新型进化计算方法及其在炼铁烧结过程建模与优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结生产在我国钢铁企业中有着重要的地位。它是高炉进料的一个重要处理过程,能够最大程度地减小高炉原料的波动,为高炉的平稳生产提供可靠保障。同时,由于烧结矿是高炉的主要进料,因而烧结矿的质量直接关系着高炉生产的产量和质量。此外,随着铁矿石价格的攀升和全社会节能环保意识的增强,在钢铁工业中展开面向节能降耗的技术改进势在必行。作为影响高炉产量和质量的重要环节,烧结过程技术改进在整个炼铁过程节能降耗技术改进中必不可少。因此,烧结过程的研究具有重要理论价值和实际意义。
     本文研究了烧结过程的两个主要部分烧结矿配料系统和烧结过程热状态过程的建模与优化问题,采用改进的遗传规划算法(Genetic Programming, GP)建立问题的解析模型,通过非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ, NSGAII)的改进算法解决优化问题。本文的主要工作和贡献如下:
     (1)提出了分层辨识遗传规划算法。该算法针对被辨识系统各部分可辨识度不同的问题,采用分层辨识和反馈校正的基本思想,对研究对象分层辨识,直到辨识误差缩小到可接受的范围。同时,采用最小二乘法辨识模型参数,应用M估计技术增加模型抗干扰能力。通过实验仿真验证了该算法所建模型的精度优于一般遗传规划。
     (2)提出了混合分类遗传规划算法。混合分类遗传规划算法针对复杂的多工况系统的模型辨识问题,采用分类算法对系统输入输出数据进行分类,然后对每一类数据分别建立模型,从而建立起能描述每个工况的整体模型。同时,采用最小二乘法辨识模型参数,应用M估计技术增加模型抗干扰能力。通过实验仿真验证了该算法所建模型的鲁棒性优于一般遗传规划算法。
     (3)提出了一种带偏好的非支配排序遗传算法。该算法通过设置目标函数的期望值,在经典的非支配排序遗传算法中引入偏好信息。偏好信息引导搜索方向趋于决策者偏好的区域,增强算法在偏好区域的搜索能力。实验仿真分析了在多目标优化问题中带偏好的非支配排序遗传算法的优势。
     (4)建立了烧结矿化学成分和质量预测模型,并基于预测模型提出多目标配料优化模型。预测模型采用了分层辨识遗传规划算法进行离线建模,同时把基于部分机理的模型结构加入到初始种群中,使得部分机理与数据驱动的建模方式相互结合。采用现场数据对预测模型进行测试,并从理论上分析了模型误差的来源。在烧结过程配料多目标优化模型中,优化目标为全铁、碱度和转鼓强度波动最小。为求解该优化问题,采用基于偏好的非支配排序算法,偏好信息的引入增强了算法搜索能力,有利于决策者作出决策。利用现场数据验证了该优化配料系统的有效性。
     (5)为了控制烧结过程热状态,建立了烧结机风箱温度的两级预测建模,并通过该模型预测烧结终点。中期预测是在风箱温度拐点处建立风箱温度的自回归模型;短期预测是提前风箱温度最高点约两个风箱处建立风箱温度的自回归模型。在中期预测模型和短期预测模型中,通过二次和三次曲线拟合温度点并计算出曲线最高点即为烧结终点。利用现场数据对模型进行测试并分析了误差产生原因。
Sintering is important for the iron-making industry. As an essential pre-process for blast furnace materials, it could minimize the fluctuations of the materials, and thus guarantee the furnace's steady operation. With raising price in iron ore and public enhancing consciousness of energy saving and environmental protection, it is imperative to improve the technology in iron making plants in terms of saving energy and reducing cost. In this technical innovation, the sintering process has attracted more and more attention as it plays an important role. Therefore, it is practically significant to study the iron ore sintering process.
     Automatic control system for sintering contains mainly two parts:control of sinter mix proportion and control of thermal state. Both of them should be designed on the basis of the model of sintering process. However, it is difficult to establish the accurate mathematical model of sintering process. In this thesis, improved Genetic Programming algorithms are proposeed to conquer the above difficulty Then, in order to solve the multi-objective optimization problem in sintering process, Non-dominated Sorting Genetic Algorithm II (NSGAII) is applied and then enhenced.
