基于支持向量机的烧结终点预报与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在烧结生产中,烧结终点是与烧结机质量、产量和成本密切相关的重要工艺参数,是保证高炉获得优质技术指标的关键所在。烧结终点位置适宜且保持稳定,可以提高成品率并充分利用烧结面积,在保证质量的同时得到最大生产率,降低能耗。但由于烧结生产具有较大的时滞性和动态时变性,以及用于判断和预报终点的参数无法直接检测等原因,因此,长期以来烧结终点控制一直是钢铁企业自动化过程控制中的难点。
     本文结合莱钢265m2烧结机的具体工艺生产特点,紧紧围绕预报和稳定控制烧结终点,以提高烧结质量这一主题,在烧结终点预报模型、烧结终点控制方法和系统设计、机尾断面红外图像在线判断烧结终点、优化控制烧结终点等方面展开研究,取得了如下创新性的研究成果:
     (1)在烧结终点预报方面,基于支持向量机理论(SVMs)提出了一种预报烧结终点的新方法。该方法以原料参数作为预报参数,采用支持向量机方法对莱钢265m2烧结机烧结过程进行预报,建立了烧结终点的长期预报模型。通过与BP神经网络建立的预报模型进行比较表明,支持向量机良好的泛化性能更适合于动态复杂的烧结过程。本文提出的预报模型有较强的泛化能力,能够准确的预报烧结终点。
     (2)在烧结终点控制方面,提出烧结终点模糊控制策略,将烧结终点短期预报模型应用于烧结终点模糊控制系统中。以正常拐点风箱的废气温度(BRT)和风箱废气温度曲线拐点(BRP)两种预报参数分别实现烧结终点短期预报。设计模糊控制策略控制烧结终点,并建立烧结终点控制系统验证其有效性。
     针对烧结过程非线性特性,提出基于最小二乘支持向量机(LS-SVMs)建模的预测控制算法。首先采用LS-SVMs离线建立了烧结过程的非线性模型;然后在系统运行过程中,将离线模型在每一个采样周期关于当前采样点进行线性化,采用广义预测控制算法(GPC)进行控制器设计,通过调节台车速度控制烧结风箱废气温度,从而实现烧结终点的间接控制。通过Simulink建立烧结过程预测控制系统,验证其控制效果。从实验结果可看出,设计的烧结过程的预测控制系统具有良好的控制效果,同时系统易于实现,对进一步的实际应用有参考指导意义。
     (3)在烧结质量判断方面,设计红外CCD装置采集烧结机尾断面图像,提取其特征信息,成功地建立支持向量机多分类器判断烧结状况(欠烧、过烧、正常),进而建立烧结矿质量预报模型,实现对烧结矿生产在线实时的综合评价和烧结终点的有效控制。
     (4)在烧结过程参数优化模型与控制方面,针对烧结过程复杂的优化控制问题,建立了烧结过程参数优化模型,采用聚类的匹配优化算法获得最优的操作参数,对整个烧结过程控制(配料控制、混合料水分控制、点火炉燃烧控制、烧结过程温度控制)进行操作优化指导。优化后的参数改善了现场的控制效果,提高了生产效率,并且减少了能源消耗。
In the sintering production, Burning Through Point (BTP) is a very important technical parameter related to sinter quality, quantity and cost, and which is the key point for blast furnace to get high grade technical target. The right position and keeping stabilization of BTP can improve product ratio and use sinter area completely, and maximizes the sinter production rate, and decrease the energy cost. But because of the long-time delays and dynamic complexity of sintering process and the parameters for judge and analyze the BTP can not be measured directly, it is difficult to solve the BTP control problem. Therefore, this problem has been considered as a key difficulty of steel enterprise automation in a very long time.
