氮掺杂多壁碳纳米管的合成及NO电氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吡啶和酞菁铁为原料、以包含铁的化合物为催化剂,通过控制合成条件用CVD法制备了不同氮含量的氮掺杂多壁碳纳米管(N-MWCNTs)。合成N-MWCNTs的温度范围在750-875℃,氨气流速范围在100-450 mL/min。
     采用XPS、TEM、XRD、FT-IR和Raman等技术对制备的N-MWCNTs进行了表征。XPS研究表明,所合成的N-MWCNTs中有三种不同类型的氮,分别是吡啶型氮、石墨型氮和分子型氮。理论计算表明,N-MWCNTs中的吡啶型氮比石墨型氮更易于吸附NO分子。
     采用循环伏安(CV)和交流阻抗(EIS)法考察了NO在N-MWCNTs修饰电极上的电氧化活性。研究结果表明:所制备的N-MWCNTs,其氮掺杂含量和吡啶型氮含量,对NO的电氧化活性起到了至关重要的作用,即吡啶型氮含量越高,电氧化反应速率越快。因此,含较高吡啶型氮的N-MWCNTs是很好的电极材料,可以被用来检测和移除NO。
     对N-MWCNTs进行了NO气敏性研究。结果表明N-MWCNTs中氮含量和吡啶型氮含量的增加,能够提高N-MWCNTs对NO的敏感度。
In this paper, nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) were synthesized by pyrolysis of pyridine and iron phthalocyanine over iron supported catalyst. Various N-MWCNTs with different N content were prepared using chemical vapor deposition method. The synthesis conditions were controlled in the temperature range 750-875℃, and in the NH3 flow rate range 100-450 mL/min.
     The samples were characterized by XPS, TEM, XRD, FT-IR and Raman. The XPS analysis results demonstrate that there are three types of N atoms in them, namely pyridine-like, graphite-like and molecular N. The theoretical calculation indicates that the pyridine-like N is easier than the graphite-like N to adsorb NO molecules.
     Cyclic voltammetry and electrochemical impedance spectroscopy were carried on for the study of NO electrooxidation on the N-MWCNTs modified electrodes. The measurement results indicate that the total doped N and the pyridine-like N of obtained N-MWCNTs play important roles in the electrooxidation of NO. The high content of pyridine-like N can increase the electrooxidation rate of NO. Therefore, N-MWCNTs with high pyridine-like N are the excellent electrode materials and can be used for detect and remove NO.
     The gas-sensing behavior of N-MWCNTs to NO was reported here. The test results indicate that the increase of total doped N and the pyridine-like N of N-MWCNTs can increase the sensitivity to NO gas.
引文
[1]Ajayan P. M. Nanotubes from carbon[J]. Chem. Rev.,1999,99(7):1787-1799.
    [2]Iijima S. Helical microtubes of graphite carbon[J]. Nature,1991,354(6348): 56-58.
    [3]Chen Y R., Weng C. I. Electronic properties of zigzag carbon nanotubes under uniaxial strain[J]. Carbon,2007,45(8):1636-1644.
    [4]Zhang Y. C., Chen X., Wang X. Effects of temperature on mechanical properties of multi-walled carbon nanotubes[J]. Compos. Sci. Technol.,2008,68(2):572-581.
    [5]Ebbesen T. W., Lezec H. J., Hiura H., Bennett J. W., Ghaemi H. F., Thio T. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382(6586): 54-56.
    [6]Fujita S., Suzuki A. Theory of temperature dependence of the conductivity in carbon nanotubes[J]. J. Appl. Phys.,2010,107(1):013711-013714.
    [7]Quintana M., Prato M. Supramolecular aggregation of functionalized carbon nanotubes[J]. Chem. Commun.,2009, (40):6005-6007.
    [8]Chen X. H., Wang J. F., Zou J. G., Wu X. L., Chen X. J., Xue F. Mechanical and thermal properties of functionalized multiwalled carbon nanotubes and multiwalled carbon nanotube-polyurethane composites[J]. J. Appl. Polym. Sci., 2009,114(15):3407-3413.
    [9]Chen W. H., Cheng H. C., Liu Y. L. Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics [J]. Comput. Mater. Sci.,2010,47(4):985-993.