     In detail, the major contributions of this thesis are summarized as followings:
     1. An improved Hierarchical Genetic Programming (HGP) is proposed to solve the problem of modeling the nonlinear dynamic system with unknown mechanism and massive data in industrial processes. Based on the hierarchy model and feedback, the algorithm identifies the model according to the hierarchies until the error can be acceptable. Least square method (LSM) and M-estimation is adopted to overcome the large noise and increase the robustness of the model. The experimental results demonstrated that this algorithm is effective in nonlinear dynamic model identification.
     2. An improved Classified Genetic Programming (CGP) is proposed. K-Means clustering or K-Medoid clustering is applied to partition conditions of the target objects. Besides, for each clustering, GP is proposed to construct the empirical model. CGP adopts least square method (LSM) and M-estimator to improve the abilities of computing and disturbance resistance. Simulation proved that CGP has satisfactory performances.
     3. A Preference-based Non-dominated Sorting Genetic Algorithm (PNSGA), an improved method of NSGA II (non-dominated sorting genetic algorithm II), is proposed to solve the multi-objective optimization problems. A new preferable relationship was defined based on Pareto dominance and combined with the fast non-dominated sorting. The advantage of our algorithm over NSGA II in terms of crowding mechanism was analyzed. Simulation results demonstrated the effectiveness of the algorithm on parameters identification of dynamic model, compared with conventional experienced methods.
     4. To avoid fluctuations of components and quality of iron ore sintering, quality prediction models are created by HGP, which contain the components and tumnler models of sinter. Partial mechanism knowledge is introduced into initial population of HGP, and the models are based on both the partial mechanism and the data. Simulation results showed the superiority of these quality predictive models. One optimization scheme of sinter mix proportions is proposed based on predictive quality of iron ore sintering. The optimization objectives are to minimize the fluctuation of TFe component, basicity and tumnler. PNSGA is utilized to solve the multi-objective optimization problems. Simulation results showed the superiority of sinter mix proportion based on quality predictive models.
     5. For predicting burning through point (BTP), two models for temperature prediction are established by CGP in the sintering process. The two models were the medium-term model based on the temperature inflexion and the short-term model based on the temperature neighboring to BTP. BTP was obtained by the cubic curve fitting of the predicted temperature. Simulation results proved the superiority of the two-term prediction model.
引文
[1]范晓慧,王海东.烧结过程数学模型与人工智能.中南大学出版社,长沙,2002.
    [2]王介生.烧结过程软测量建模综述.烧结球团,2007,32(4):31-35.
    [3]王海东,邱冠周,黄圣生.烧结过程控制技术的发展.矿冶工程.1999,19(3):3-6.
    [4]Venkataramana R, Gupta S S, Kapur P C. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process. International Journal of Mi neral Processing,1999,57(1):43-58.
    [5]郭文军,王福利,李明忠等.基于神经网络的烧结矿化学成分超前预报.烧结球团,1997,22(5):7-10.
    [6]蒋大军,唐炜.利用灰色系统建模预测烧结生产技术指标及其影响因素分析.烧结球团,1998,23(5):27-31.
    [7]Kard D S, Richard S H M. A real time expert system shell for quality control. IEEE Expert,1992,7(5): 36-42.
    [8]Fan X H, Wang H D. Expert system for sinter chemical compostiton control based on adaptive prediction. Transcations of Nonferrous Metal Society of China,1996,6(1):47-50.
    [9]Meng J E, Liao J, Lin J. Fuzzy neural networks-based quality prediction system for sintering process. IEEE Transaction on Fuzzy System,2000,8(3),314-324.
    [10]Dawson P R. Recent developments in iron ore sintering, part4:the sintering process. Ironmaking and Steelmaking,1993,20(2):150-159.
    [11]Straka G Process control model for sinter machine speed. Metallurgical Plant and Technology International,1992,15(5):78-80.
    [12]Kawaguchi T, Sato S, Chidate M,et.al. Development and application of an integrated simulation model for irion ore sintering. Transactions of the Iron and Steel Institute of Japan,1985,25(4):B-111.
    [13]Watanabe M, Sasaki Y. Development of operation guide system and its application to Chiba No.4 sintering plant. In:4th International Symposium on Agglomeration,1985:147-152.
    [14]深川卓美,井山俊司Sinter operation control system with artificial intelligence川崎制铁技报,1991,2(3):203-209.
    [15]Corson R C烧结厂控制新进展.烧结球团,1984,9(5):97-108.
    [16]Cao B K,周取定,张济中.利用在线测量数据分析烧结过程.第六届国际造块会议论文选,1994:441-453.