     According to the particular sintering production of Laiwu Iron and Steel Corporation, the dissertation pays more attention to the prediction and control of BTP for the improvement of sintering quality. The following aspects are investigated in the dissertation: the BTP prediction model and control method, on-line inference the sintering quality based on cross-section infrared thermal imaging of discharge end, optimization and control in the sintering process. These researches earn theoretical significance and practical value. The main creative works of the dissertation are as follows:
     (1) In the BTP prediction, a new prediction method based on support vector machines (SVMs) is presented for BTP. The long-time prediction model of BTP is constructed for Laigang No.2 265m2 Sinter machine. The results indicate SVMs outperform the three-layer Backpropagation (BP) neural network in predicting BTP with better generalization performance, and are satisfactory.
     (2) In the BTP control, the fuzzy control strategy is investigated for BTP. The short-time prediction model is applied to the BTP fuzzy control system. The BTP short-time prediction model is constructed via burn rising temperature(BRT) and burn rising position(BRP). The application results have verified the effectiveness of the control system.
     A predictive control algorithm based on least squares support vector machines (LS-SVMs) model for the sintering process with strong nonlinearity is presented. The nonlinear offline model is built via LS-SVMs. In the process of system operation, the offline model is linearized at each sampling instant, and the generalized predictive control (GPC) algorithm is employed to the controller design. The GPC controller is designed to adjust strand speed for sintering temperature control. The performance is demonstrated by several simulation results. The results show the effectiveness of the presented algorithm.
     (3) In the sintering quality, the reasonable feature parameters are obtained by processing the cross-section infrared thermal imaging of discharge end. The multi-class classifier based on SVMs is constructed to on-line inference the sintering quality (undersintering, oversintering and normal).
     (4) In the sintering process optimization and control, the parameters optimization model is constructed to guide the sintering process control. The optimum parameters are obtained by using matching optimization algorithm based on clustering method. The sintering production quality is improved obviously and the energy consumption is decreased.
引文
[1]马竹梧,邱建平.钢铁工业自动化.北京:冶金工业出版社, 2000.
    [2]申燕.模糊控制在烧结终点控制中的应用,冶金自动化. 1998, (2): 24 - 27.
    [3] Dawson P. R. Recent development in iron ore sintering, Ironmaking and Steelmaking. 1993, 20(2): 135 -159.
    [4]范晓慧,王海东.烧结过程数学模型与人工智能.长沙:中南大学出版社, 2002.
    [5]徐瑞图.烧结过程基础理论研究.北京:北京科技大学, 1998.
    [6]习乃文,黄天正,谢良贤.烧结技术.昆明:云南人民出版社, 1993.
    [7]唐贤容,张清岑.烧结理论与工艺.中南工业大学出版社, 1992.
    [8]李秋梅,王旭永.太钢二烧100m2烧结机主要工艺和设备特点,烧结球团. 1998, 23(2): 26 - 28.
    [9] Hattori M., Fukuyo H. Development of uniform and stable sintering technology in Keihin sintering plant, NKK技报. 1992, (138): 8 - 15.
    [10]龚一波,黄典冰.烧结料层温度分布模型解析解及其统一形式,北京科技大学学报. 2002, 24(4): 395-399.
    [11]王彩琴,孙瑰丽,陈铁军.莱钢烧结机网络化控制系统,山东冶金. 2005, 27(4):
    [12]刘奕兵.烧结过程的数学模型及计算机仿真研究.杭州:浙江大学, 2006.
    [13] Young R.W. Dynamic model of sintering process, Ironmaking and Steelmaking. 1978: 25-31.
    [14] Augustin M., Arbeithuber C., Jorgl H.P. Modeling and simulation of an iron ore sinterstrand. Proc. EUROSIM Congress '95. Vienna, Austria: 1995.
    [15] Cummig M. J., Parkin W. J., et al. Modeling and simulation of iron ore sintering. 4th International Symposium on Agglomeration. Toronto, Canada: 1985. 763-776.
    [16] Cumming M. J., Thurlby J. A. Developments in modelling and simulation of iron ore sintering, Ironmaking and Steelmaking. 1990, 17(4): 245-254.
    [17] Dash I. R., Rose E. Simulation of a sinter strand proces, Ironmaking and Steelmaking. 1977: 321-328.
    [18] Rose E., Anderson W.R.M., Orak I.M. Simulation of sintering. IFAC World Congr. 1993.
