桉树人工林土壤碳库特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为大气C02浓度的升高,近来关于土壤有机碳成为关注的热点。在一定程度上,人工林的经营能够改变土壤有机碳库。本文研究试验地位于福建省漳州市九龙岭林场,采用空间代替时间的方法,取条件一致桉树人工林的四个林龄样地1 a,3 a,5 a和7 a,,代表一个轮伐期(7 a)中的四个阶段。分析了土壤有机碳、易氧化态有机碳、化学稳定态有机碳和土壤矿质结合态有机碳,分别用KMnO4、Na2S2O8和HF作为提取剂处理土壤样品。土壤有机碳浓度随土层加深逐渐减少,1 a、3 a、5 a和7 a桉树林地土壤有机碳密度分别为37.67~61.02 Mg·ha-1,57.46~81.97 Mg·ha-1,38.65~73.35 Mg·ha-1和40.68~70.64Mg·ha-1土壤易氧化态有机碳储量随着桉树人工林林龄的增加逐渐增加,但是在各土壤剖面的分布没有显著差异。土壤化学稳定态有机碳的储量随林龄的增加呈现减小的趋势,而矿物结合态有机碳的储量没有显著差异。随着土壤层次的加深,土壤化学稳定态有机碳和矿质结合态有机碳逐渐增加。40-100 cm土层化学稳定态有机碳密度显著大于0-40 cm。在一个轮伐期内,化学稳定态有机碳密度的变化较小,表明化学稳定态有机碳受人工林经营活动的影响小。
Soil Organic Carbon (SOC) has been paid great attention recently as it's contributes to CO2 emission. Forest management, to some extent, could disturb the SOC pool. This research examined forest top 1 m soil after planted in 1 year (1a),3 year (3a),5 year (5a) and 7 year (7a), which generally represented the 4 stages during a rotation period (7 years). The soil was treated after extracted with KMnO4、Na2S2O8、and HF in order to determine the Easily Oxidized Carbon (EOC), Chemical Recalcitrant SOC (Na2S2O8-resist SOC) and Mineral-associated SOC (HF-soluble SOC), respectively. The SOC concentrations decreased with the soil depth increment, and the SOC density were 48.71 Mg ha-1 (±12.22),66.06 Mg ha-1 (±11.28),52.20 Mg ha-1 (±16.33) and 57.66 Mg ha-1 (±13.40) for 1a,3a,5a and 7a, respectively. However, the pool of EOC increased with the forest ages. The Na2S2O8-resist SOC decreased with forest ages and increased with soil increments. The HF-soluble SOC increased with soil increments but showed no significant difference with forest ages. The content of subsoil (40-100 cm) of Na2S2O8-resist SOC was significantly greater than the topsoil (0-40 cm), respectively. The Na2S2O8-resist SOC varied insignificantly during a rotation, it may indicated that the chemical recalcitrant SOC was less affected by the forest management than the mineral-associated SOC.
引文
[1]Don A, Schumacher J, Michael S L, et al. Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks[J]. Geoderma,2007 (141):272-282.
    [2]Karjalainen T, Pussinen A, Liski J, et al. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget[J]. Forest Policy and Economics,2003(5):141-155.
    [3]贺亮,苏印泉,季志平,等.黄土高原沟壑区刺槐、油松人工林的碳储量及其分布特征研究[J].西北林学院学报,2007,22(4):49-53.
    [4]李海涛,黄从德,杨万勤,等.柳杉人工林采伐后不同土地利用类型初期土壤有机碳变化[J].水土保持学报,2008,22(6):118-122.
    [5]胡会峰,刘国华.森林管理在全球CO2减排中的作用[J].应用生态学报,2006,17(4):709-714.
    [6]王海稳,张金柱,许中旗,等.太行山区不同土地利用方式下土壤碳储量的研究[J].水土保持学报,2007,21(2):90-94.
    [7]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004a,15(4):593-599.
