相变控温混凝土的理论基础研究和制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在混凝土中引入相变材料实现对混凝土的温度控制,以避免温度变化对混凝土的破坏,已经成为了一个新的研究课题。相变材料具有蓄热特性,在温度升高至相变点时产生相变吸收热量,而当温度降低至相变点时亦可以相变放出热量,因此可用于抑制大体积混凝土的水化热温升速率,有效地控制混凝土内部的温度变化。
     论文在已有的研究成果的基础上,建立了相变控温混凝土的绝热温升模型,并提出了相变控温混凝土的基本理论。针对几种相变材料对水泥水化历程的控温作用进行了研究,并对其控温性能进行了评价。分别开发了一种P-水泥相变粗集料和一种R-P相变细集料,并研究分析了相变陶粒、P-水泥相变集料和R-PA对混凝土工作性能、力学性能和耐久性能的影响,并通过ANSYS软件,模拟计算了普通混凝土和相变控温混凝土的温度场和温度应力。
     主要创新性成果如下:
     1.根据水泥水化放热规律,分析了普通混凝土内部温度的变化,建立了相变控温混凝土的绝热温升模型,提出了相变控温混凝土的基本理论,并利用ANSYS软件,模拟计算了普通混凝土和相变控温混凝土的温度场和温度应力。
     (1)建立了相变控温混凝土的绝热温升模型,将温升过程分成三段,形成以下绝热温升模拟计算公式:
     (2)利用相变控温混凝土的绝热温升模型,通过ANSYS软件模拟计算得到,相变控温混凝土P-C10中心点的最高温度比普通混凝土P-C0中心点的最高温度约低3.8℃,且P-C10中心点温峰值比P-C0延迟3~4h。
     (3)普通混凝土和相变控温混凝土在计算模型的温度边界及约束边界条件下,最大温度梯度与最大温度应力均出现在模型长边方向上,P-C0的100号节点温度应力最大值比P-C10同节点约大2.2MPa(拉应力);P-C0的172号节点温度应力最小值比P-C10同节点约小1.1MPa(压应力)。
     2.开发设计了一种混凝土水化温升测试仪,研究了一级相变材料、二级相变材料和矿物掺合料对水泥混凝土水化温升的控温效果,论证了利用相变材料作为控温材料的可行性。
     (1)设计的混凝土水化温升测试仪与传统绝热温升仪相比具有更好的可操作性,可进行多通道同步测试,增加了试验的可对比性。
     (2)在一级相变控温体系G-C体系、Y-C体系、Z-C体系、Pa-C体系和Pb-C体系中,10%掺量下削峰效应和延迟效应最好的是Pb-C体系,降温幅度为28.5%,最高温度到达时间tmax延缓9.8h;削峰效应最差的是Z-C体系,降温幅度为1.8%;石蜡类相变材料与有机酸类相变材料相比具有较好的削峰效应和延迟效应。
     (3)在二级相变控温体系中,以Pb为高温相变材料,当Pa作为低温相变材料时,其削峰作用最优;当有机酸作为低温相变材料时,相变点越低,体系的削峰作用越好;Pa2-Pb8、Y2-Pb8和G2-Pb8体系的降温幅度分别为18.2%、10%和14%。
     3.分别制备了相变陶粒和开发了一种P-水泥相变集料作为混凝土粗集料,研究了相变粗集料对水泥混凝土的控温能力;将相变粗集料取代部分粗集料配制相变控温混凝土并进行热循环养护,研究了相变控温混凝土的物理力学性能和耐久性能。
     (1)采用真空吸附法制备了三种相变陶粒,其粒径在5~20mm范围内,吸附率分别为9.9%、17.9%和31.3%;根据球-壳结构模型,采用定量常温包覆法制备了P-水泥相变集料,粒径在5~10mm范围内,包覆率达到30%以上。制备的相变粗集料均对水泥水化具有较好的削峰和延迟效应,且单位体积的P-水泥相变集料削峰和延迟效应优于相变陶粒。
     (2)相变控温混凝土中P净掺量为胶凝材料质量的10%时,相变陶粒混凝土抗压强度较普通混凝土低,P-水泥相变集料混凝土抗压强度与普通混凝土相当;经过热循环后,相变控温混凝土抗碳化和抗氯离子渗透性能提高,P-水泥相变集料混凝土的体积稳定性优于普通混凝土。
     4.利用R的多孔性,开发了一种R封装P的技术,通过表面改性技术制备了一种细集料R-PA,提高了其与混凝土的工作适应性,研究了R-PA对水泥水化温升和水化进程的影响,以及R-PA对混凝土的力学性能和耐久性能的影响。
     (1)利用工业R和P制备了R-PC,并采用石灰石粉对其进行表面改性制备了R-PA。R-PA中P的质量比为35%左右。R-PA在混凝土中分布比较均匀,相变控温混凝土的和易性较好。
     (2)R-PC可使水泥浆体的类抛物线形温升曲线开口变大,有明显的削峰和延迟效应,有效地控制了水泥水化的温升速率。
     (3)从R-PA相变控温混凝土的强度规律来看,R-PA的掺量在P净掺量为胶凝材料质量的10%时是可行的。R-PA对混凝土的强度带来一定的损失,且相变控温混凝土中P的净掺量为胶凝材料质量的20%时的强度较P净掺量为10%时低;在标准养护和热循环下,R-PA相变控温混凝土的强度波动不明显,具有较强的可设计性。
     (4)R-PA明显地减小了混凝土因温升和温降时所产生的体积变化,提高了混凝土抗渗性,尤其在经过高温养护后,R-PA混凝土的抗渗性大幅提高。
At present, it's become a new research that phase change materials (PCMs) were put in concrete to control temperature in order to avoid the concrete destruction of temperature changes. PCM has regenerative property, when environment temperature increased to phase transition point, heat can be absorbed by PCM and when the environment temperature decreased below phase transition temperature, heat can be released by the PCM, so the PCM can be used controlling temperature rise rate of hydration in mass concrete in order to avoid temperature damage in concrete.