    [17]Errigo V, Scarton A, Riccardi C,. Waste gas analysis under grate as a new means of sintering process control. In:4th International Symposium on agglomeration,1986:3-8.
    [18]Fan X H, Wang H D. An expert system for controlling sintering process. Asia Steel International Conference 2000, Beijing China,2000:307-312.
    [19]Wang H D, Qiu G Z. Design and development of expert system for controlling system process. Transaction of Nonferrous Metals Society of China,1999,9(3):651-654
    [20]Min J X, Duan W P, Cao W H, et al. Coordinating fuzzy control of the sintering process. Proceedings of the 17th World Congress the International Federation of Automatic Control,2008: 7717-7722.
    [21]Cheng W S, Fei M R. A building of the genetic-neural network for Sinter's Burning through Point. Proceeding of 2004 International Conference on Information Acquisition,2004:479-483.
    [22]Zhang J H, Xie A G, Shen F M. Multi-objective optimization and analysis model of sintering process based on BP neural network. Journal of Iron and Steel Research, International,2007,14(2),1-5.
    [23]Kanjilal P P, Rose E. Application of adaptive prediction and control methods for improved operation of the sintering process. Ironmaking and Steelmaking,1986,13(6):289-293.
    [24]Monika P W, Wolfgang N. Integrating model based and heuristic features in real time expert system. IEEE Expert,1993,8(4):12-17.
    [25]Cumming M J, Rarkin W J. Modelling and simulation of iron ore sintering, In:4th International Symposium on Agglomeration,1985:763-776.
    [26]Toda H, Kato K. Theoretical investigation of sintering process. Transactions of the Iron and Steel Institute of Japan,1984,24(3):178-186.
    [27]Corte N D, Gerbe J L.Automation and modelisation of the proess at the USinor Dunkirk No.3 Sintering Plant. In:4th International Symposium on Agglometation,1985:787-804.
    [28]Koza J R, Forest H. Genetic Programming Ⅲ:Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francicsco,1999.
    [29]Koza J R, Genetic Programming:On the Programming of Computers by Means of Natural Selection. MIT Press, Boston, USA,1992.
    [30]Koza J R. Genetic Programming Ⅱ:Automatic Discovery of Reusable Programs. MIT Press, Boston, USA,1994.
    [31]王小平,曹立明.遗传算法—理论、应用与软件实现.西安交通大学出版社,西安,2002.
    [32]云庆夏,黄光球,王战权.遗传算法与遗传规划.冶金工业出版社,北京,1997.
    [33]王战权,云庆夏等.改进的遗传规划研究.系统工程理论与实践,2000,20(5):66-69.
    [34]Koza J R, Bennett F H, Keane M A, et al. Automatic programming of a time-optimal robot controller and an analog electrical circuit to implement the robot controller by means of genetic programming. Proceedings of IEEE International Symposium on Computational Intelligence in Roboics and Automation,1997:340-346.
    [35]Kishore J K, Patnaik L M, Mani V A. Application of genetic programming for multicategory pattern classification. IEEE Transactions on Evolutionary Computation,2000,14(3):242-258.
    [36]Andrew C. Data-mining and genetic programming. PCAI,1997,11(5):23-27.
    [37]Leung W M, Leung W S, Cheng J C Y. Discovering knowledge forem noisy databases using genetic programming. Journal of the American Society for Information Science,2000,51(9):870-881.
    [38]Donald K H, Frederick P E. Use of genetic programming to build queries for information retrieval. IEEE Conference on Evolutionary Computation Proceedings,1994:468-473.
    [39]Smith M P. The use of genetic programming to build Boolean queries for text retrieval through relevance feedback. Journal of Information Science.1997,23(6):423-431.
    [40]Zafra A, Gibaja E, Ventura S. Multiple instance learning with multiobjective genetic programming for web mining. Eighth International Conference on Hybrid Intelligent System,2008:513-518.
    [41]Prabhas C. Improving robustness of robot programs generated by genetic programming for dynamic environments. IEEE Asia-Pacific Conference on Circuits and Systems-Proceedings,1998:523-526.
    [42]Holland J H. Adpatation in Natural and Artificial Systems. The University of Michigan Perss,1975.
    [43]Schweefl H P. Numberical Optimization of Computer Models. UK:John Wilye, Chichester,1981.
    [44]Cramer N L, A Representation for the adaptive generation of simple sequential programs. Proceedings of the 1st International Conference on Genetic Algorithms,1985:183-187.