    [10]Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties [J]. Prog. Polym. Sci.,2010,35(3):357-401.
    [11]Lafuente E., Callejas M. A., Sainz R., Benito A. M., Maser W. K., Sanjuan M. L., Saurel D., de Teresa J. M., Martinez M. T. The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites[J]. Carbon,2008,46(14):1909-1917.
    [12]Wang J. F., Xie H. Q., Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochim. Acta,2009,488(1-2): 39-42.
    [13]Coleman J. N., Khan U., Blau W. J., Gun'ko Y. K. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006,44(9):1624-1652.
    [14]Height M. J., Howard J. B., Tester J. W., Vander Sande J. B. Flame synthesis of single-walled carbon nanotubes[J]. Carbon,2004,42(11):2295-2307.
    [15]Wang W. Z., Huang J. Y., Wang D. Z., Ren Z. F. Low-temperature hydrothermal synthesis of multiwall carbon nanotubes[J]. Carbon,2005,43(6):1328-1331.
    [16]Andrews R., Jacques D., Qian D., Rantell T. Multiwall carbon nanotubes: synthesis and application[J]. Acc. Chem. Res.2002,35(12),1008-1017.
    [17]Danafar F., Fakhru'1-Razi A., Salleh M. A. M., Biak D. R. A. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review[J]. Chem. Eng. J.,2009,155(1-2):37-48.
    [18]Du G. X., Kang Z. R., Song J. L., Zhao J. H., Song C., Zhu Z. P. Theoretical and experimental evidence of a metal-carbon synergism for the catalytic growth of carbon nanotubes by chemical vapor deposition[J]. New Carbon Mater.,2008, 23(4):331-338.
    [19]Bronikowski M. J. CVD growth of carbon nanotube bundle arrays[J]. Carbon, 2006,44(13):2822-2832.
    [20]Ni L., Kuroda K., Zhou L. P., Kizuka T., Ohta K., Matsuishi K., Nakamura J. Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts[J]. Carbon,2006,44(11):2265-2272.
    [21]Jahanshahi M., Raoof J. B., Hajizadeh S., Seresht R. J. Synthesis and subsequent purification of carbon nanotubes by arc discharge in NaCl solution[J]. Phys. Status Solidi A,2009,206(1):101-105.
    [22]Roch A., Jost O., Schultrich B., Beyer E. High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique[J]. Phys. Status Solidi B, 2007,244(11):3907-3910.
    [23]Yoshida H., Sugai T., Shinohara H. Fabrication, purification, and characterization of double-wall carbon nanotubes via pulsed arc discharge[J]. J. Phys. Chem. C, 2008,112 (50):19908-19915.
    [24]Zhang M. F., Yudasaka M., Iijima S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation[J]. J. Phys. Chem. B,2004,108(34):12757-12762.
    [25]Kocabas C., Meitl M. A., Gaur A., Shim M., Rogers J. A. Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation[J]. Nano Lett.,2004,4(12):2421-2426
    [26]Chun K. Y., Lee C. J. Potassium doping in the double-walled carbon nanotubes at room temperature[J]. J. Phys. Chem. C,2008,112 (12):4492-4497.
    [27]Wang R. X., Zhang D. J., Sun W. Q., Han Z., Liu C. B. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide[J]. J. Mol. Struct.:THEOCHEM, 2007,806(1-3):93-97.
    [28]Ni M. Y, Huang L. F., Guo L. J., Zeng Z. Hydrogen storage in Li-doped charged single-walled carbon nanotubes[J]. Int. J. Hydrogen Energy, In Press, Corrected Proof, Available online 2 March 2010.
    [29]Liu B. Y., Wei L. W., Ding Q. M., Yao J. L. Synthesis and magnetic study for Fe-doped carbon nanotubes (CNTs)[J]. J. Cryst. Growth,2005,277(1-4): 293-297.
    [30]Reyhani A., Mortazavi S. Z., Moshfegh A. Z., Golikand A. N., Amiri M. Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition[J]. J. Power Sources,2009,188(2):404-410.
    [31]Yeung C. S., Liu L. V., Wang Y. A. Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes[J]. J. Phys. Chem. C,2008,112(19): 7401-7411.
    [32]Lee S. M., An K. H., Lee Y. H., Seifert G., Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2001, 123(21):5059-5063.