     Base on the research of predecessors, a model of controlling the adiabatic temperature rise of concrete was established in this study, and the basic theory of phase change temperature self-control concrete was proposed. Temperature control effect of several phase change on cement hydration process was studied, and the temperature control performance was evaluated.
     P-C phase change aggregate and R-P phase change aggregate were developed and the influences of ceramiste aggregate, P-C phase change aggregate and R-P phase change aggregate on workability, mechanical performances and durability of concrete were researched. The temperature field and thermal stress were calculated by ANSYS.
     Through research, the following results were achieved:
     1. According to law of cement hydration, ordinary concrete internal temperature changes was analyzed, adiabatic temperature rise model of phase change concrete was established, new ideas to control the temperature with phase change materials was proposed in this paper. The temperature field and thermal stress were calculated by ANSYS.
     (1) Adiabatic temperature rise model of phase change concrete was established, temperature rising process was divided into three segments, and the simulation calculation formula of adiabatic temperature rise model was as follows:
     (2) According to adiabatic temperature rise model of phase change concrete, it's calculated by ANSYS that the highest center temperature of the phase change concrete was lower 3.8℃than the highest center temperature of the ordinary concrete, and the peak of the center temperature of phase change concrete was delayed 3-4 hours than the basic concrete.
     (3) In the temperature boundary and constraints boundary condition of the model, the maximum thermal gradient and maximum thermal stress of ordinary concrete and phase change concrete appeared in the long side direction of the model. The maximum stress of the 100th node of the basic concrete was 2.2MPa larger (tensile stress) than the stress of the same node of the phase change concrete, the minimum stress of the 172nd node of the basic concrete was 1.1MPa less (pressure stress) than the stress of the same node of the phase change concrete.
     2. Concrete Hydration Temperature Tester was designed. Single-phase change system, dual-phase change system and mineral admixtures were used in temperature control technology of hydration temperature concrete. The feasibility of using PCMs as temperature control materials was demonstrated.
     (1) Concrete hydration temperature tester, which provides a better test method for traditional one, has better maneuverability compareing with adiabatic temperature rise of concrete.