    [8]吴建国,徐德应.六盘山林区几种土地利用方式对土壤中可溶性有机碳浓度影响的初步研究[J].植物生态学报,2005,29(6):945-953.
    [9]王春梅,刘艳,红邵彬,等.量化退耕还林后土壤碳变化[J].北京林业大学学报,2007,29(3):112-119.
    [10]白雪爽,胡亚林,曾德慧,等.半干旱沙区退耕还林对碳储量和分配格局的影响[J].生态学杂志,2008,27(10):1647-1652.
    [11]龙健,邓启琼,江新荣,等.西南喀斯特地区退耕还林(草)模式对土壤肥力质量演变的影响[J].应用生态学报,2005,16(7):1279-1284.
    [12]周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
    [13]王文杰,刘玮,孙伟等.林床清理对落叶松(Larix gmelinii)人工林土壤呼吸和物理性质的影响[J].生态学报,2008,28(10):4750-4756.
    [14]陈龙池,汪思龙.杉木根系分泌物化感作用研究[J],生态学报,2003,23(2):393-398.
    [15]方晰,田大伦,项文化,等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报,2003,20(4):374-379.
    [16]方运霆,莫江明Sandra Brown.等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    [17]张秀玲,李君剑,石福臣.速生杨人工林对土壤碳氮含量及微生物生物量的影响[J].生态与农村环境学报,2008,24(2):32-35.
    [18]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34-39.
    [19]陈立新,宋志韬,纪萱.红松人工林腐殖质组成及其结合形态研究[J].中国水土保持科学,2007a.5(3):39-44.
    [20]吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004b,28(4):530-538.
    [21]常宗强,冯起.司建华,等.祁连山不同植被类型土壤碳贮量和碳通量[J].生态学杂志,2008,27(5):681-688.
    [22]王清奎,汪思龙,冯宗炜,等.杉木人工林土壤有机质研究[J].应用生态学报,2004,15(10):1947-1952.
    [23]刘姝媛,刘月秀,叶金盛,等.广东省桉树人工林土壤有机碳密度及其影响因子[J].应用生态学报,2010,21(8):1981-1985.
    [24]罗云建,张小全.代连栽人工林碳贮量的变化[J].林业科学研究,2006,19(6):791-798.
    [25]王丹,王兵,戴伟,等.不同发育阶段杉木林土壤有机碳变化特征及影响因素[J].林业科学研究,2009,22(5):667-671.
    [26]郝瑞军,方海兰,沈烈英,等.上海典型植物群落土壤有机碳矿化特征[J].浙江林学院学报,2010,27(5):664-670.
    [27]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳库及分配[J].林业科学,2006,42(10):43-47.
    [28]黄从德,张健,杨万勤,等.我国主要森林生态系统碳贮量和碳平衡[J].生态学报,2009,29(3):1217-1225.
    [29]任军,郭金瑞,边秀芝,等.土壤有机碳研究进展[J].中国土壤与肥料,2009,27(6):1-7.
    [30]肖辉林,郑习健,等.土壤变暖对土壤微生物活性的影响[J].土壤与环境,2001,10(2):138-142.
    [31]向珊珊,王国兵,罗治建,等.次生栎林和人工松林土壤呼吸对温度敏感性的室内模拟[J].生态学杂志,2008,27(8):1296-1301.
    [32]李忠孙波,林心雄,等.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307
    [33]Morisada K, Ono K, Kanomata H. Organic carbon stock in forest soils in Japan[J]. Geoderma,2004,119:21-32.
    [34]Zhang X Q, Kirschbaum M U F, Hou Z H, et al. Carbon stock changes in successive rotations of Chinese fir(Cunninghamia lanceolata (lamb) hook) plantations[J]. Forest Ecology and Management,2004,202:131-147.
    [35]Anita Gαl, Vyn T J, Micheli E, et al. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths[J]. Soil & Tillage Research,2007,96:42-51.