    [19] Rose E., Dash I. R. Simulation of a sinter strand process, Ironmaking and Steelmaking. 1977: 321-328.
    [20] Tamure N., Konishi M., et al. Mathmatical approach for the optimization of sintering process operation. IFAC Symposium on Automation in Mining,Mineral and Metal Processing. Tokoyo,Japan: 1986. 203-208.
    [21] Patisson F., Bellot J.P. Mathematical modelling of iron ore sintering process, Ironmaking and Steelmaking. 1991, 18(2): 89.
    [22]夏德宏,焦红蕾,张刚.烧结工序中燃烧与传热过程的数值模拟,工业炉. 2006, 28(3): 30 - 32.
    [23] Errigo V., Riccardi C., et al. Waste gas analysis under grate as a new means of sinter process control. 4th International Symposium on Agglomeration. Toronto, Canada: 1985. 153.
    [24]向启良,吴敏,向婕.基于多元模糊线性回归的烧结终点预测方法,控制工程. 2007, 14(6): 603-605.
    [25] Terpak J, Dorcak L, Kostial I, et al. Control of burn through point for agglomeration belt, Metalurija. 2005, 44(4): 281 - 284.
    [26] Straka G. Process control model for sinter machine speed, Metallurgical Plant and Technology International. 1992, (5): 78-80.
    [27] Kanjilal P.P., Rose E. Application of adaptive prediction and control method for improved operation of the sintering process, Ironmaking and Steelmaking. 1986, 13(6): 289-293.
    [28]范晓慧.烧结过程控制专家系统的研究.长沙:中南工业大学, 1996.
    [29]范晓慧,申炳昕,陈许玲.烧结生产自动控制新技术,烧结球团. 2002, 27(1): 28 - 35.
    [30] Kawaguchi T., Yoshinaga M., et al. Development and application of an integrated simulation model for iron ore sintering. Ironmaking Proceedings. 1987. 99 -106.
    [31]龙红明,范晓慧,刘代飞.铁矿石烧结工艺参数优化模型的设计与应用,材料与冶金学报. 2006, 6(4): 248-251.
    [32] Ishchenko A.D., Monya G.M., Bensman L.G., et al. Automated sintering machine process control system, Steel in the USSR. 19(9): 377-378.
    [33]王海东,邱冠周,黄圣生.烧结过程控制技术的发展,矿冶工程. 1999, 19(3): 3 - 6.
    [34]郗安民,刘晓超,刘颖.烧结终点位置的模糊控制,冶金设备. 2000, 119(1): 19 - 22.
    [35]刘玉长,桂卫华,周孑民.基于软测量技术的模糊烧结终点控制研究,烧结球团. 2002, 27(2): 27 - 30.
    [36]王介生.烧结过程软测量建模综述,烧结球团. 2007, 32(4): 31 -35.
    [37]龙红明,范晓慧,陈许玲.基于智能方法的铁矿石烧结过程建模,冶金自动化. 2006, (6):
    [38]郑鹿鸣.烧结终点微机控制系统的原理及数学模型,冶金自动化. 1989, 13(6): 3-6.
    [39]李桃.烧结过程智能实时操作指导系统的研究.中南大学, 2000.
    [40]李桃,范晓慧,姜涛.基于热状态参数的烧结终点自适应预报,烧结球团. 2000, 25(2): 1 - 3.
    [41] Nath N.K., Mitra K. Optimization pressure for iron ore sintering by genetic algorithm, Ironmaking and Steelmaking. 2004, 31(3): 199 - 206.
    [42]沙拉比M.E.H.烧结废气中CO2/CO、压降和烧结终点之间的关系,国外烧结球团. 1989, (2): 26 - 29.
    [43]松田浩一.模糊推理及神经网络在烧结过程中的应用.第六届国际造块会议论文选.北京: 1994. 427 - 440.
    [44] Xu C.H, Wu M, She J.H, et al. Intelligent integrated model for predicting burn-through point based on gas temperature distributio. Proceedings of the 17th IFAC. Seoul, Korea: 2008. 1976 - 1981.