     (2) Paraffin b-PCMs had the best cutting-peak and delaying-peak effect in Single-phase change system including G-C system, Y-C system, Z-C system, Pa-C system and Pb-C system, cutting-peak temperature range was 28.5%, tmax was 9.8h. Z-C had the worst cutting-peak and delaying-peak effect, cutting-peak temperature range was 1.8%. Paraffin-PCMs had a better cutting-peak and delaying-peak effect than organic acid-PCMs.
     (3) When Pb was used as high temperature PCM in dual-phase change system, Pa had better cutting-peak effect than organic acid as low temperature PCM, the lower transformation temperature of onganic acid-PCM was, the better the cutting-peak effect was. The cutting-peak temperature range of Pa2-Pb8, Y2-Pb8 and G2-Pb8 was 18.2%,10% and 14%.
     3. Phase change ceramisite and P-cement phase change aggregate were prepared as Concrete coarse aggregate. Tempareture control capaility of phase change coarse aggregate were studied, the influences of phase change ceramisite on mechanical propertities and durabilities of concrete were analysized under standard curing and thermal cycling conditions.
     (1) Three kinds of ceramisite were selected to prepare phase change ceramisite with content of 9.9%、17.9% and 31.3% using vacuum absorption, the size of ceramisite was in 5~20mm range. P-cement phase change aggregate with content of 30% was prepared by simulating the ball shell structure, the size of aggregate was in 5~10 mm range. There was certain of peak cutting and delaying effect of phase change coarse aggregate on hydration temperature rise of cement, and effect of P-cement phase change aggregate was better than phase change ceramisite.
     (2) When the ratio of P was 10% in phase change, the compressive strength of phase change ceramisite was lower than ordinary concrete, and the compressive strength of P-cement phase change aggregate was roughly the same. Under high temperature cycling condition, the carbonation resistance and the chloride penetration resistance of phase change concrete increased, volume stability of P-cement phase change aggregate was better than ordinary concrete.
     4. Utilizing industrial rice husk ash, via the Composites Preparation Technology and Surface Modification Technology prepared phase change fine aggregates of R-PA, the technology of P capsulation by hush ash was developed. The workability between R-PA and concrete was enhanced. The influences of phase change ceramisite on mechanical propertities and durabilities of concrete are analysized under standard curing and thermal cycling conditions.
     (1) R-PC was prepared by industrial rice husk ash and P, and the limestone powder wrapped up on it to prepare R-PA. The ratio of P in R-PA was about 35%. R-PC bonded tightly, the workability of cement paste and fresh concrete was well good.
     (2) R-PA could make the temperature rise curve of cement pastes larger openings, and had significant effect of cooling clipping, effectively controlled the temperature rise rate of hydration of cement pastes. (3) Considering compressive strength of concrete, it's reasonable that ratio of P in gelled material was 10%. R-PA resulting in the loss of concrete strength to some extent, and the strength of phase concrete was lower when the relatively net content of paraffin was 20% of the binding materials mass than 10%. In standard curing conditions and high temperature curing conditions, the 28d strength of phase change concrete is good stability.
     (4) R-PA significantly reduced the changes of concrete volume generated due to temperature rise and drop, improved the impermeability of concrete remarkably, especially, he impermeability is perfectly good in high temperature curing condition.
引文
[1]李文兵.大体积混凝土的温度裂缝及其控制技术探讨[D].成都:西南交通大学,2006.
    [2]朱伯芳.大体积混凝土温度应力与温度控制[M].中国电力出版社,1999.
    [3]王铁梦.工程结构裂缝控制[M].中国建筑工业出版社,1997.
    [4]游宝坤,赵顺增.混凝土膨胀剂及其应用[M].中国建材工业出版社,2006.
    [5]蔡润梁.大体积混凝土温度裂缝控制技术研究与实践[D].武汉:武汉理工大学,2003.
    [6]王伟,韩庆.大体积混凝土裂缝成因分析及预防措施[J].建筑工程,2010(4):253.
    [7]俞静.高程建筑基础大体积混凝土温度与温度裂缝研究[D].武汉:武汉理工大学,2003.
