using optical brain-computer interface during calculation task[J]. IEICE TRANSACTIONS ON COMMUNICATIONS. 2008, 7(91): 2133-2141.
    [44] Zhou Z. M. Measurement of time-dependent fractal dimension for time series of silicon content in pig iron[J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS. 2007, 37(6): 133-138.
    [45] Martin R. D., Obeso F., Mochon J., Barea R., Jimenez J. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools[J]. IRONMAKING & STEELMAKING. 2007, 34(3): 241-247.
    [46] Bhattacharya T. Prediction of silicon content in blast furnace hot metal using Partial Least Squares (PLS)[J]. ISIJ international. 2005, 45(12). 1943-1945.
    [47] Saxen H., Brannbacka J. Dynamic model of liquid levels in the blast furnace hearth[J]. SCANDINAVIAN JOURNAL OF METALLURGY. 2005, 34(2). 116-121.
    [48]成健,李绍珍.模糊矩阵在高炉软融带可视化中的应用[J].山东大学学报(工学版), 2003, (06).
    [49] Togobitskaya D. N., Otorvin P. I., Bel A. I., Grin A. Y. Automated system for monitoring and controlling the slag regime in blast-furnace smelting[J]. METALLURGIST. 2004, 48(3-4). 147-152.
    [50] Gamero F. I., Colomer J., Melendez J., Warren P. Predicting aerodynamic instabilities in a blast furnace[J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 2006, 19(1): 103-111.
    [51] Kostial I., Nemcovsky P., Dorcak L., Terpak J., Petras I., Rogal M., Halmo M. Real time blast furnace modelling[J]. METALURGIJA. 2001, 40(3): 147-150.
    [52] Sarkar S., Gupta G. S., Kitamura S. Y. Prediction of raceway shape and size[J]. ISIJ INTERNATIONAL. 2007, 47(12): 1738-1744.
    [53] Korobov D., Yusfin Y. S., Janke D. Thermodynamic modelling of the injection of waste products into a blast furnace[J]. STEEL RESEARCH INTERNATIONAL. 2003, 74(7). 403-412.
    [54] Rasul M. G., Tanty B. S., Mohanty B. Modelling and analysis of blast furnace performance for efficient utilization of energy[J]. APPLIED THERMAL ENGINEERING. 2007,27(1): 78-88.
    [55] Alvarez R., Diez M. A., Barriocanal C., Diaz-Faes E., Cimadevilla J. LG. An approach to blast furnace coke quality prediction[J]. FUEL. 2007, 86(14): 2159-2166.
    [56] Nogami H., Yagi J., Sampaio R. S. Exergy analysis of charcoal charging operation of blast furnace[J]. ISIJ INTERNATIONAL. 2004, 44(10:. 1646-1652.
    [57]叶匡吾.高炉炉料结构与精料[J].烧结球团.2001.5.
    [58]时逢雷,徐春玲,张佃平,顾华杰,刘建峰.试谈配料方案与质量预测的优化[J].莱钢科技, 2006, (03).
    [59]徐伟,王荣成,刘红芳,朱远星,何明杰,何天明.蚁群算法在烧结混匀矿配料中的应用[J].冶金自动化, 2007, (06).
    [60]姚志超等.考虑性能的烧结优化配料模型.包头钢铁学院学报,2002,21(3): 263-267.
    [61]蒋大军等.铁矿石的价值评价与线性规划优化配料.烧结球团,1999,24(5):44-48.
    [62]梁中渝等.铁矿粉配料烧结经济评价体系的研究.烧结球团,2003,28(4):4-7.
    [63] Gabor R., Aniko E.. Genetic algorithms in computer aided design[J]. COMPUTER-AIDED DESIGN,2003,35:709-726.
    [64]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [65]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002,
    [66]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [67]吴志远,邵惠鹤,吴新余.基于遗传算法的退火精确罚函数非线性约束优化方法[J].控制与决策,1998,7(2):9~13.