    [45]Bickel A S, Bickel R W. Tree structured rules in genetic algorithms. Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, Cambridge, Massachusetts, United States,1987:77-81.
    [46]Greffenstette J J. A system for learning control strategies with genetic algorithms. Proceedings of the 3rd International Conference on Genetic Algorithms,1989:183-190.
    [47]Rosca J P. Hierarchical learning with procedural abstraction mechanisms. Department of Computer Science, the College of Arts and Sciences, University of Rochester, USA,1997.
    [48]Uesaka K, Kawamata M. Evolutionary synthesis of digital filter structures using genetic programming. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, 2003,50(12):977-983.
    [49]Erba M, Rossi R, Liberali V, et al. An evolutionary approach to automatic generation of VHDL code for low-power digital filters. Lecture Notes In Computer Science,2001,20(38):36-50.
    [50]Schmiedle F, Drechsler N, Grosze Z, et al. Heuristic learning based on genetic programming. Genetic Programming and Evolvable Machines,2002,3(4):363-388.
    [51]Atsushi S, Shih-Fu C. Image-object extraction using a genetic-programming-based object model. In Bhaskaran Vasudev, T. Russell Hsing, Andrew G. Tescher, and Robert L. Stevenson, editors, Image and Video Communications and Processing 2000:452-461
    [52]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用.科学出版社,2004.
    [53]Angeline P J. Comparing subtree crossover with macromutation. In Proceedings of the 6th Annual Conference on Evolutionary Programming, Angeline P J (ed.), Berlin:Springer,1997:101-113.
    [54]李书全,李敏强,寇纪淞.遗传规划及其在地基设计中的应用.系统工程学报,1997,12(4):85-91.
    [55]Coello C A C. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys,2000,32(2):109-119.
    [56]Syawerda G, Palmucci J. The application of genetic algorithms to resource scheduling. Proceedings of the Fourth International Conference on Genetic Algorithms, USA, Morgan Kaufmann Publishers,1991: 502-508.
    [57]谢涛,陈火旺.多目标优化与决策问题的演化算法.中国工程科学,2002,4(2):59-68.
    [58]Coello C C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Transaction on Evolutionary Computation,2004,8(3):256-279.
    [59]Liang J J, Qin A K, Suganthan P N, et al. Evaluation of comprehensive learning particle swarm optimizer.Lectures Notes in Computer Science. Berlin:Springer,2004,3316:230-235.
    [60]Huang V L, Sugnthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. International Journal of Intelligent Systems,2006, 21(2):209-226.
    [61]Chaharsooghhi S K, Kermani A H M. Aneffective ant colony optimization algorithm(ACO) for multi-objective resource allocation problem (MORAP). Applied Mathematics and Computation,2008, 200(1):167-177.
    [62]Chen M R, Lu Y Z, Yang G K. Multiobjective extremal optimization with applications to engineering design. Journal of Zhejiang University Science A.2007,8(12):1905-1911.
    [63]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of the First International Conference on Genetic Algorithms, USA, Lawrence Erlbaum Associates,1985: 93-100.
    [64]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization:formulation, discussion and generalization. The Proc. of the 5th International Conference on Genetic Algorithm, USA, Morgan Kaufmann Publishers 1993:416-423.
    [65]Horn J, Nafploitis N, Goldberg D E, A niched Pareto genetic algorithm for multiobjective optimization. In Michalewicz, Z, editor, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Service Center, Piscataway, New Jersey,1994:82-87.
    [66]Srinivas N, Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation,1995,2(3):221-248.
    [67]Deb K, Pratap A, Agrawal S, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II. Proceeding of the Parallel Problem Solving from Nature VI Conference,2000:849-858.
    [68]Cui X X, Lin C. A preference-based multi-objective concordance genetic algorithm. Journal of software, 2005,16(5):761-770.
    [69]崔逊学.多目标进化算法及其应用.国防出版社,北京,2006年.
    [70]Zitzler E. Evolutionary algorithms for multiobjective optimization:Methods and applications. Doctoral thesis ETH NO.13398, Zurich:Swiss Federal Institute of Technology, Aachen, Germany:Shaker Verlag,1999.
    [71]Knowles J D, Corne D W. The Pareto archived evolution strategy:A new baseline algorithm for Pareto multiobjective optimization. Congress on Evolutionary Computiation (CEC99), Piscataway, NJ,1999: 98-105.
    [72]Corne D W, Knowles J D, Oates M J. The Pareto envelope-based selection algorithm for multiobjective optimization. Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, France, 2000:839-848.