    [8]史巍等.相变储能大体积混凝土的控温性能[J].同济大学学报(自然科学版),2010(38):564-568.
    [9]Krauss P D, Rogalla E A. Transverse cracking in newly constructed bridge decks[R]. Washington D C:Transportation Research Board,1996.
    [10]陈肇元.高强与高性能混凝土的研究发展与应用[J].土木工程学报,1997(5):3.
    [11]朱伯芳.大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社,1999:128-129.
    [12]Helowics andrzej. Analysis of thermal field in mass concrete caused by the heat of cement hydration[D]. Portland:politechnika wroclawska,2004.
    [13]SatohH, SataniY.Study on the effect of pipe cooling in mass concrete[J]. Japan Society of Civil Engineers Issue:Aug.1986:205-209.
    [14]BofangZhu, PingXu.Thermal stress and temperature control of roller-compacted concrete gravity dams[J]. Dam Engineering,1995(3):199-220.
    [15]Bofang Zhu, Ping Xu. Methods for stress analysis simulating the construction process Of high concrete dams[J]. Dam Engineering,2001(4):243-260.
    [16]朱岳明,徐之青等.含有冷却水管混凝土结构温度场的三维仿真分析[J].水电能源科学,2003(1):83-85.
    [17]丁宝瑛.大体积混凝土与冷却水管温差的确定[J].水利水电技术,1997(3):12-16.
    [18]何宪礼,赵业梅.大体积混凝土承台施工温度裂缝的影响因素及控制技术[J].公路,2008(10):222-224.
    [19]刘伟等.大体积混凝土的温度应力分析及温度裂缝研究[J].工业建筑,2008(38):79-81.
    [20]王沧州等.北京南站超厚底板大体积混凝土施工技术[J].建筑技术,2009(40):495-497.
    [21]胡硕.大体积混凝土温度裂缝控制[D].西安:西安建筑科技大学:2004.
    [22]黄永刚.大体积混凝土温度监测与裂缝控制[D].西安:西安建筑科技大学,2004.
    [23]李保华.大体积混凝土温度监测与裂缝控制[D].沈阳:辽宁工程技术大学,2003.
    [24]中华人民共和国建设部,国家质量监督检验检疫总局.(GBT 50496-2009)大体积混凝土施工技术规范[s].北京:中冶集团建筑研究总院工程材料研究院,2009.
    [25]李树奇.大体积混凝土防裂技术措施的研究[D].天津:天津大学,2004.
    [26]杨华全等.掺粉煤灰和高效减水剂对水泥水化热的影响[J].混凝土,2001(12):9-12.
    [27]许德胜.大体积混凝土水化反应温度场与应力场分析[D].浙江:浙江大学,2005.
    [28]危鼎等.胶凝材料水化热计算问题探讨[J].水泥,2009(3):15-17.
    [29]张云升.矿物掺合料对高性能混凝土浆体水化热的影响[J].河北理工学院学报,2001(23):48-52.
    [30]蔡正咏.混凝土性能[M].北京:建筑工业出版社,1979:58.
    [31]杨和礼.原材料对基础大体积混凝土裂缝的影响与控制[D].武汉:武汉大学,2004.
    [32]黄学辉,马保国等.外加剂对水泥净浆水化热的影响[J].武汉理工大学学报,2003(25):26-29.
    [33]黎鹏平等.掺合料对胶凝材料水化热及混凝土氯离子扩散系数的影响[J].水运工程,2009(11):6-10.
    [34]Zalba B, Marin J M,Cabeza L F, et al. Review on Thermal Energy Storage with Phase Change:Materials, Heat Analysis and Applications[J]. Applied Thermal Engineering,2003, 23:251~283.
    [35]Suppes G J, Goff M J, Lopes S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications[J].2003,58:1751-1763.
    [36]Takeshi K, Tadahiko T, Tsubota Y. Research on the thermal storage of PCM wallboard[A].日本建筑学会计画论文集[C].2001,540:23-29.
    [37]Rudd A F. Phase change material wall for distributed thermal storage in buildings[C]. In: ASHRAETransactions,1993,99(2):339-344.