    [68]唐启义,冯光明.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [69]雷英杰.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.
    [70]文光远.铁冶金学.重庆:重庆大学出版社,1993.
    [71]宋建成.高炉炼铁理论与操作.北京:冶金工业出版社,2005.
    [72]段祥光,张文军等.包钢低硅烧结矿开发研究.中国钢铁年会论文集.北京:冶金工业出版社,2005,(2):222-224.
    [73] Saxen H., Pettersson F. Genetic evolution of novel charging programs in the blast furnace[J]. TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS. 2006, 59(5). 593-605.
    [74]陈令坤,于仲洁,周曼丽.高炉布料数学模型的开发及应用[J].钢铁, 2006, 41(11): 13-16.
    [75]经文波,陈小雷.无料钟高炉布料数学模型研究[J].冶金自动化, 2003, 27(1): 29-31.
    [76]阿尔费洛夫.存仓装置[M].北京:机械工业出版社, 1958.
    [77]王平.串罐无料钟料流轨迹与宽度测定及其分析[J].钢铁, 2003, (3):8-12.
    [78]刘慰俭,叶肇宽.无料钟高炉炉顶设备中布料的研究工作[J].钢铁, 1983, (8):1-7.
    [79] REM T.Z., JIN X., BEN H.Y.,et al. Burden Distribution for Bell-less Top With Two Parallel Hopper [J]. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL, 2006, 13(4):14-17.
    [80] V.R.Radhakrishman, K.Maruthy Ram. Mathematical model for predictive control of the bell-less top charging system of a blast furnace [J]. JOURNAL OF PROCESS CONTROL, 2001, (11):565-586.
    [81]吴敏,田超,曹卫华.无料钟高炉布料模型的研究与应用[J].控制工程, 2006,(9):490-493.
    [82]余艾冰,杜鹤桂.高炉无钟炉顶炉料运动的理论解析[J].东北大学学报, 1986, (4):71-78.
    [83]朱清天,程树森.高炉料流轨迹的数学模型[J].北京科技大学学报, 2007,(9):932-936
    [84] Y. KAJIWARA, T. JIMBO, A. KOMETANI. Application of Simulation Model for Burden Distribution to Actual Operations [J]. ISIJ INTERNATIONAL, 1984, 24:379-386.
    [85] B.Y.Hay, A.W.Kay, C.W.Thom. Burden distribution with single lock hopper bell-less top [J]. report published by stelco Inc, Hamilton, Ontario, Candada,
    [86] Y. KAJIWARA, J. Takao, S. Toshihiko. Development of a simulation model for burden distribution at blast furnace top [J]. ISIJ INTERNATIONAL, 1983, (12):1045-1052.
    [87]杨天钧,段国绵,周渝生等.高炉无料钟布料炉料分布预测模型的开发研究[J].钢铁, 1991, 26(11):10-14.
    [88] M. ICHIDA, M. TAKAO, K. KUNITOMO, et al.Burden Descent Velocity near Burden Surface in Blast Furnace [J]. ISIJ INTERNATIONAL, 1996, 36:493-502.
    [89] Sadd MH, Adhikari G, Cardoso F.DEM. Simulation of Wave Propagation in Granular Materials [J]. POWDER TECHNOLOGY, 2000, 109(3):222-233.
    [90] J. Fraczek, A Zlobecki, J. Zemanek. Assessment of angle of repose of granular plant material using computer image analysis [J]. JOURNAL OF FOOD ENGINERING, 2007, 83:17-22.
    [91] Santomaso, P. Lazzaro, P. Canu. Powder flowability and density ratios: the impact of granular packing [J]. CHEMICAL ENGEERING SCIENCE, 2003, 58:2857-2874.
    [92] Hill James M., Cox Grantm M. On the Problem of the Determination of Force Distributions in Granular Heaps[J]. THE QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2002, 55:655-668.