    [33]Nikitin A., Li X. L., Zhang Z. Y., Ogasawara H., Dai H. J., Nilsson A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds [J]. Nano Lett.,2008,8(1):162-167.
    [34]成会明,刘畅,丛洪涛.具有优异储氢性能的高质量单壁纳米碳管的合成[J].物理,2000,29(8):449-450.
    [35]Esawi A. M. K., Farag M. M. Carbon nanotube reinforced composites:Potential and current challenges [J]. Mater. Des.,2007,28(9):2394-2401.
    [36]Zou P., Shi G. Y., Pan C. Y. Large-compound vesicle-encapsulated multiwalled carbon nanotubes:A unique route to nanotube composites [J]. J. Polym. Sci., Part A:Polym. Chem.,2009,47(14):3669-3679.
    [37]Banhart F. Interactions between metals and carbon nanotubes:at the interface between old and new materials[J]. Nanoscale,2009,1:201-213.
    [38]Lin Y H., Cui X. L., Yen C. H., Wai C. M. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells[J]. Langmuir,2005,21 (24):11474-11479.
    [39]Gao G. Y., Guo D. J., Wang C., Li H. L. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochem. Commun.,2007,9(7):1582-1586.
    [40]Li J., Tang S. B., Lu L., Zeng H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly [J]. J. Am. Chem. Soc., 2007,129(30):9401-9409.
    [41]Ma S. B., Nam K. W., Yoon W. S., Yang X. Q., Ahn K. Y, Oh K. H., Kim K. B. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications[J]. J. Power Sources,2008,178(1):483-489.
    [42]Lebel L. L., Aissa B., Khakani M. A. E., Therriault D. Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams[J]. Compos. Sci. Technol.,2010,70(3):518-524.
    [43]Rong C. R., Ma G, Zhang S. L., Song, L. Chen Z., Wang G. B., Ajayan P. M. Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly(ether ether ketone)[J]. Compos. Sci. Technol.,2010,70(2): 380-386.
    [44]Ahmad K., Pan W. Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites [J]. Compos. Sci. Technol.,2009,69(7-8):1016-1021.
    [45]Dechakiatkrai C., Lynam C., Gilmore K. J., Chen J., Phanichphant S., Bavykin D. V., Walsh F. C., Wallace G. G. Single-walled carbon nanotube/trititanate nanotube composite fibers[J]. Adv. Eng. Mater.,2009,11(7):B55-B60.
    [46]Wildgoose G. G., Banks C. E., Compton R. G. Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications[J]. Small, 2006,2(2):182-193.
    [47]Upadhyayula V. K. K., Deng S. G., Mitchell M. C., Smith G B. Application of carbon nanotube technology for removal of contaminants in drinking water:A review[J]. Sci. Total Environ.,2009,408(1):1-13.
    [48]Kong J., Franklin N. R., Zhou C. W., Chapline M. G., Peng S., Cho K., Dai H. J. Nanotube molecular wires as chemical sensors [J]. Science,2000,287(5453): 622-625.
    [49]Helbling T., Pohle R., Durrer L., Stampfer C., Roman C., Jungen A., Fleischer M., Hierold C. Sensing NO2 with individual suspended single-walled carbon nanotubes[J]. Sens. Actuators B,2008,132(2):491-497.
    [50]Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen-Duc C., Fossard F. Synthesis of multi-walled carbon nanotubes for NH3 gas detection[J]. Physica E, 2007,37(1-2):54-57.
    [51]Goldoni A., Larciprete R., Petaccia L., Lizzit S. Single-wall carbon nanotube interaction with gases:sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc.,2003,125(37):11329-11333.
    [52]Modi A., Koratkar N., Lass E., Wei B., Ajayan P. M. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature,2003,424(6945):171-174.
    [53]de Heer W. A., Chatelain A., Ugarte D. A carbon nanotube field-emission electron source[J]. Science,1995,270(5239):1179-1180.
    [54]Lee N. S., Chung D. S., Han I. T., Kang J. H., Choi Y. S., Kim H. Y., Park S. H., Jin Y. W., Yi W. K., Yun M. J., Jung J. E., Lee C. J., You J. H., Jo S. H., Lee C. G., Kim J. M. Application of carbon nanotubes to field emission displays[J]. Diamond Relat. Mater.,2001,10(2):265-270.