    [38]Farid M M, Khudhair A M, Razack S A, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management,2004,45:1597-1615.
    [39]李海建,冀志江,王静,辛志军.复合相变材料的研究现状[J].材料导报,2008,8(22):248-251.
    [40]廉变峰.建筑节能相变材料制备与应用分析[D].天津:天津大学,2008.
    [41]张东,康韡,李凯莉.复合相变材料研究进展[J].功能材料,2007,12(38):1936-1940.
    [42]吴晓森,张学骜,刘长利,等.微胶囊相变材料的研究进展[J].化学世界,2006(2):108-112.
    [43]尚红波.微胶囊相变材料的制备[D].南京:南京工业大学,2006.
    [44]Nihal Sarier, Emel Onder. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta,2007, (452): 149-160.
    [45]Choi JK, Lee J, Kim JH. Preparation of microcapsules containing phase change materials as heat transfer media byin-situ polymerization[J]. Journal of Industrial and Engineering Chemistry,2001,7(6):358-362.
    [46]Liu Xing, Liu Hongyan, Wang Shujun, etal. Preparation and thermal properties of form-stable paraffin phase change material encapsulation[J]. Solar Energy,2006,80(12): 1561-1567.
    [47]Yoshinari T, Hiroshi Y, Hideo K, etal. Preparation of PCM microcapsules by using oil absorbable polymer particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, In Press, Corrected Proof, Available online 9 December 2006.
    [48]徐伟箭,陈海明,熊远钦,等.相变物质正十八烷微胶囊的制备和表征[J].湖南大学学报(自然科学版),2005,32(1):69-7.
    [49]张晓宇,张公正.硬脂酸丁酯微胶囊的制备与表征[J].化学研究,2006,17(3):49-51.
    [50]王立新,苏峻峰,任丽.一种蜜胺树脂为壁材的相变储热微胶囊致密性研究[J].精细化工,2003,20(12):705-708.
    [51]Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system[J]. Collid Polym Sc,i 2002,280:260-266.
    [52]J Lazko, Y Popineau, J Legrand. Soy glycinin microcapsules by simple coacervation method[J]. Colloids and Surfaces B:Biointerfaces,2004,37(1-2):1-8.
    [53]Hawlader M N A, Uddin M S, ZhuH J. Preparation and evaluation of a novel storage material microencapsulated paraffin [J]. Int of Solar Energy,2000,20:227-238.
    [54]Hawlader M N A, Uddin M S, Zhu H J. Encapsulated phase change materials for thermal energy storage:experiments and simulation[J]. International Journal of Energy Research, 2002,26(2):159-171.
    [55]Hawlader M NA, Uddin M S, Khin M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy,2003,74(1-2):195-202.
    [56]Maria I T, Leonardo R A, Farina M, et al. Characterization of short chain fatty acid microcapsules produced by spray drying[J]. Materials Science and Engineering,2004,24(5): 653-658.
    [57]伍才飞.定型相变材料的制备及相变模型的热特性研究[D].重庆:重庆大学,2008.
    [58]Fang Xiaoming, Zhang Zhengguo, Chen Zhonghua. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials [J]. Energy Conversion and Management,2008,49(4):718-723.
    [59]Ahmet San, Ali Karaipekli. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage[J]. Materials Chemistry and Physics,2008,109:459-464.
    [60]张正国,龙娜,方晓明.石蜡/膨胀石墨复合相变储热材料的性能研究[J].功能材料,2009,8(40):1313-1315.
    [61]赵鹏.有机梭酸/多孔基体复合相变储能材料的制备与性能研究[D].西安:西安建筑科技大学,2007.
    [62]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究[J].功能材料,2008,39(4):629-631.
    [63]王茜.有机/无机复合相变储热材料的制备与性能[D].天津:天津大学,2007.
    [64]胡小芳,林丽莹,胡大为.石膏基陶粒吸附石蜡复合储能材料制备及性能[J].天津理工大学学报,2008,24(3):63-66.