    [93] Mio H., Yamamoto K., Shimosaka A., et al. Modeling of solid particle flow in blast furnaceconsidering actual operation by large-scale discrete element method[J]. ISIJ INTERNA- TIONAL, 2007, 47(12). 1745-1752.
    [94] J. Pierre, F. Yoel, P. Olivier. A constitutive law for dense granular flows[J]. NATURE, 2006, 441(6): 727-730.
    [95] Hermann H. J. Granular matter[J]. PHYSICA A, 2002, (313): 188-210.
    [96] Pudasaini Shiva P., Hutter K., Hsiau S.S, et al. Rapid flow of dry granular materials down inclined chutes impinging on rigid walls[J]. PHYSICS OF FLUIDS, 2007.
    [97] Santomaso A. C., Canu P. Transition to movement in granular chute flows[J]. CHEMICAL ENGINEERING SCIENCE, 2001, 56(11): 3563-3573.
    [98] Rafael C.G., Richard E.W., Steven L.E..Digital Image Processing Using Matlab[M].Beigjing:Publishing House of Electronics Industry,2005.
    [99]刘文宇;卢仁良.旋转变换在平几中的应用[J].天府数学,1999,1(10):29-30.
    [100]王筱留.钢铁冶金学(炼铁部分).第二版(M).冶金工业出版社. 2000,1.
    [101]埜上洋.高炉数学模型的改进及其在实际操作中的应用[J].世界钢铁,2003(5):13-21.
    [102] K.Mastuda et al. Applications of artificial intelligence to operation control of Kobe No.3 blast furnace[J]. Proc. of the Sixth International Iron and Steel Congress, Nagoya, Japan, ISIJ. 1990,5:91-94.
    [103]方文等.宝钢三高炉炉况判定模型的完善和优化[J].宝钢技术,2002.2.
    [104]刘祥官等.莱钢1号750m3高炉智能控制专家系统[J].钢铁,2002.8.
    [105] H. Saxen,et al. State realization with exogenous variables-A test on blast furnace data[J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH,1996.
    [106] L.A.Dobrzanski,et al. Application of a neural network in modeling of hardenability of constructional steels[J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1998:78.
    [107] M.Sakarai, et al. Operation control system of a blast furnace by artificial intelligence[J]. IRON & STEELMAKER, 1989,16(11) ,.
    [108] W.Kowalski等.蒂森钢公司高炉过程控制技术.国外钢铁,1997.1.
    [109]杨伦标,高英仪.模糊数学原理及应用.华南理工大学出版社,广州,1995.
    [110] R. Ebrahim. Fuzzy logic programming.Fuzzy sets and systems,2001,11(7):215-230.
    [111]吴沁奕等.专家系统中基于模糊对象匹配的.北京理工大学学报.2002,22(4):439-444.
    [112] Manuel V.R.. Reinforcement Learning in the fuzzy classifier system[J]. EXPERT SYSTEMS WITH APPLICATIONS,1998,14:237-247.
    [113] A.Lekova,D.batanov.Self-testing and self-learning fuzzy expert system for technological process control[J].COMPUTER IN JNDUSTRY,1998,37:135-141.
    [114]张伦武等.大气腐蚀环境及环境因素模糊聚类分析.中国腐蚀与防护学报,2003,23(2):112-115.
    [115]徐海量,陈亚宁.洪水灾害等级划分的模糊聚类分析[J].干旱区地理,2000,23(4):350-352.
    [116]黄力明等.基于二阶段的模糊C-均值算法的模糊聚类分析研究.华东船舶工业学院学报,2000,14(2).
    [117]张志涌等.精通Matlab6.5版.北京:北京航空航天大学出版社.2003.
    [118]吴晓莉等. Matlab辅助模糊系统设计.西安:西安电子科技大学出版社.2002:158-165.
    [119]刘琦.高炉基本操作制度的选择[J].炼铁,2004.23(1).