    [55]Saito Y., Uemura S. Field emission from carbon nanotubes and its application to electron sources[J]. Carbon,2000,38(2):169-182.
    [56]Sugie H., Tanemura M., Filip V., Iwata K., Takahashi K., Okuyama F. Carbon nanotubes as electron source in an X-ray tube[J]. Appl. Phys. Lett.,2001,78(17): 2578-2580.
    [57]Ghosh N., Kang W. P., Wong Y. M., Davidson J. L. A monolithic electron beam amplified carbon nanotube field emission cell[J]. Diamond Relat. Mater.,2010,
    19(2-3):247-251.
    [58]Sharma R. K., Zhai L. Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors[J]. Electrochim. Acta,2009,54(27):7148-7155.
    [59]Jiang Q., Qu M. Z., Zhou G. M., Zhang B. L., Yu Z. L. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials [J]. Mater. Lett.,2002,57(4):988-991.
    [60]Chen J., Liu Y., Minett A. I., Lynam C., Wang J. Z., Wallace G G Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery[J]. Chem. Mater.,2007,19(15):3595-3597.
    [61]Liang X. L., Wang S., Wei X. L., Ding L., Zhu Y Z., Zhang Z. Y, Chen Q., Li Y, Zhang J., Peng L. M. Towards entire-carbon-nanotube circuits:the fabrication of single-walled-carbon-nanotube field-effect transistors with local multiwalled-carbon-nanotube interconnects [J]. Adv. Mater.,2009,21(13): 1339-1343.
    [62]Demoustier S., Minoux E., Le Baillif M., Charles M., Ziaei A. Review of two microwave applications of carbon nanotubes:nano-antennas and nano-switches[J]. Comptes Rendus Physique,2008,9(1):53-66.
    [63]Foldvari M., Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines:I. pharmaceutical properties[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2008,4(3):173-182.
    [64]Tarakanov A. O., Goncharova L. B., Tarakanov Y. A. Carbon nanotubes towards medicinal biochips[J]. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol.,2010, 2(1):1-10.
    [65]Dong L. X., Subramanian A., Nelson B. J. Carbon nanotubes for nanorobotics[J]. Nanotoday,2007,2(6):12-21.
    [66]Regan B. C., Aloni S., Ritchie R. O., Dahmen U., Zettl A. A. Carbon nanotubes as nanoscale mass conveyors[J]. Nature,2004,428(6986):924-927.
    [67]Hueso L. E., Pruneda J. M., Ferrari V., Burnell G. Transformation of spin information into large electrical signals using carbon nanotubes[J]. Nature,2007, 445(7126):410-413.
    [68]Terrones M. Controlling nanotube chirality and crystallinity by doping[J]. Small, 2005,1(11):1032-1034.
    [69]Maldonado S., Morin S., Stevenson K. J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping[J]. Carbon,2006, 44(8):1429-1437.
    [70]Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties [J]. Nano Lett.,2009,9(5):1752-1758.
    [71]Lim S. H., Elim H. I., Gao X. Y., Wee A. T. S., Ji W., Lee J. Y, Lin J. Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes[J]. Phys. Rev. B,2006,73(4):045402-1-045402-6.
    [72]Wang C., Qiao L., Qu C. Q., Zheng W. T., Jiang Q. First-principles calculations on the emission properties of pristine and N-doped carbon nanotubes[J]. J. Phys. Chem. C,2009,113(3):812-818.
    [73]Ghosh P., Tanemura M., Soga T., Zamri M., Jimbo T. Field emission property of N-doped aligned carbon nanotubes grown by pyrolysis of monoethanolamine[J]. Solid State Commun.,2008,147(1-2):15-19.
    [74]Droppa, Jr. R., Hammer P., Carvalho A. C. M., dos Santos M. C., and Alvarez F. Incorporation of nitrogen in carbon nanotubes[J]. J. Non-Cryst. Solids,2002, 299-302:874-879.
    [75]Hummelen J. C., Knight B., Pavlovich J., Gonzalez R., Wudl F. Isolation of the Heterofullerene C59N as its dimer (C59N)2[J]. Science,1995,269(5230): 1554-1556.