    [65]蒋达华,周阳,罗凯.海泡石复合相变储能建筑材料的试验研究[J].非金属矿,200831(4):1-5.
    [66]徐仁崇.相变储能混凝土制备的前期研究[J].福建建筑,2008,10(124):41-43.
    [67]杨玉山,董发勤,甘四洋.相变储能混凝土的研究[J].功能材料,2007,2(38):276-278.
    [68]付英会,冯国会,吕石磊,等.HVAC领域相变储能研究的现状与进展[J].节能,2004(4):6-8.
    [69]Cemil Alkan, Ahmet Sari. Fatty acid/poly (methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Solar Energy, 2008,82:118-124.
    [70]Ahmet Sari. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties[J]. Energy Conversion and Management,2004,45:2033-2042.
    [71]王澜,李鑫,赵子,叶志殷.聚烯烃/石蜡复合相变储能材料的研究[J].2008,22(4):25-27.
    [72]罗超云,林雪春,杨伟,陈秦,陈晶晶.EVA包覆石蜡定形相变材料的性能研究[J].现在塑料加工应用,2009,211(4):24-27.
    [73]李玉蓉,夏定国,焦庆影,谭凤姣.石蜡类复合定形相变材料的制备研究[J].化工技术与开发,2007,36(8):4-7.
    [74]徐仁崇.相变储能混凝土的试制研究[D].重庆,重庆大学:2008.
    [75]Lane G A.Solar heat storage:latent heat material:Vol.2[M]. Boca Raton:CRC PressInc, 1986.50-65.
    [76]Hawes D W, Feldman D.Absorption of phase change materials in concrete[J]. Solar Energy Materials and Solar Cells,1992,27(2):91-101.
    [77]Hadjieva M, Stoykov R, Filipova. Composite salt-hydrate concrete system for building energy storage[J]. Renewable Energy,2000,19(1):111-115.
    [78]Lee T, Hawes D W, Banu D, et al. Control aspects of latent heat storage and recovering in concrete[J]. Solar Energy Materials and Solar Cells,2000,62:217-237.
    [79]张东,周剑敏等.相变储能混凝土的制备方法及其储能行为研究[J].建筑材料学报,2003,6(4):374-379.
    [80]Feldman D. Banu. D. Hawes D. Low chain esters of stearic acid as phase change materials for thermal storage in buildings[J]. Solar Energy Materials and Solar Cells,1995,36(3): 311-322.
    [81]Takeshi K. Tadahiko T. Tsubota Y. Research on the thermal storage of PCM wallboard[A].日本建筑学会计划论文集[C],2001,540:23-29.
    [82]顾同曾.德国的建筑节能技术[J].建筑科技,2001,2:62-67.
    [83]Rudd A F. Phase change material wall for distributed thermal storage in buildings[C]. ASHRAE Transactions,1993,99(2):339-344.
    [84]史巍,张雄,Juergen Dreyer.相变储能大体积混凝土的控温性能[J].同济大学学报,2010,38(4):564.
    [85]Compeland Le, kantro D L, Verbeckg. Chemistry of hydration of Portland cement[C]. Washington D C:National Bureau of Standards,1960:429-465.
    [86]闫全英,王威.低温相变石蜡储热性能的实验研究[J].太阳能学报,2007,27(8),805-809.
    [87]杨勇康,张雄,陆沈磊.相变材料用于控制混凝土水化热的研究[J].混凝土与水泥制品,2007,5:9-11.
    [88]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004:90-94.
    [89]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979:80-88.
    [90]李鹏辉,鲍克蒙,陈凤岐.混凝土绝热温升测试系统的改进及应用[J].实验技术与管理,2007,24(10):58-61.
    [91]林志海,覃维祖.用虚拟仪器技术检测混凝土的绝热温升[J].混凝土与水泥制品,2002,2(4):9-11.
    [92]薛慧,刘光延,陈凤岐.混凝土绝热温升测试仪的研制及其应用[J].清华大学学报,1996,36(1):90-94.
    [93]王甲春,阎培渝.粉煤灰混凝土绝热温升的试验研究[J].沈阳建筑大学学报2006,22(1):181-121.