    [36]刘小虎,贾庆宇,安婷婷,等.不同施肥处理对棕壤腐殖酸组成和性质的影响[J].土壤通报,2005,36(3):328-332.
    [37]王俊华,林先贵,尹睿,等.长期定位施肥对潮土腐植酸含量及其相关因素的影响[J].植物营养与肥料学报,2009,15(2):352-357.
    [38]崔文华,卢亚东,等,化肥和有机肥对作物产量和土壤养分影响的研究[J].土壤通报,1993,24(6):271-272.
    [39]邵月红,潘剑君,孙波.长期施用有机肥对瘠薄红壤活性碳库及碳库管理指数的影响[J].土壤通报,2005,36(2):177-180.
    [40]樊军,郝明德,王永功..早地长期轮作施肥对土壤肥力影响的定位研究[J].水土保护研究,2003,10(1):31-36.
    [41]梁式功,袁建立,黄文冰,等.半干早区集水型光温室的C及N,P,K动态研究[J].兰州大学报(自然科学学版),2003,39(5):75-81.
    [42]武天云,JEFF J S,李凤民,等.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响[J].应用生态学报,2003,14(12):2213-2218.
    [43]尹云锋,蔡祖聪,钦绳武,等.长期施肥条件下潮土不同组分有机质的动态研究[J].应用生态学报,2005,16(5):875-878.
    [44]赵丽娟,韩晓增,王守宇,等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化Ⅳ.有机碳组分的变化[J].应用生态学报,2006,]7(5):817-821.
    [45]杨长明,欧阳竹,董玉红,等.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志,2005,24(8):887-892.
    [46]杨玉盛,刘艳丽,陈光水,等.格氏栲天然林与人工林土壤非保护性有机C含量及分配[J].生态学报,2004,24(1):1-8.
    [47]魏朝富,陈世正,谢得体,等.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    [48]毛艳玲,杨玉盛,刑世和,等.土地利用方式对土壤水稳性团聚体有机碳的影响[J].水土保持学报,2008,4(22):132-139.
    [49]王晶,谢宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    [50]彭新华,张斌,赵其国,等.红壤侵蚀裸地植被恢复及上壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23,2176-2183.
    [51]杨昕,王明星,黄耀,等.地-气间碳通量气候响应的模拟Ⅰ.近百年来气候变化[J].生态学报,2002,22(2):270-277.
    [52]吴金水,童成立,刘守龙,等.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的影响[J].地球科学进展,2004,19(1):131-137.
    [53]黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):532-536.
    [54]何友军,王清奎,汪思龙,等.杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系[J].应用生态学报,2006,17(2):2292-2296.
    [55]阮宏华,姜志林,高苏铭,等.苏南丘陵主要森林类型碳循环研究——含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [56]钟羡芳,杨玉盛,高人,等.老龄杉木人工林生态系统碳库及分配[J].亚热带资源与环境学报.2008,3(2):11-18.
    [57]唐旭利,温达志,闫俊华,等.鼎湖山南亚热带季风长绿阔叶林储量分布[J].生态学报,2003,23(1):90-97.
    [58]陈立新,杨承栋,等.落叶松人工林土壤腐殖物质组分及其对酸度的影响[J].琳业科学,2007,43(2):8-1.
    [59]姜培坤,徐秋芳,俞益武,等.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [60]Covington W W. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods[J].Ecology,1981,62:41-48.
    [61]Hermle S, Anken T, Leifeld J, et al. The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions[J]. Soil & Tillage Research,2008,98:94-105.
    [62]方晰,田大伦,项文化,等.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19.
    [63]李淑芬,俞元春,何晟,等.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报.2003,20(2):119-123.
    [64]Scott N A,Tate K R, Ford R J, et al. Soil carbon storage in plantation forests and pastures:land use change implications[J].,Tellus,1999,51B:326-335.
    [65]沈宏,曹志宏,胡正义,等.土壤活性有机碳的表征及其生态效应.生态学杂志,1999,18(3):32-38.