    [73]雷德明,严新平.多目标智能优化算法及其应用.科学出版社,北京,2009年.
    [74]Rudolph G. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. IEEE conference on Evolutionary Computation,1998:1-6
    [75]Rudolph G Evolutionary search under partially ordered fitness sets. In Proceedings of the International NAISO Congress on Information Science Innovations. ICSC Academic Press:Millet,1999:818-822.
    [76]Rudolph G Some theoretical properties of evolutionary algorithms under partially ordered fitness values. In Cs Fabian and I Intorsureanu (editors). Proceedings of the Evolutionary Algorithms Workshop (EAW-2001), Bucharest, Romania:9-22.
    [77]Hanne T. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research,1999,117(3):553-564.
    [78]Laumanns M, Zitzler E, Thiele L. On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. Evolutionary Multi-Criterion Optimization(EMO 2001),2001.
    [79]Li Y H, Wei X K. Linear-in-parameter models based on parsimonious genetic programming algorithm and its application to areo-engine start modeling. Chinese Journal of Aeronautics,2006, 19(4):295-303.
    [80]林丹,寇纪淞,李敏强.遗传规划研究与应用中的若干问题.管理科学学报,1999,12,2(4):62-68.
    [81]赵新显,陈文伟,牛晓丽.遗传算法和遗传规划对比研究,系统工程与电子技术,2000,22(12):84-87.
    [82]Eberbart R C, Dobbins R W. Neural Network Pc tools. Academic Press, USA,1990.
    [83]Johnson L. Expert System Technology (A Guide). Abacus Press,1985.
    [84]Filev D, Angelov P. Fuzzy optimal control. Fuzzy Sets and System,1992,47(3):151-156.
    [85]Kordon A, Smits G, Jordaan E, et al. Robust soft sensors based on integration of genetic programming, analytical neural networks, and support vector machines. Proceeding of the 2002 Congress on Evolutionary Computation,2002:12-17.
    [86]Warnes MR,Glassley J, Montague GA. On data-based modeling techniques for fermentation process. Processes Biochem,1996,31(1),147-155.
    [87]Hofbauer J, Sigmund K. Evolutionary games and population dynamics. Cambridge University Press, U. K.,1998.
    [88]Paul S B, Usama M F. Refining initial points for k-means clustering. Proceeding of the 15th International Conference on Machine Learning,1998:91-99.
    [89]Wu Y L, Lu J G, Xu J, Sun Y X. Bioprocess Modelling Using Fuzzy Regression Clustering and Genetic Programming. Proceeding of the 6th World Congress on Intelligent Control and Automation, 2006:9337-9341.
    [90]Cheng W S. Prediction System of Burning through Point (BTP) Based on Adaptive Pattern Clustering and Feature Map. Proceedings of Fifth International Conference on Machine Learning and Cybernetics, 2006:3089-3094.
    [91]Hruschka E R, Campello R J G B. A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on Systems Men and Cybernetics Part C-applications and reviews,2009,39(2):133-155.
    [92]杨小兵.聚类分析中若干关键技术的研究.浙江大学出版社,2005.
    [93]Ahmad A, Dey L. A K-means clustering algorithm for mixed numeric and categorical data. Data and Knowledge Engineering,2007,63(2):503-527.
    [94]Karypis G, Han E H, Kumar V. Chameleon:Hierarchical clustering using dynamic modeling. IEEE Computer.1999,32(8):68-75.
    [95]Himmeburge A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. Proceeding 1998 International Conference Knowledge Discovery and Data Mining. New York, US,1998:58-65.
    [96]孙艳丰,王众讬.多目标0-1规划问题的遗传算法.系统工程与电子技术,1994(10):57-61.
    [97]王宇平,焦永昌,张福顺.解多目标优化的均匀正交遗传算法.系统工程学报,2003,18(6):481-486.
    [98]朱学军,陈彤,薛量.多个体参与交叉的Pareto多目标优化遗传算法.电子学报,2001,29(1):106-109.
    [99]赵曙光,焦李成,王宇平.基于均匀设计的多目标自适应遗传算法及应用.电子学报,2004,32(10):1723-1729.
    [100]谢涛,陈火旺,康立山.多目标优化的演化计算,计算机学报,2003,26(8):997-1003.
    [101]崔逊学,林闯,方廷健.多目标进化算法的研究与进展.模式识别与人工智能,2003,16(3):306-313.