    [94]Fang Xiaoming, Zhang Zhengguo, Chen Zhonghua. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials[J]. Energy Conversion and Management,2008,49(4):718-723.
    [95]Lorsch HG, Kauffman KW, Denton JC. Thermal energy storage for heating and air conditioning, future energy production system[J]. Heat Mass Transfer Proc,1976,1:69-85.
    [96]Farid MM. A review on energy storage with phase changes. In:Proceedings of Chicago/Midwest Renewable Energy Workshop, Chicago, USA,2001.
    [97]Zhang, D., Zhou, J., Wu, K., Li, Z.. Granular phase change composites for thermal energy storage[J]. Solar Energy,2005,78:351-480.
    [98]A. Benmansour, M.A. Hamdan, A. Bengeuddach, Experimental and numerical investigation of solid particles thermal energy storage unit, Applied Thermal Engineering 2006,26: 513-518.
    [99]丁庆军.高强次轻混凝土的研究与应用[D].武汉:武汉理工大学,2006.
    [100]Glory Joseph, K. Ramamurthy. Workability and strength behaviour of concrete with cold-bonded fly ash aggregate[J]. Materials and Structures,2009,42:151-160.
    [101]O Troco'n, De Rinco'n.Durability of concrete structures:DURACON, an iberoamerican project. Preliminary results[J]. Building and Environment,2006,41:952-962.
    [102]Khunthongkeaw J, Tangtermsirikul S, Leelawa T.A study on carbonation depth prediction for fly ash concrete[J]. Construction and Building Materials,2006,20(9):744-753.
    [103]Geraldine Villain, Mickael Thiery, Gerard Platret.Measurement methods of carbonation profiles in concrete:Thermogravimetry, chemical analysis and gammaden simetry[J]. Cement and ConcreteResearch,2007,37(6):1182-1192.
    [104]李伟,李祎或.石蜡微胶囊的制备及影响因素的研究[D].上海:同济大学,2007.
    [105]余保英,张亚梅.建筑相变材料的封装技术[J].江苏建材,2009,2:14-16.
    [106]廖晓敏,张雄,张青.建筑围护结构用蓄热复合相变材料研究[J].建筑节能,2007,11:37-38.
    [107]王子明,韦庆东,郝利炜,吴红,谢丽艳.相变物质对水泥水化放热和混凝土性能的影响[J].商品混凝土,2007,3:16-18.
    [108]马保国,谭洪波,许永和,潘伟.不同减水剂对水泥水化的作用机理研究[J].混凝土与水泥制品,2007(5):6-8.
    [109]吕丽萍,史忠.浅谈影响混凝土弹性模量的因素[J].混凝土,2003,1,33-34.
    [110]韩卫国,贾靖,顾大伟,李国超.对混凝土弹性模量影响因素的探讨[J].山东建材,2002,22(99):23-24.
    [111]李伟文,冷发光,邢锋.不同强度等级混凝土氯离子渗透性研究[J].混凝土,2003(5): 29-62.
    [112]李大鸣,吕小海,焦润红.泥沙静水沉降阻力系数[J].水力学报,2004,1:1-5.
    [113]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [114]李煜林,陈正行等.稻壳中硅化物的国内外研究现状[J].食品工业科技,2009,10(30):333-335.
    [115]蔡希高.稻壳、稻壳灰在建筑上的应用[J].广西科学院学报,1999,15(4):190-195.
    [116]黄宝祥.稻壳利用现状综述[J].现代农业科技,2007,(6):113-115.
    [117]卢芳仪,任宇红.稻壳灰制白炭黑和活性炭的研究[J].化学工程学报,1997,(4):4-6.
    [118]Chakraverty A, Mishra P, Banerjee H D. Investigation of combustion of raw and acid-leached rice hull for production of pure amorphous white silica[J]. Mater Science, 1988,23(12):21-25.
    [119]卫延安,朱永义,朱春山,等.提高稻壳灰制备活性炭、白炭黑质量的方法研究[J].郑州工程学院学报,2003,24(1):61-68.