    [76]Terrones M., Terrones H., Grobert N., Hsu W. K., Zhu Y. Q., Hare J. P., Kroto H. W., Walton D. R. M., Kohler-Redlich Ph., Riihle M., Zhang J. P., Cheetham A. K. Efficient route to large arrays of CNX nanofibers by pyrolysis of ferrocene/melamine mixtures[J]. Appl. Phys. Lett.,1999,75(25):3932-3934.
    [77]Yudasaka M., Kikuchi R., Ohki Y., Yoshimura S. Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition[J]. Carbon,1997,35(2):195-201.
    [78]Tang C., Bando Y., Golberg D., Xu F. Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide[J]. Carbon,2004,42(12-13):2625-2633.
    [79]Cao C., Huang F., Cao C., Li J., Zhu H. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route[J]. Chem. Mater.2004,16(25): 5213-5215.
    [80]Goldberg D., Bando Y., Bourgeois L., Kurashima K., Sato T. Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles[J]. Carbon,2000,38(14):2017-2027.
    [81]Suenaga K., Johansson M. P., Hellgren N., Broitman E., Wallenberg L. R., Colliex C., Sundgren J. E., Hultman L. Carbon nitride nanotubulite densely-packed and well-aligned tubular nanostructures[J]. Chem. Phys. Lett. 1999,300(5-6):695-700.
    [82]Kotakoski J., Krasheninnikov A. V., Ma Y, Foster A. S., Nordlund K., Nieminen R. M. B and N ion implantation into carbon nanotubes:insight from atomistic simulations[J]. Phys. Rev. B,2005,71(20):205408-1-205408-6.
    [83]Lee S. U., Belosludov R. V., Mizuseki H., Kawazoe Y. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes [J]. Small,2009,5(15):1769-1775.
    [84]Peng S., Cho K. Ab initio study of doped carbon nanotube sensors[J]. Nano Lett., 2003,3(4):513-517.
    [85]Villalpando-Paez F., Romero A. H., Munoz-Sandoval E., Martinez L. M., Terrones H., Terrones M. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes[J]. Chem. Phys. Lett.,2004,386(1-3):137-143.
    [86]Jiang K. Y., Eitan A., Schadler L. S., Ajayan P. M., Siegel R. W., Grobert N., Mayne M., Reyes-Reyes M., Terrones H., Terrones M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes[J]. Nano Lett.,2003,3(3): 275-277.
    [87]Cao Y., Jiao Q. Z., Liu H. B., Tang X. L., Zhao Y Preparation and magnetic property of the composite of nitrogen-doped carbon nanotubes decorated with nickel nanoparticles[J]. Physica E,2009,41(10):1824-1827.
    [88]张立德.纳米材料与纳米结构[M].北京:科学出版社,2001,48.
    [89]Wong Y M., Kang W. P., Davidson J. L., Wisitsora A., Soh K. L. A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection[J]. Sens. Actuators B,2003,93(1-3):327-332.
    [90]Zhou Z., Gao X. P., Yan J., Song D. Y, Morinag M. Enhanced lithium absorption in SWCNT by boron doping[J]. J. Phys. Chem. B,2004,108(26):9023-9026.
    [91]Zhang Y. M., Zhang D. J., Liu C. B. Novel chemical sensor for cyanides: boron-doped carbon nanotubes[J]. J. Phys. Chem. B,2006,110(10):4671-4674.
    [92]Zhou Z., Gao X. P., Yan J., Song D. Y. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations[J]. Carbon,2006,44(5):939-947.
    [93]Nakano H., Ohta H., Yokoe A., Doi K., Tachibana A.. First-principle molecular-dynamics study of hydrogen adsorption on an aluminum-doped carbon nanotube[J]. J. Power Sources,2006,163(1):125-134.
    [94]Zhao Q., Nardelli M. B., Lu W., Bernholc J. Carbon nanotube-metal cluster composites:a new road to chemical sensors?[J]. Nano Lett.,2005,5(5): 847-851.
    [95]Wei B. Y., Hsu M.C., Su P. G., Lin H. M., Wu R. J., Lai H. J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature[J]. Sens. Actuators B,2004,101(1-2):81-89.
    [96]Su P. G, Wang C. S. In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor [J]. Sens. Actuators B,2007,124(2):303-308.