    [102]崔逊学,李淼,方廷健.多目标协调进化算法研究.计算机学报,2001,24(9):979-984.
    [103]Dragan C, Ian C P. Preferences and their application in evolutionary multi-objective optimization. IEEE Transaction on Evolutionary Computation,2002,6(1):42-57.
    [104]Chen X Q, Hou Z X, Guo L M, et al.Improved multi-objective genetic algorithm based on NSGA-Ⅱ. Computer application.2006,26(10):2453-2456.
    [105]Branke J, Deb K. Integrating user preference into evolutionary multi-objective optimization. Knowledge Incorporation in Evolution Computation.Jin Y C (ed.), Springer,2005:463-477.
    [106]江爱朋,邵之江,钱积新.大规模过程系统优化的一种改进简约空间SQP算法,浙江大学学报(工学版),2005,39(10):1606-1610.
    [107]Maria G. An adaptive strategy for solving kinetic model concomitant estimation-reduction Problems. Canada Journal of Chemical Engineering,1989,67(5):825-831
    [108]Chang C D. A kinetic model for methanol conversion to hydrocarbons. Chemical Engineering Science,1980,35(3):619-622
    [109]Maria G, Muntean O. Model reduction and kinetic parameters identification for the methanol conversion to Olefins. Chemical Engineering Science,1987,42(6):1451-1460.
    [110]刘振,杨双平,冯燕波,杨导利,烧结矿碱度与低温还原粉化指数关系的研究.钢铁研究.2002,34(6):1001-1004.
    [111]吴敏,王春生,曹卫华.基于预测模型与调整规则的烧结配料优化综合集成方法.系统仿真学报.2008,20(9):2423-2428
    [112]Unaki H, Miki K. New Control System of Sinter Plants at Chiba Works, IN:IFAC Automation in Mining, Mineral ans Metal Processing, Tokyo, Japan,1986:209-216.
    [113]Laffey T J. Real Time Knowledge Based System, AI Magazine,1988,9(l):27-45.
    [114]Waters A G. A mathematical model for the prediction of granule size distribution formu-lticomponent sinter feed, Transactions of the Iron and Steel Institute of Japan,29(4),1989:274-283.
    [115]姚志超,张延玲.考虑性能的烧结矿配料优化模型.包头钢铁学院学报,2002,21(3):246-251.
    [116]吕学伟,白晨光,邱贵宝等.三种优化烧结配料方法的比较.烧结球团,2006,31(2):11-15.
    [117]Monika P W, Wolfgang N. Integrating Model Based and Heuristic Features in Real Time Expert System, IEEE Expert 1993,8(4):12-17.
    [118]Cumming M J, Rarkin W J. Modelling and simulation of iron ore sintering, In:4th International Symposium on Agglomeration,1985:763-776.
    [119]Hu J Q, Rose E. Predictive fuzzy control applied to the sinter strand process. Control Engineering Practice,1997,5(2),247-252.
    [120]Kown W H, Kime Y H, Lee S J. Event-based model and control algorithm for burnthrough point in sintering processes. IEEE Transactions on Control Systems Technology,1999,7(1):31-41.
    [121]Kim Y H, Kwon W H. An application of min-max generalized predictive control to sintering Processes. Control Engineering Practice,1998,6(8):999-1007.
    [122]程武山.基于遗传神经网络的烧结终点预测系统.烧结球团,2004,29(5):18-22.
    [123]向婕,吴敏.一种基于改进遗传算法的模糊神经网络控制器及其在烧结终点控制中的应用.信息与控制,2008,37(2):235-241.
    [124]Long G M, Fan X H, Jiang T, et al. Research and application of expert system skeleton for controlling sintering process. Journal of Iron and Steel Research, International,2008,15(5):1-5.
    [125]Buchanan B G, Shoutliffe E H. Rule-based expert system, the MYCIN experiments of stanford heuristic programming project. New York:Addison-wesley Publishing Company,1984.
    [126]Wang H D, Jiang B. Expert system for controlling the state of sintering process. Journal of Central South University of Technology,1999,6(1):41-43.
    [127]Hinkley J, Waters A G, Litster J D. An investigation of pre-ignition air flow in ferrous sintering. International Journal of Mineral Processing,1994,42(1-2):37-52.
    [128]范晓慧,黄天正.烧结过程控制专家系统(Ⅱ):透气性中心控制策略和烧结终点预报策略.中南工业大学学报,1998,29(6):535-537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700