    [120]洪庆慈.新型吸附剂稻壳灰性能研究[J].中国油脂,2002,27(1):29-30.
    [121]陈玉雄,单玉霞.稻壳灰作吸附剂的研究[J].粮油仪器科技,1993,(1):8-9.
    [122]Liew K Y. Adsorption of carotene from palm oil by acidtreated rice hull ash[J]. Journal of the American Oil Chemists' Society,1993,70(21):539-541.
    [123]Chang Y Y, Lin C I. Chen H K. Rice hull ash structure and bleaching performance produced by ashing at various times and temperatures[J]. American Oil Chemists' Society, 2001,78(6):657-660.
    [124]Andrew P. X-ray diffraction and scanning electron microscope studies of processed rice hull silica[J]. Journal of the American Oil Chemists' Society,1996,67(9):576-583.
    [125]欧阳东.稻壳灰显微结构及其中纳米Si02的电镜观察[J].电子显微学报,2003,22(10):390-394.
    [126]欧阳东,陈楷.低温焚烧稻壳灰的显微结构及其化学活性[J].硅酸盐学报,2003,23(11):1121-1124.
    [127]FENG Qing-ge, LIN Qing-yu. Concrete with highly active rce husk ash[J]. Journal of Wuhan University of Technolog,2004,12(3):74-77.
    [128]Muhammad Shoaib Ismail, A. M. WaliuddintS. Effect of rice husk ash on high strength concrete[J]. Construction and Building Materials,1996,10(1):521-526.
    [129]Weerachart Tangchirapat, Rak Buranasing. Influence of rice husk-bark ash on mechanical properties of concrete containing high amount of recycled aggregates[J]. Construction and Building Materials,2008,22:1812-1819.
    [130]封光寅,马继建等.粒径计分析均匀细沙时沉降速率和粒径的误差分析[J].中国分体技术,2009,15(4):66-68.
    [131]赵忠义,王健,等.颗粒分析中密度计法土粒粒径计算公式研究[J].岩土工程学报,2001,23(2):247-249.
    [132]廖晓樱,罗帆,刘昊.物料相对易磨性与粉磨功指数的比较[J].水泥,2003,4:22-25.
    [133]阎培渝,张庆欢.粉煤灰复合胶凝材料水化性能的影响[J].高性能混凝土和矿物掺合料的研究与工程应用技术交流会,2006:165-170.
    [134]Abdallah 1.HuseinMalkawi, Saad A.Mutasher, Tony J.Qiu. Thermal-strueture modeling and temperature control of roller compaeted conerete gravity dam[J]. Joumal of performanee of Constructed Facilities,2003:177-187.
    [135]Bofang Zhu, Ping Xu. Methods for stress analysis simulating the construction process of high concrete dams. Dam Engineering,2001(4):243-260.
    [136]Tohru Kawaguchi, Sunao Nakane. Investigations on determining thermal stress in massive concrete structures[J]. ACI,1996(1):967-101.
    [137]Kim Jang-Ho Jay, Jeon, Sang-Eun, Kim. Development of new device for measuring thermal stress[J]. Cement and Concrete Research,2002,32(10):1651-1654.
    [138]陈尧隆,李守义等.高碾压混凝土重力坝温度应力和防渗措施研究[R].“九五”科技攻关报告,西安:西安理工大学水电学院,1999.11.
    [139]Zhu Bofang. Computation of thermal stresses in mass concrete with consideration of creep effect[C]. Fifteenth International Congress on Large Dams, Lausanne, Suisse, June,1985: 24-28.
    [140]陈尧隆.高等水工结构[M].西安:西安理工大学水电学院,2001.
    [141]张宇鑫,黄达海,宋玉普,张燕.溪洛渡拱坝二期冷却方式仿真分析研究[J].大连理工大学学报.2003,5:81-85.
    [142]戴会超,许平.三峡二期大坝温控仿真反馈分析系统[J].三峡大学学报.2004,4:26-27.
    [143]水泥水化热测定方法(GB/T12959-2008)[M].2008.
    [144]大体积混凝土施工技术规范(GB/T50496-2009)[M].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700