    [45]中岛龙一.铁与钢. 1990, (6): 825 - 831.
    [46]寇传乾.基于废气温度上升点的烧结终点预报系统,烧结球团. 2007, 32(5): 27 - 31.
    [47]和田隆,服部道纪.京滨烧结厂均匀稳定烧结技术的开发.第六届国际造块会议论文选.北京: 1994. 394 - 407.
    [48]深川卓美,井山俊司. Sinter operation control system with artificial intelligence,川崎制铁技报. 1991, 2(3): 203 - 209.
    [49] Corson R.C.烧结厂控制的新发展,烧结球团. 1984, (5): 97 - 108.
    [50] Vescovi M.R., Lamega M.M., Farquhar A. Modeling and simulation of a complex industrial process, IEEE Expert. 1997: 42 - 46.
    [51]谌晓文,邬捷鹏.基于BP神经网络的烧结终点预测模型,烧结球团. 2006, 31(4): 21 -26.
    [52] Arbeithuber C., Jorgl H. P., Raml H. Fuzzy control of an iron ore sintering plant, Control Engineering Practice. 1995, 3(12): 1669 - 1674.
    [53] Kwon W. K., Kim Y. H., Lee S.J., et al. Event-based modeling and control for the burnthrough point in sintering processes, IEEE Transactions on Control Systems Technology. 1999, 7(1): 31 - 41.
    [54] Kim Y. H., Kwon W. K. An application of min-max generalized predictive control to sintering processes, Control Engineering Practice. 1998, 6(8): 999 - 1007.
    [55] Hu J. Q., Rose E. Generalized predictive control using a neuro-fuzzy model, International Journal of Systems Science. 1999, 30(1): 117-122.
    [56] Hu J. Q., Rose E. Predictive fuzzy control applied to the sinter strand process, Control Engineering Practice. 1997, 5(2): 247 -252.
    [57] Hu J. Q. Adaptive fuzzy predictive control using a RBF-based neuro-fuzzy model with application to sintering. University of Sheffield, 1997.
    [58]郭立新,李浩,黄秋野.烧结机模糊控制规则设计及其仿真,东北大学学报. 2006, 27(10): 1075-1078.
    [59]向婕.一种基于改进遗传算法的模糊神经网络控制器及其在烧结终点控制中的应用,信息与控制. 2008, 37(2): 235 - 241.
    [60]宋婕.济钢烧结生产过程控制系统的开发与应用,冶金自动化. 2004, (1): 66 - 67.
    [61] Vapnik V.N. The Nature of Statistical Leaning Theory. New York: Springer-Verlag, 1995.
    [62] Vapnik V.N. Statistical Learning Theory. New York: John Wiley & Sons, 1998.
    [63]张学工.统计学习理论的本质.北京:清华大学出版社, 2000.
    [64] Sch?lkopf B., Burges C.J.C., Smola A.J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1998.
    [65] Sch?lkopf B., Smola A.J. Learning with Kernels. Cambridge, MA: MIT Press, 2002.
    [66] Cortes C., Vapnik V.N. Support vector networks, Machine Learning. 1995, 20(3): 273-297.
    [67] Müller K.R., Smola A.J., R?tsh G., et al. Using support vector machines for time series prediction. Cambridge, MA: MIT Press, 1998.
    [68] Van Gestel T., Suykens J.A.K., et al. Financial time series prediction using Least Squares Support Vector Machines within the evidence framework, IEEE Transactions on Neural Networks. 2001, 12(4): 809-821.
    [69] Osuna E., Freund R., Girosi F. Improved training algorithm for support vector machines. Neural Networks in Signal Processing'97. 1997.
    [70] Lin C.J. On the convergence of the decomposition method for support vector machines, IEEE Transactions on Neural Networks. 2001, 12(6): 1288-1298.
    [71] Joachims T., SVMlight: an Implementation of Support Vector Machines, Version: 5.00.
    [72] Joachims T. Making large-scale SVM learning practical. Cambridge, MA: MIT Press, 1998.