    [97]Bekyarova E., Davis M., Burch T., Zhao B., Sunshine S., Haddon R. C. Chemically Functionalized Single-Walled Carbon Nanotubes as Amonia Sensors[J]. J. Phys. Chem. B,2004,108(51):19717-19720.
    [98]Star A., Han T R., Joshi V., Stetter J R. Sensing with Nafion coated carbon nanotube field-effect transistors [J]. Electroanalysis,2004,16(1-2):108-112.
    [99]Fang X. S., Guo M., Chen W. J., Pan M., Chen Y. Q., Zhang X. B. Study of VOCs sensing property of carbon nanotubes and their modified nano-composites[J]. Chin. J. Sens. Actuators,2006,19(5):2130-2134.
    [100]Ionescu R., Espinosa E. H., Sotter E., Llobet E., Vilanova X., Correisg X., Felten A., Bittencourt C., VanLier G Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers[J]. Sens. Actuators B,2006,113(1): 36-46.
    [101]Huang X. J., Sun Y. F., Wang L. C., Meng F. L., Liu J. H. Carboxylation MWNTs modified with LiClO4 for water vapor detection[J]. Nanotechnology, 2004,15(9):1284-1288.
    [102]Da Silva L. B., Fagan S. B., Mota R. Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules[J]. Nano Lett.,2004,4(1): 65-67.
    [103]Fagan S. B., da silva L. B., Mota R. Ab initio study of radial deformation plus vacancy on carbon nanotubes:energetics and electronic properties [J]. Nano Lett.,2003,3(3):289-291.
    [104]Huang S. M., Dai L. M., Mau A. W. H. Patterned growth and contact transfer of well-aligned carbon nanotube films[J]. J. Phys. Chem. B,1999,103(21): 4223-4227.
    [105]Gao M., Huang S. M., Dai L. M., Wallace G., Gao R., Wang Z. L. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers[J]. Angew. Chem. Int. Ed.,2000,39(20):3664-3667.
    [106]Bulusheva L. G., Okotrub A. V., Kudashov A. G., Shubin Y. V., Shlyakhova E. V., Yudanov N. F., Pazhetnov E. M., Boronin A. I., Vyalikh D. V. Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes[J]. Carbon,2008,46(6):864-869.
    [107]Yang Q. H., Hou P. X., Unno M., Yamauchi S., Saito R., Kyotani T. Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls[J]. Nano Lett.,2005,5(12):2465-2469.
    [108]He M. S., Zhou S., Zhang J., Liu Z. F., Robinson C. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism[J]. J. Phys. Chem. B, 2005,109(19):9275-9279.
    [109]Lim S. H., Li R. J., Ji W., Lin J. Y. Effects of nitrogenation on single-walled carbon nanotubes within density functional theory [J]. Phys. Rev. B,2007, 76(19):195406.
    [110]Bulusheva L. G., Okotrub A. V., Kinloch I. A., Asanov I. P., Kurenya A. G., Kudashov A. G., Chen X., Song H. Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes[J]. Phys. Status Solidi B,2008,245(10): 1971-1974.
    [111]Carrara S., Shumyantseva V. V., Archakov A. I., Samori B. Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors[J]. Biosens. Bioelectron.,2008,24(1):148-150.
    [112]Yadegari H., Jabbari A., Heli H., Moosavi-Movahedi A. A., Karimian K., Khodadadi A. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode[J]. Electrochim. Acta, 2008,53(6):2907-2916.
    [113]Bollo S., Ferreyra N. F., Rivas G. A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan[J]. Electroanalysis,2007,19(7-8):833-840.
    [114]Chen L., Lu G. X. Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation[J]. Electrochim. Acta,2008, 53(12):4316-4323.
    [115]Gao G. Y., Guo D. J., Wang C., Li H. L. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochem. Commun.,2007,9(7):1582-1586.
    [116]Li C. M., Zang J. F., Zhan D. P., Chen W., Sun C. Q., Teo A. L., Chua Y. T., Lee V. S., Moochhalac S. M. Electrochemical behavior of deoxycholic acid on multiwalled carbon nanotubes modified electrode[J]. Electroanalysis,2006, 18(23):713-718.