    [120]周传典(主编).高炉炼铁生产技术手册(M).北京:冶金工业出版社,2002:130-134.
    [121]于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围.中国科学,2002,32(2):274-280.
    [122]姜园等.对聚类算法普遍存在问题的解决办法.电路与系统学报,2004.6.
    [123]李青等.一维自组织映射聚类数的自适应确定.火力与指挥控制,2004.8.
    [124]刘小览,赵英凯,陆金桂.数据挖掘中Fuzzy C-means的自适应聚类算法.南京化工大学学报,2001.9.
    [125] Nello C., John S.T.. An Inroduction to Support Vector Machines and Other Kernel–based Learning Methods (M).Bei- jin: China Machine Press, 2005:93-160.
    [126] Kim K., T.K. Kim, J. Kittler. Locally linear discriminant analysis for multimodally distribut- ed classes for face recognition with a single model image[J].IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005,27 (3):318-327.
    [127] K. Polat, S. Güne?, A. Arslan.A cascade learning system for classification of diabetes disease: Generalized Discriminant Analysis and Least Square Support Vector Machine[J]. EXPERT SYSTEMS WITH APPLICATIONS. 2008,34(1):482-487.
    [128] Tsai C. F. Financial decision support using neural networks and support vector machines[J]. EXPERT SYSTEMS. 2008,25(4). 380-393.
    [129] Yazdani D., Bakhshai A., Joos G. Multifunctional grid-connected multimodule power converters capable of operating in single-pulse and PWM switching modes[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS. 2008, 23(3). 1228-1238.
    [130] An Q., Yang B. J. A multi-crop identification model based on stepwise removal learning-support vector machine using remote sensing images[J]. NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH. 2007, 50(5). 1013-1019.
    [131] Zhang W., Tang X. J., Yoshida T. Text classification toward a scientific forum[J]. JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING. 2007, 16(3). 356-369.
    [132] Zhao J., Cheng X. P. Field pest identification by an improved Gabor texture segmentation scheme[J]. NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH. 2007, 50(5).719-723.
    [133] Vert J. P., Qiu J., Noble W. S. A new pairwise kernel for biological network inference with support vector machines[J]. BMC BIOINFORMATICS. 2007,(8):10-15.
    [134] Sikorski A., Korzeniewski M. Comparison of properties of the three-level DC/AC inverter controlled by DTC-ST and DTC-SVM methods[J]. PRZEGLAD ELEKTROTECHNICZNY, 2008, 84(6): 117-120.
    [135] Lai F., Magoules F., Lherminier F. Vapnik's learning theory applied to energy consumption forecasts in residential buildings[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS. 2008, 85(10): 1563-1588.
    [136] Huang C. L., Dun J. F. A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J]. APPLIED SOFT COMPUTING. 2008, 8(4). 1381-1391.
    [137]周伟(主编).MATLAB小波分析高级技术[J].西安,西安电子科技大学出版社,2006:1-9.
    [138] S. Osowski, K. Garanty. Forecasting of the daily meteorological pollution using wavelets and support vector machine[J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTEL- LIGENCE.2006,(10):1~11.
    [139] Peng H., Pei Z., Wang J. Constructing multi-resolution support vector regression modelling[J]. ADVANCES IN ARTIFICIAL INTELLIGENCE. 2005, 38(9): 942-945.
    [140] Mielniczuk J., Wojdyllo P. Wavelets for time series analysis-a survey and new results[J]. CONTROL AND CYBERNETICS. 2005, 34(4): 1093-1125.
    [141] Muneeswaran K., Ganesan L., Arumugam S., Harinarayan P. A novel approach combining Gabor wavelet and moments for texture segmentation[J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING. 2005, 3(4). 559-572.
    [142] L.X.Tang,G.S,Wang and J.Y. Liu. A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry. COMPUTERS & OPERATIONS RESEARCH, 2007(34), 3001-3015.