    [73] Platt J.C. Fast training of SVMs using sequential minimal optimization. Cambridge, MA: MIT Press, 1998.
    [74] Duric P.M. Model selection by cross-validation. IEEE International Symposium on Circuits and Systems. 1990. 2760-2763.
    [75]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社, 2000.
    [76] Kre?el U. Pariwise classification and support vector machines. Cambridge, MA: MIT Press, 1998.
    [77] Platt J.C., Cristianini N., Shawe-Taylor J. Large margin DAGs for multiclass classification. Cambridge, MA: MIT Press, 1998.
    [78] N?rgaard M., Ravn O., Poulsen N.K., et al. Neural Networks for Modelling and Control of Dynamic Systems. London: Springer-Verlag, 2000.
    [79] Foresee F. D., Hagan M. T. Gauss-Newton approximation to Bayesian regularization. Proceedings of the International Joint Conference on Neural Networks. 1997.
    [80] IWAMOTO M., HASHIMOTO K., et al. Application of fuzzy control for iron ore sintering process, Transactions of Iron and Steel Institute. 1988, 28(5): 341-344.
    [81]李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社, 1998.
    [82] Ebner J., Gould L. Fuzzy logic control improves sinter plant performance at VA Stahl Linz, Steel Times International. 1997, 21(1): 34 - 36.
    [83] Sj?berg J., et al. Nonlinear black-box modeling in system identification: a overview, Automatica. 1995, 31(12): 1691-1724.
    [84]李少远,李柠.复杂系统的模糊预测控制及其应用.科学出版社, 2003.
    [85]舒迪前.预测控制系统及其应用.机械工业出版社, 1996.
    [86]席裕庚.预测控制.国防工业出版社, 1993.
    [87]诸静.智能预测控制及其应用.杭州:浙江大学出版社, 2002.
    [88]金以慧.过程控制.清华大学出版社, 1993.
    [89] Mathworks. Model Predictive Control Toolbox User's Guide, Version 2.2.3. 2006:
    [90]刘克文,周取定.烧结机尾断面图像的特征提取,北京科技大学学报. 1994, 16(6): 532 - 535.
    [91]张敬贤,李玉丹,金伟其.微光与红外成像技术.北京:北京理工大学出版社, 1992.
    [92]王新成.高级图像处理技术.北京:中国科学技术出版社, 2001.
    [93]付永启.红外CCD用于火控系统的探测距离的确定,实用测试技术. 1996, (5): 31 - 32.
    [94]向平.莱钢105m2烧结机上采用红外CCD热成像技术的探讨,烧结球团. 2002, 27(6): 29 - 31.
    [95] Pal N.R., Pal S.K. A review on image segmentation techniques, Pattern Recognition. 1993, 26(9): 1277 - 1294.
    [96]张石,张宏勋,李淑云.用具保持法分割烧结机尾断面图像,基础自动化. 1998, (4): 48 - 50.
    [97] Porter R., Canagarjah N. A robust clustering schema for image segmentation using wavelets., IEEE Transactions on Image Processing. 1996, 5(4): 662- 665.
    [98] Janne H. Geometric camera calibration using circular control points, IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(10): 1066-1077.
    [99] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. Proceedings of the IEEE International Conference on Computer Vision. Greece: 1999. 666-673.
    [100] Tsai R.Y. Versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation. 1987, 3(4): 323-344.
    [101] Wei S., Jeremy R.C. An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques, Machine Vision and Applications. 2006, 17(1): 51-67.
    [102] Weng J., Cohen P., Herniou M. Camera calibration with distortion models and accuracy evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(10): 965-980.
    [103] Lim Jae S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1990.
    [104] Haralick Robert M., Shapiro Linda G. Computer and Robot Vision. Addison-Wesley, 1992.
    [105] van den Boomgaard, van Balen. Image Transforms Using Bitmapped Binary Images, Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing. 1992, 54(3): 254-258.
    [106] Barea R., Mochon J., Cores A. Fuzzy Control of Micum Strength for Iron Ore Sinter, ISIJ International. 2006, 46(5): 687-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700