    [117]Dariusz K., Andraej K. A method of nitrogen dioxide and sulphur dioxide determination in ambient air by use of passive samplers and ion chromatography[J]. Atmos. Environ.,1997,31(20):3473-3479.
    [118]Collins G. E., Rose-Pehrsson S. L. Chemiluminescent chemical sensors for oxygen and nitrogen dioxide[J]. Anal. Chem.,1995,67(13):2224-2230.
    [119]Ma M. M., Tong J., Li G. A new mothod to analyzing NOX and SO2 in the air by HPLC[J]. Journal of Shaanxi Instiute of Technology,2000,16(2):38-43.
    [120]Ayala P., Gruneis A., Gemming T., Grimm D., Kramberger C., Rummeli M. H., Freire Jr F. L., Kuzmany H., Pfeiffer R., Barreiro A., Buchner B., Pichler T. Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock[J]. J. Phys. Chem. C,2007,111(7):2879-2884.
    [121]Choi H. C., Park J., Kim B. Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy[J]. J. Phys. Chem. B,2005,109(10):4333-4340.
    [122]Kim S. Y., Lee J. Y., Na C. W., Park J., Seo K., Kim B. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition[J]. Chem. Phys. Lett.,2005,413(4-6):300-305.
    [123]Tao X. Y., Zhang X. B., Sun F. Y., Cheng J. P., Liu F., Luo Z. Q. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1-xMoO4 catalyst[J]. Diamond Relat. Mater.,2007,16(3):425-430.
    [124]Amadou J., Chizari K., Houlle M., Janowska I., Ersen O., Begin D., Pham-Huu C. N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation[J]. Catal. Today,2008,138(1/2):62-68.
    [125]Bulusheva L. G., Okotrub A. V., Kudashov A. G., Pazhetnov E. M., Boronin A. I., Vyalikh D. V. Encapsulation of molecular nitrogen in multiwall CNx nanotubes[J]. Phys. Status Solidi B,2007,244(11):4078-4081.
    [126]Wu X. C., Tao Y. R., Mao C. J., Wen L. L., Zhu J. J. Synthesis of nitrogen-doped horn-shaped carbon nanotubes by reduction of pentachloropyridine with metallic sodium[J]. Carbon,2007,45(11):2253-2259.
    [127]Chan L. H., Hong K. H., Xiao D. Q., Lin T. C., Lai S. H., Hsieh W. J., Shih H. C. Resolution of the binding configuration in nitrogen-doped carbon nanotubes[J]. Phys. Rev. B,2004,70(12):125408-1-125408-7.
    [128]Yap Y. K., Kida S., Aoyama T., Mori Y., Sasaki T. Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 ℃[J]. Appl. Phys. Lett.,1998,73(7):915-917.
    [129]Czerw R., Terrones M., Charlier J. C., Blase X:, Foley B., Kamalakaran R., Grobert N., Terrones H., Tekleab D., Ajayan P. M., Blau W., Ruhle M., Carroll D. L. Identification of electron donor states in N-doped carbon nanotubes[J]. Nano Lett.,2001,1(9):457-460.
    [130]Lee Y. T., Kim N. S., Bae S. Y., Park J. Growth of vertically aligned nitrogen-doped carbon nanotubes:control of the nitrogen content over the temperature range 900-1100 ℃[J]. J. Phys. Chem. B,2003,107(47): 12958-12963.
    [131]Xiao K., Liu Y., Hu P., Yu G., Sun Y., Zhu D. n-type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube[J]. J. Am. Chem. Soc.,2005,127(24):8614-8617.
    [132]Liu J., Webster S., Carroll D. L. Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method[J]. J. Phys. Chem. B,2005,109(33):15769-15774.
    [133]Ghosh K., Kumar M., Maruyama T., Ando Y. Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution[J]. Carbon,2010,48(1):191-200.
    [134]Nevidomskyy A. H., Csanyi G., Payne M. C. Chemically active substitutional nitrogen impurity in carbon nanotubes[J]. Phys. Rev. Lett.2003,91(10): 105502-1-105502-4.
    [135]Bulusheva L. G., Okotrub A. V., Kinloch I. A., Asanov I. P., Kurenya A. G., Kudashov A. G., Chen X., Song H. Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes[J]. Phys. Status Solidi B,2008,245(10): 1971-1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700