    [66]王建林,欧阳华,王忠红,等.西藏高寒草原生态系统表层土壤活性有机碳梯度分布及其与气候因子的关系[J].生态环境学报,2009,18(4):1478-1483.
    [67]McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. EcolMonogr,1988,58:177-195.
    [68]Qualls R G, Haines B L. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem[J]. Soil Science Society of America Journal,1991,55:1112-1123.
    [69]Zsolnay A. Dissolved humus in soil water. In:Picclolo A ed. Humic Substances in Terrestrial Ecosystems[J]. Amsterdam: Elservier,1996,17:21-23.
    [70]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:228-237.
    [71]Ocio J A, Brookes P C. An evaluation of methods for measuring the microbial biomass in Soils following recent additions of wheat straw and the characterization of the biomass that develops[J].Soil Biology&Biochemistry,1990,22:685-694.
    [72]Blair G J, Lefroy R D B. Soil C fraction based on their degree of oxidation and the development of a C management index for agriculture systems[J].soil biology & biochemistry,1995,8(46):1459-1466.
    [73]Eusterhues K, Rumpel C, Kogel-Knabner I. Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry,2003,34:1591-1600.
    [74]Cuypers C, Grotenhuis T, Nierop K G J, et al. Amorphous and condensed organic matter domains:the effect of persulfate oxidation on the composition of soil/sediment organic matter[J]. Chemosphere,2002,48:919-931.
    [75]Rumpel C, Eusterhues K, Kogel-Knabner I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils[J]. Soil Biology & Biochemistry,2004,36:177-190.
    [76]Eusterhues K, Rumpel C, Kogel-Knabner I. Organo-mineral associations in sandy acid forest soils:importance of specific surface area, iron oxides and micropores[J]. European Journal of Soil Science,2005,56:753-763.
    [77]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1984.
    [78]Li F M., Song Q H, Jjemba P K, et al. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem[J]. Soil Biology & Biochemistry,2004,36:1893-1902.
    [79]Spielvogel S, Prietzel J, Kogel-Knabner I. Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific[J]. European Journal of Soil Science 2008,59:674-692.
    [80]Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio[J]. Geoderma,2007b,141:294-301.
    [81]Rasse D P, Rumpel C, Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization[J]. Plant and Soil 2005,269:341-356.
    [82]Rees R M, Bingham I J, Baddeley J A, et al. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems[J]. Geoderma 2005,128:130-154.
    [83]von Lutzow M, Kogel-Knabner I, Ekschmitt K, et al. SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology & Biochemistry,2007,39:2183-2207.
    [84]Six J, Frey S D, Thiet R K, et al. Bacterial and Fungal Contributions to Carbon Sequestration in AgroecosystemsfJ]. Soil Science Society of America Journal,2006,70:555-569.
    [85]Six J,Bossuyt H, Degryze S, et al.A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research,2004,79:7-31.
    [86]Jiang P K, Xu Q F.Abundance and Dynamics of Soil Labile Carbon Pools Under Different Types of Forest Vegetation [J]. Pedosphere,2006,16(4):505-511.
    [87]Buurman P, Schellekens J, Fritze H, et al. Selective depletion of organic matter in mottled podzol horizons[J]. Soil Biology & Biochemistry,2007,39:607-621
    [88]Lorenz K, Lal R, Preston C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J]. Geoderma,2007,142:1-10.
    [89]Lorenz K, Lal R, Shipitalo M J. Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils[J]. Biology and Fertility of Soils,2008,44:1043-1051.
    [90]Bruun S, Thomsen I K, Christensen B T, et al. In search of stable soil organic carbon fractions:a comparison of methods applied to soils labelled with 14C for 40 days or 40 years[J]. European Journal of Soil Science,2008,59:247-256.
    [91]Schmidt M W I, Gleixner G. Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acid[J]. European Journal of Soil Science 2005,56:407-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700