    [143] B. Behdani, M. R. Pishvaie and D. Rashtchian. Optimal scheduling of mixed batch and continuous processes incorporating utility aspects [J]. CHEMICAL ENGINEERING AND PROCESSING, 2007, 46(4):271-281.
    [144] Kalantari M., Akbari M. K. Fault-aware grid scheduling using performance prediction by workload modeling[J]. JOURNAL OF SUPERCOMPUTING. 2008, 46(1). 15-39.
    [145] Pecora J. E., Ruiz A., Soriano P. Minimization of the wood density variation in pulp and paper production[J]. INFOR. 2007, 45(4): 187-196.
    [146] Atamturk A., Zhang M. H. The flow set with partial order[J]. MATHEMATICS OFOPERATIONS RESEARCH. 2008, 33(3): 730-746.
    [147] Lee S. Y., Cho C. H. Load balancing for minimizing execution time of a target job on a network of heterogeneous workstations[J]. JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, PROCEEDINGS. 2000, 19(11): 174-186.
    [148] Drozdowski M., Wolniewicz P. Experiments with scheduling divisible tasks in clusters of workstations[A]. EURO-PAR 2000 PARALLEL PROCESSING, PROCEEDINGS. 2000, 19: 311-319.
    [149] Snell Q., Clement M., Jackson D., Gregory C. The performance impact of advance reservation meta-scheduling[A]. JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, PROCEEDINGS. 2000, 19(11): 137-153.
    [150] Da Silva F., Scherson I. D. Improving parallel job scheduling using runtime measurements[A]. JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, PROCEEDINGS. 2000, 19(11): 18-38.
    [151] Petrini F., Feng W. C. Time-sharing parallel jobs in the presence of multiple resource requirements[A]. JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, PROCEEDINGS. 2000, 19(11): 113-136.
    [152] Or?un, I. K. Altinel and ?. Horta?su.. General continuous time models for production planning and scheduling of batch processing plants: Mixed integer linear program formulations and computational issues[J]. COMPUTERS AND CHEMICAL ENGINEERING, 2001,(25): 371-389.
    [153] L. Mockus and G. V. Reklaitis.. Continuous time representation approach to batch and continuous process scheduling. 1. MINLP formulation[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999,38: 197-203
    [154] N. F. Giannelos and M. C. Georgiadis.. A simple new continuous-time formulation for short-term scheduling of multipurpose batch processes[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002,41: 2178-2184
    [155] C. A. Méndez, J. Cerdá, I. E. Grossmann et. al.. State-of- the-art review of optimization methods for short-term scheduling of batch processes[J]. COMPUTERS AND CHEMICAL ENGINEERING, 2006,30: 913-946.
    [156] P. Castro, A. P. F. D. Barbosa-Póvoa and H. Matos. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001,40: 2059-2068.
    [157] M. A. Shaik and C. A. Floudas. Unit-specific event-based continuous-time approach for short-term scheduling of batch plants using RTN framework[J]. COMPUTERS ANDCHEMICAL ENGINEERING, 2008,32: 260~274.
    [158] S. A. Sadrieh, M. Ghaeli,P. A. Bahri et.al.. An integrated Petri net and GA based approach for scheduling of hybrid plants[J]. COMPUTERS IN INDUSTRY, 2007,58: 519-530.
    [159]曹政才,乔非.基于有色赋时Petri网的半导体生产线建模技术研究[J].系统仿真学报,2007,19(1):210-213.
    [160] S.Y. LIN, L.C. FU, T.C. Chiang et.al. Colored Timed Petri-Net and GA Based Approach to Modeling and Scheduling for Wafer Probe Center[C]// In: Proceeding of the 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION. TAIPEI,2003:1434-1439.
    [161] C. Girault and R. Valk.系统工程Petri网[M],电子工业出版社,北京, 2005:55-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700